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Objective

Model a continental strike-slip fault and the mutual interaction between fault geometry
and earthquake rupturing
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Magnitude distribution

1. Look at the displacement in one time interval
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Conclusion

Development of a Earthquake Seismic cycles on an evolving

mature fault zone a cycles e strike-slip fault

(d  Study the 3D deformation pattern during interseismic and coseismic periods
A Increase the time resolution during coseismic phase

Thank you!
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Classical modelling approaches: numerical modelling

Main limitations:

e Fixed fault geometry, size and strength

e Need of the stress history

e Constitutive law of the modeled rock /
Artificial nucleation of earthquake

Boundary surfaces

Far-field loading

= Non-evolving fault Zielke, Olaf & Mai, M... (2023)
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Classical modelling approaches: analogue modelling

e Need for scaling laws
® Physical limitations
e No 3D observations
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