Photo credit: Jiannan Meng

Synthetic earthquakes in a 3D numerical sandbox

Adélaïde Allemand¹, Yann Klinger², Luc Scholtès³

¹Institut de Physique du Globe de Paris - Université Paris Cité ²Institut de Physique du Globe de Paris - CNRS ³Laboratoire Magmas et Volcans - Université Clermont Auvergne

Introduction Method Results Conclusion

Surface rupture after the 2023 Kahramanmaraş earthquakes (Turkey)

Photo credit: Jiannan Meng

Introduction Method Results Conclusion

Surface rupture after the 2023 Kahramanmaraş earthquakes (Turkey)

Photo credit: Jiannan Meng

Introduction Method Results Conclusion

Surface rupture after the 2023 Kahramanmaraş earthquakes (Turkey)

Photo credit: Jiannan Meng

Context: continental strike-slip faults

Model a continental strike-slip fault and the mutual interaction between fault geometry and earthquake rupturing

This approach

Introduction

Conclusion

This approach: Discrete Element Modelling (DEM)

Principles of the DEM

Nature

Principles of the DEM

Nature

Principles of the DEM

Nature

Sub-volume

Principles of the DEM

Nature

Principles of the DEM

Introduction

Method

Results

Conclusion

Principles of the DEM

Model setup

Long term fault evolution **Displacement parallel** to the fault (m) Shear stress (MPa) 14 m 75 km 100 Displacement parallel to the fault (m) Distance along the fault (km) 80 60 40 20 0 40 km 0 km 1000 2000 3000 4000 -14 m 0 Distance across the fault (km) Fault cumulated displacement (m) (\Leftrightarrow Elapsed time)

Long term fault evolution **Displacement parallel** to the fault (m) Shear stress (MPa) 14 m 75 km 100 Distance along the fault (km) 80 60 40 20 *Riedel shears* 0-40 km 0 km 1000 2000 3000 4000 0 Distance across the fault (km)

Fault cumulated displacement (m) (\Leftrightarrow Elapsed time)

Displacement parallel to the fault (m) -14 m

Displacement parallel to the fault (m)

Long term fault evolution

-14 m

14 m

Fault cumulated displacement (m) (\Leftrightarrow Elapsed time)

Conclusion

Long term fault evolution **Displacement parallel** to the fault (m) Shear stress (MPa) 75 km 100 Distance along the fault (km) 80 Interaction between Riedel shears 60 40 20 0 40 km 0 km 1000 2000 3000 4000 0

Distance across the fault (km)

14 m

Displacement

parallel to

the fault (m)

-14 m

Long term fault evolution **Displacement parallel** to the fault (m) Shear stress (MPa) 14 m 75 km 100 Displacement parallel to the fault (m) Distance along the fault (km) 80 60 40 20 0 0 km 40 km 1000 2000 3000 -14 m 4000 0 Distance across the fault (km) Fault cumulated displacement (m) (\Leftrightarrow Elapsed time)

Long term fault evolution **Displacement parallel** to the fault (m) Shear stress (MPa) 14 m 75 km 100 Displacement parallel to the fault (m) Distance along the fault (km) Mature strike-slip fault 80 60 40 20 0 40 km 0 km 1000 -14 m 2000 3000 4000 0 Distance across the fault (km) Fault cumulated displacement (m) (\Leftrightarrow Elapsed time)

Introduction

Low gradient

Conclusion

Gradient of displacement in the

Long term fault evolution

Comparison with analogue experiments

Seismic cycling

Seismic cycling

Fault cumulated displacement (m) (⇔ Elapsed time)

Seismic cycling

Fault cumulated displacement (m) (⇔ Elapsed time)

Seismic cycling

Fault cumulated displacement (m) (⇔ Elapsed time)

Seismic cycling

Fault cumulated displacement (m) (⇔ Elapsed time)

Seismic cycling

Fault cumulated displacement (m) (⇔ Elapsed time)

Method

Results

Conclusion

Method

Results

Conclusion

Method

Results

Conclusion

Method

Results

Conclusion

Method

Results

Conclusion

Method

Results

Conclusion

Seismic cycling

• Alternation between seismic and interseismic phases

Method

Results

Conclusion

- Alternation between seismic and interseismic phases
- Variations among the rupture lengths

Method

Results

Conclusion

- Alternation between seismic and interseismic phases
- Variations among the rupture lengths
- Variations in the amount of slip released

Method

Results

Conclusion

- Alternation between seismic and interseismic phases
- Variations among the rupture lengths
- Variations in the amount of slip released
- Variations in the duration of interseismic periods

Method

Results

Conclusion

Seismic cycling

- Alternation between seismic and interseismic phases
- Variations among the rupture lengths
- Variations in the amount of slip released
- Variations in the duration of interseismic periods

⇒ Variations in the magnitude of events

Magnitude distribution

1. Look at the displacement in one time interval

Magnitude distribution

- 1. Look at the displacement in one time interval
- 2. Filter out the particles below a given displacement threshold

Distance across the fault (km)

Magnitude distribution

- 1. Look at the displacement in one time interval
- 2. Filter out the particles below a given displacement threshold
- 3. Spatially cluster the particles

Distance across the fault (km)

- 1. Look at the displacement in one time interval
- 2. Filter out the particles below a given displacement threshold
- 3. Spatially cluster the particles
- 4. Compute the magnitude of each cluster

Conclusion

Study the 3D deformation pattern during interseismic and coseismic periods

Study the 3D deformation pattern during interseismic and coseismic periods
 Increase the time resolution during coseismic phase

- Study the 3D deformation pattern during interseismic and coseismic periods
 Increase the time resolution during coseismic phase
- Increase the time resolution during coseismic phase

Thank you!
Introduction

Results

Conclusion

Supplementary slides

Conclusion

Classical modelling approaches: numerical modelling

Main limitations:

Zielke, Olaf & Mai, M.. (2023)

Main limitations:

• Fixed fault geometry, size and strength

Zielke, Olaf & Mai, M.. (2023)

Main limitations:

- Fixed fault geometry, size and strength
- Need of the stress history

Zielke, Olaf & Mai, M. (2023)

Main limitations:

- Fixed fault geometry, size and strength
- Need of the stress history
- Constitutive law of the modeled rock / Artificial nucleation of earthquake

Zielke, Olaf & Mai, M.. (2023)

Main limitations:

- Fixed fault geometry, size and strength
- Need of the stress history
- Constitutive law of the modeled rock / Artificial nucleation of earthquake

Zielke, Olaf & Mai, M.. (2023)

⇒ Non-evolving fault

Conclusion

Classical modelling approaches: analogue modelling

Preuss, S. (2020) and Caniven et al. (2015)

Conclusion

Classical modelling approaches: analogue modelling

• Need for scaling laws

Preuss, S. (2020) and Caniven et al. (2015)

Classical modelling approaches: analogue modelling

- Need for scaling laws
- Physical limitations

Preuss, S. (2020) and Caniven et al. (2015)

Classical modelling approaches: analogue modelling

- Need for scaling laws
- Physical limitations
- No 3D observations

Preuss, S. (2020) and Caniven et al. (2015)