

Wojciech Krzemień

Gate Scientific Meeting 01.04 2025

National Center for Nuclear Research

Export to 80 countries 100% polish market (except PET)

Medicines for 17 million patients a year

>30%

I-131

Mo-99

Department of Complex Systems

https://www.ncbj.gov.pl/en/department-complex-systems

- CIS computing cluster (1,4 PFLOPS, ~36 000 cores and 200 TB RAM)
- development of AI and Big Data processing methods
- data analysis in various applications
- development of novel imaging algorithms for medicine and industry
- more

IMPET – Industrial Multiphoton PET Tomography

- **Objectives:**
- AI-enhanced solutions for industrial multiphoton imaging
 - use of **quantum correlation** measurements as complementary information to classical spatial distributions and to PALS methods.
 - Development of new **positron emission particle tracking** algorithms
 - project of the industrial scanner and the library of the reconstruction methods

Timeline: **1.02 2025 – 31.01 2028**

contract number: First Team FENG.02.02-IP.05-0152/23 Principal Investigator: Wojciech Krzemień (NCBJ)

Scientific cooperation:

- Beatrix Hiesmayr (University of Vienna)
- David Sarrut (CREATIS INSA Lyon)

Commercial cooperation: Creotech Instruments S.A.

Total budget: ~ 940K euro

- Part of the simulations will be performed with GATE
- Also, contribution to GATE package planned

European Funds for Smart Economy

Republic of Poland

Co-funded by the European Union

Coincidence classification (for total-body PET systems)

Coincidence selection as a classification problem

D. L. Bailey, Ed., Positron emission tomography: basic sciences. New York: Springer, 2005

Coincidence selection as a classification problem

D. L. Bailey, Ed., Positron emission tomography: basic sciences. New York: Springer, 2005

Multiphoton topologies becomes much more complicated:

Simulations with GATE 9.4

M. Obara, K. Klimaszewski et al.

Biograph-Vision Quadra

https://www.siemens-healthineers.com/en-u s/molecular-imaging/pet-ct/biograph-visionquadra

Ring diameter	820 mm
Transaxial FOV	700 mm
Axial FOV	1060 mm
Crystal material	LSO
Crystal dimensions	3.2 × 3.2 × 20 mm
Total number of crystals	243,200
Crystals per ring	7600
Crystals per detector block	200
Number of detector rings	320
Energy window	435–585 keV
Coincidence window	4.7 ns
Coincidence resolving time	219 ps

- Voxelized anatomical phantom
- Activity 50 MBq
- FDG
- Acquisition time: 10 seconds

Post-processing

- Resolutions (energy, time etc) modeled in the post-processing
- Geometrical cuts to reduce the background contribution

Trilateration "on steroids"

in collaboration with :

- Lech Raczyński (NCBJ),
- Aurelien Coussat (Creatis INSA Lyon)

Positronium tomography \rightarrow positronium lifetime imaging

- P. Moskal et al. Science Advances 7 (2021) eabh4394
- P. Moskal et al. Science Advances 10 (2024) eadp2840
 S. Bass et al. Rev. Mod. Phys. 95 (2023) 021002
- S. Bass et al. Rev. Mod. Phys. 95 (2023) 021002 and more...

Positronium tomography \rightarrow positronium lifetime imaging

- P. Moskal et al. Science Advances 7 (2021) eabh4394
- P. Moskal et al. Science Advances 10 (2024) eadp2840
- S. Bass et al. Rev. Mod. Phys. 95 (2023) 021002 and more...

 $Ps {\rightarrow} 2g$

 $oPs \rightarrow 3g$

Positronium tomography \rightarrow positronium lifetime imaging

- P. Moskal et al. Science Advances 7 (2021) eabh4394
- P. Moskal et al. Science Advances 10 (2024) eadp2840

• S. Bass et al. Rev. Mod. Phys. 95 (2023) 021002 and more...

 $\text{Ps}{\rightarrow}\,\text{2g}$

 $oPs \rightarrow 3g$

One can reconstruct the image formed of annihilation vertices in the oPs \rightarrow 3g

A. Gajos et al., NIM A 819 (2016) 54-59

P. Moskal, A. Gajos et al. Nature Communications 12 (2021) 5658 $^{
m 15}$

Positronium tomography \rightarrow positronium lifetime imaging

- P. Moskal et al. Science Advances 7 (2021) eabh4394
- P. Moskal et al. Science Advances 10 (2024) eadp2840

• S. Bass et al. Rev. Mod. Phys. 95 (2023) 021002 and more...

 $Ps \rightarrow 2g$

 $oPs \rightarrow 3g$

One can reconstruct the image formed of annihilation vertices in the oPs \rightarrow 3g

A. Gajos et al., NIM A 819 (2016) 54-59

P. Moskal, A. Gajos et al. Nature Communications 12 (2021) 5658 16

What is trilateration?

