

GATE simulations of a multi-detector geometry: combining the total body J-PET with a brain insert

M Rädler^{1,2} and P Moskal^{1,2} on behalf of the J-PET Collaboration

¹Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Kraków, Poland ²Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Kraków, Poland

GATE Scientific meeting 2025

April 1st - 3rd 2025

- 1. Background & Motivation
- 2. Multi-detector geometries in GATE
- 3. CASToR reconstructions
- 4. Conclusions

Background & Motivation

Total body PET scanners

~ 2 m

First large field of view scanners commercially available:

https://www.siemens-healthineers.com/molecular-imaging/pet-ct/biograph-vision-quadra

https://eu.united-imaging.com/en/product-service/products/mi/uexplorer

Enabling: low dose imaging, short scan times, dynamic imaging, ...

Total body PET scanners

First large field of view scanners commercially available:

https://www.siemens-healthineers.com/molecular-imaging/pet-ct/biograph-vision-quadra

https://eu.united-imaging.com/en/product-service/products/mi/uexplorer

Enabling: low dose imaging, short scan times, dynamic imaging, ...

April 1st 2025

But also: very expensive ...

Total body J-PET scanner

Cost-effective plastic scintillator based total body J-PET under development at UJ

Bass et al.: "Colloquium: Positronium physics and biomedical applications" *Rev. Mod. Phys.* 95, 021002 (2023)

Total body J-PET scanner

Cost-effective plastic scintillator based total body J-PET under development at UJ

Bass et al.: "Colloquium: Positronium physics and biomedical applications" *Rev. Mod. Phys.* 95, 021002 (2023)

Not optimized for brain imaging ...

Magnification inserts

"[...] hybrid systems using a moderateresolution **total body scanner** (such as J-PET) **combined with** a very high performing **brain imager** could be a very attractive approach."

Magnification "outsert"

Preliminary work

- Preliminary study of a frontal detector combined with the TB-J-PET using Gate 9.0
- Coincidence sorting was carried out in post-processing

National Science Centre of Poland grant no. 2021/42/A/ST2/00423 (PI: Paweł Moskal) Simulations conducted by S. Parzych

April 1st 2025

Multi-detector geometries in GATE

GATE v9.3 and onwards ...

frontiers | Frontiers in Physics

TYPE Technology and Code PUBLISHED 21 March 2024 DOI 10.3389/fphy.2024.1294916

New GATE Digitizer Unit for versions post v9.3

Olga Kochebina¹*, Daniel A. B. Bonifacio^{2,3}, Georgios Konstantinou⁴, Adrien Paillet¹, Christian M. Pommranz^{5,6}, Gašper Razdevšek⁷, Viatcheslav Sharyy^{1,8}, Dominique Yvon^{1,8} and Sebastien Jan¹

"[...] possibility of GATE v9.3 to construct Coincidences coming from several different GATE Systems."

FIGURE 10

Multi-system example: multipanel limited angle PET system from [19] (red) with smaller side panels (green) added.

Frontal detector

Brain insert

Brain insert variations

Brain insert detector block variation

GateDigitizerMgr.cc (l.163): ***ERROR*** CoincidenceSorter *** The input collection name is ambiguous as you have several Singles Collections/SinglesDigitizers! Please, use /setInputCollection for your CoincidenceSorter to choose the correct one.

*** Break *** segmentation violation

GateDigitizerMgr.cc (l.163): ***ERROR*** CoincidenceSorter *** The input collection name is ambiguous as you have several Singles Collections/SinglesDigitizers! Please, use /setInputCollection for your CoincidenceSorter to choose the correct one.

*** Break *** segmentation violation

The list of digitizer entries features only one CoincidenceSorter:

Idle> /gate/digitizerMgr/list			
DigitizerMgr summary Table size 20 collID DigitizerModule	DigiCollection	size	
0 GateCoincidenceSorter 1 DigiInit	Coincidences Singles_Blayer_1	0 0	

Issue: When setting up a GateCylindricalPETSystem, a GateCoincidenceSorter called "Coincidences" is automatically generated, leading to the ambiguity

Issue: When setting up a GateCylindricalPETSystem, a GateCoincidenceSorter called "Coincidences" is automatically generated, leading to the ambiguity