Pseudorange multilateration - technique for determining an object position (e.g. vehicle) based on signal time of arrival from/to multiple system stations with known locations

- problem known and studies for years in navigation (e.g. GPS)
- keywords: multilateration (MLAT), pseudorange multilateration, hyperbolic positioning
- Typically **over-constrained** systems (e.g. more stations than unknowns)
- Typically we assume **no errors** on station locations.

Basic idea

Trilateration "on steroids" How to improve the trilateration algorithm?

- Incorporate experimental uncertanities (uncertanities of the measurement of hits positions and times)
- Incorporate the knowledge about the ortho-positronium decay probability distribution (type of regularization)

Icorporating ortho-positronium pdf

$$d\sigma_{3\gamma} = \frac{(2\pi)^4 |M_{fi}|^2}{4I} \,\delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \delta(\omega_1 + \omega_2 + \omega_3 - 2m) \frac{d^3 k_1 \, d^3 k_2 \, d^3 k_3}{(2\pi)^9 2\omega_1 \cdot 2\omega_2 \cdot 2\omega_3}$$

amplitude – decides about the deviation from "isotropic" distribution

$$E_{i} = |k_{i}| = h\omega_{i}, \text{ for } i \in 1, 2, 3$$

$$\omega_{1} \qquad \omega_{2} \qquad \text{only two independent variables}$$

$$\omega_{3} \qquad \omega_{1} + \omega_{2} + \omega_{3} = 2m \qquad \cos\theta_{12} = \frac{-\omega_{3}^{2} + \omega_{1}^{2} + \omega_{2}^{2}}{2\omega_{1}\omega_{2}} \qquad (0.6)$$

Berstetskii, Lifshitz and Pitaevskii, Quantum Electrodynamics

After calculating the the amplitude and getting rid of Dirac deltas:

$$d\bar{\sigma}_{3\gamma} = \frac{1}{6} \frac{8e^6}{vm^2} \left\{ \left(\frac{m-\omega_3}{\omega_1\omega_2}\right)^2 + \left(\frac{m-\omega_2}{\omega_1\omega_3}\right)^2 + \left(\frac{m-\omega_1}{\omega_2\omega_3}\right)^2 \right\} d\omega_1 d\omega_2$$

From momentum to image space

- "Interpolation" based on generated MC sample (slow, but accurate)
- Three Gaussian mixture parametrization (fast, but with some bias)
- Analytical closed-form (very ugly)

$$P(\mathbf{x}|\mathbf{x_2}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu_2},\boldsymbol{\Sigma_2})$$

Approximation with Gaussian mixture

$$P(\mathbf{x}|\mathbf{x_2}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu_2}, \boldsymbol{\Sigma_2})$$

$$heta_{12} = heta_{23} = heta_{31} = 120^o$$
 22

First tests with point-sources on simplified MC

Scanner size:	length 50 cm, radius 43.75 cm
Scanner resolution:	TOF = 500 ps, CRTz = 4.5 cm
Statistics:	~ 4 mln events

Additional preselection cuts:

radius cut:	r < 40 cm	
axial cut:	z < 23 cm	(after cuts ~ 97.7% data)

First tests with point-sources on simplified MC

Preliminary results: resolution improvement al least 4x

Test data \rightarrow simulations

Biograph-Vision Quadra

- Simplified MC package with Biograph-Vision Quadra like geometry in use
- Spatial, time and energy resolution included
- Simulations with GATE 9.4 in preparation (o-ps \rightarrow 3 g decay with ExtendedVSource model)

Other activities

Siemens Healthineers Academy

24 January 2025, Warsaw

One-day tutorial on MC techniques in nuclear medicine

Jakub Baran (Siemens), Wojciech Krzemień (NCBJ), Szymon Parzych (UJ)

Hands-on with GATE 9.3

Geant 4 Workshop at Warsaw University of Technology

24-28 February 2025, Warsaw

Half-day introduction to GATE for Geant4 users

Wojciech Krzemień (NCBJ), Szymon Parzych (UJ)

Hands-on with GATE 9.4

Thank you for attention

One look closer

$$\begin{cases} (x - x_1)^2 + (y - y_1)^2 = d_1^2 & \text{ol}_i = c(t_1 - T) \\ (x - x_2)^2 + (y - y_2)^2 = d_2^2 \\ (x - x_3)^2 + (y - y_3)^2 = d_3^2 \end{cases}$$

First step

Vine equation

$$-\int x^{2} - 2x x_{1} + x_{1}^{2} + y^{2} - 2yy_{1} + y_{1}^{2} = d_{1}^{2}$$

$$-\int x^{2} - 2x x_{1} + x_{2}^{2} + y^{2} - 2yy_{1} + y_{1}^{2} = d_{1}^{2}$$

$$2x(x_{1} - x_{1}) + 2y(y_{2} - y_{1}) + y_{1}^{2} - y_{2}^{2}$$

$$+x_{2}^{2} - x_{1}^{2} = d_{2}^{2} - d_{1}^{2}$$

One look closer

$$\begin{cases} (x - x_1)^2 + (y - y_1)^2 = d_1^2 & \text{ol}_i = c(t_1 - T) \\ (x - x_2)^2 + (y - y_2)^2 = d_2^2 \\ (x - x_2)^2 + (y - y_3)^2 = d_3^2 \end{cases}$$

First step

Vine equation

$$-\int_{X^{2}} -2xx_{1} + x_{1}^{2} + y_{1}^{2} - 2yy_{1} + y_{1}^{2} = d_{1}^{2}$$

$$-\int_{X^{2}} -2xx_{2} + x_{2}^{2} + y_{2}^{2} - 2yy_{1} + y_{2}^{2} = d_{1}^{2}$$

$$2x(x_{1} - x_{1}) + 2y(y_{2} - y_{1}) + y_{1}^{2} - y_{2}^{2}$$

$$+ x_{2}^{2} - x_{1}^{2} = d_{2}^{2} - d_{1}^{2}$$

Second step

Jn the mext step we service for the
intersection of the line with the circle
$$\frac{Two solutions}{(x - x_3)^2 + (y - y_3)^2 = d_3^2}$$

In collaboration with Lech Raczyński

Incorporation of experimental uncertainties

$$\begin{bmatrix} (x_{1} - x)^{2} + (y_{1} - y)^{2} \\ (x_{2} - x)^{2} + (y_{1} - y)^{2} \\ (x_{3} - x)^{2} + (y_{3} - y)^{2} \end{bmatrix} = \begin{bmatrix} a_{1}^{2} \\ a_{2}^{2} \\ a_{3}^{2} \end{bmatrix}$$

$$\frac{2(x_{3}-x_{1})}{2(x_{3}-x_{2})} = \frac{2(y_{3}-y_{1})}{2(y_{3}-y_{2})} \begin{bmatrix} x_{1}^{2} - d_{1}^{2} - d_{3}^{2} - x_{1}^{2} - y_{1}^{2} + x_{3}^{2} + y_{3}^{2} \\ y_{2}^{2} - d_{3}^{2} - x_{2}^{2} - y_{2}^{2} + x_{3}^{2} + y_{3}^{2} \end{bmatrix} \qquad A \vec{x} = b \implies \vec{x} = (A^{T}\vec{A}^{T}) A^{T}b$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \qquad \qquad y = \frac{-a_{11} \cdot x + b_1}{a_{12}} \qquad \qquad x = \frac{b_1 \cdot a_{22} - b_2 \cdot a_{12}}{a_{11} \cdot a_{22} - a_{21} \cdot a_{12}}$$
$$y = \frac{-a_{21} \cdot x + b_2}{a_{22}} \qquad \qquad y = \frac{b_2 \cdot a_{11} - b_1 \cdot a_{21}}{a_{11} \cdot a_{22} - a_{21} \cdot a_{12}}$$

In collaboration with Lech Raczyński

Incorporation of experimental uncertainties Point **Line equations** $x = \frac{b_1 \cdot a_{22} - b_2 \cdot a_{12}}{a_{11} \cdot a_{22} - a_{21} \cdot a_{12}}$ $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \longrightarrow \begin{array}{c} y = \frac{-a_{11} \cdot x + b_1}{a_{12}} \\ y = \frac{-a_{21} \cdot x + b_2}{a_{22}} \end{array}$ $y = \frac{b_2 \cdot a_{11} - b_1 \cdot a_{21}}{a_{11} \cdot a_{22} - a_{21} \cdot a_{12}}$ **Uncertainties** $a_{ij} \sim \mathcal{N}(\overline{a_{ij}}, \sigma_{aij})$ $b_i \sim \mathcal{N}(\overline{b_i}, \sigma_{bi})$ -5 $y = (-(a_{11} + \sigma_{a_{12}})x + b_{1})/a_{12}$ -10 $y = (-(a_{21} + \sigma_a)x + b_2)/a_{22}$ -15 solutions -20 Estimation of covariance matrix 0.01 2.00

$$\tilde{f}(u,v) = f(u_0,v_0) + (u-u_0) \cdot \frac{\partial f(u_0,v_0)}{\partial u} + (v-v_0) \cdot \frac{\partial f(u_0,v_0)}{\partial v}$$
$$P(\mathbf{x}|\mathbf{x}_1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_1,\boldsymbol{\Sigma}_1) \qquad \boldsymbol{\mu}_1 = \begin{bmatrix} x\\ y \end{bmatrix} \quad \boldsymbol{\Sigma}_1 = \begin{bmatrix} \sigma_x^2 & \sigma_{xy}\\ \sigma_{xy} & \sigma_y^2 \end{bmatrix}$$

33

Implementation of QED-complient description of orto-positronium decay

S. Bass et al. Rev. Mod. Phys. 95 (2023) 021002 P. Moskal et al., Phys. Med. Biol. 64 (2019) 055017 P. Moskal et al. Eur. Phys. J. C 78 (2018) 970

D. Kaminska et al., Eur. Phys. J. C (2016) 76:445

available in GATE >= v9.0