Patch: Comment the automatically generated GateCoincidenceSorter's called "Coincidences"

Gate/source/geometry/src/GateCylindricalPETSystem.cc:

53	<pre>// Integrate a coincidence sorter into the digitizer</pre>
54	//OK GND 2022
55	GateDigitizerMgr* digitizerMgr = GateDigitizerMgr::GetInstance();
56	GateCoincidenceSorter* coincidenceSorter = new GateCoincidenceSorter(
	<pre>digitizerMgr,"Coincidences");</pre>
57	digitizerMgr->AddNewCoincidenceSorter(coincidenceSorter);

Issue: When setting up a GateCylindricalPETSystem, a GateCoincidenceSorter called "Coincidences" is automatically generated, leading to the ambiguity

Patch: Comment the automatically generated GateCoincidenceSorter's called "Coincidences"

Gate/source/geometry/src/GateCylindricalPETSystem.cc:

53	<pre>// Integrate a coincidence sorter into the digitizer</pre>
54	//OK GND 2022
55	GateDigitizerMgr* digitizerMgr = GateDigitizerMgr::GetInstance();
56	GateCoincidenceSorter* coincidenceSorter = new GateCoincidenceSorter(
	<pre>digitizerMgr,"Coincidences");</pre>
57	digitizerMgr->AddNewCoincidenceSorter(coincidenceSorter);

Similar issue also for other PET geometries

Same issue for geometries that are not nested:

April 1st 2025

3 rings with each 60 cm

2 rings with each 33 cm

Issue #2: minSectorDifference 😿

Issue: C-shaped artifact for the simulation of a sensitivity map

Issue #2: minSectorDifference 😿

Issue: The minSectorDifference does not distinguish between scanners and has to be larger than 1

Issue #2: minSectorDifference 🟅

Issue: The minSectorDifference does not distinguish between scanners and has to be larger than 1

Patch: Set the minimum to zero:

Gate/source/digits_hits/src/GateCoincidenceSorterMessenger.cc:

50	<pre>cmdName = GetDirectoryName()+"minSectorDifference";</pre>
51	<pre>minSectorDiffCmd = new G4UIcmdWithAnInteger(cmdName.c_str(),this);</pre>
52	minSectorDiffCmd->SetGuidance("Set the minimum sector difference for
	<pre>valid coincidences.");</pre>
53	minSectorDiffCmd->SetParameterName("diff",false);
54	<pre>//minSectorDiffCmd ->SetRange("diff >=1");</pre>
55	minSectorDiffCmd->SetRange("diff>=0");

Issue #2: minSectorDifference 😿 🖉

After setting minSectorDifference=0

Issue: Since v9.3, Gate Hits are subdivided into layers and processed independently layer by layer. A Hit that occurred previously in a different layer is not taken into account in the currently processed layer.

Gate/source/digits_hits/src/GateAnalysis.cc:

```
141 //OK GND 2022
142 std::vector<GateHitsCollection*> CHC_vector = GetOutputMgr()->
	GetHitCollections();
143
144 for (size_t i=0; i<CHC_vector.size();i++ )
145 {
146 GateHitsCollection* CHC = CHC_vector[i];
147 G4int NbHits = 0;
148 G4int NpHits = 0;
```


Patch:

• Before writing the Compton and Rayleigh counts, first extract the Compton and Rayleigh Hit times in the same order they are processed

t = [0.8, 0.1, 0.7]

Patch:

- Before writing the Compton and Rayleigh counts, first extract the Compton and Rayleigh Hit times in the same order they are processed
 - t = [0.8, 0.1, 0.7]
- The sought number of Compton or Rayleigh is

n = [2, 0, 1]

Patch:

- Before writing the Compton and Rayleigh counts, first extract the Compton and Rayleigh Hit times in the same order they are processed
 - t = [0.8, 0.1, 0.7]
- The sought number of Compton or Rayleigh is
 n = [2, 0, 1]
- Formally, n can be written as

sort(t)[n] = t

Patch:

- Before writing the Compton and Rayleigh counts, first extract the Compton and Rayleigh Hit times in the same order they are processed
 - t = [0.8, 0.1, 0.7]
- The sought number of Compton or Rayleigh is
 n = [2, 0, 1]
- Formally, n can be written as

sort(t)[n] = t

• In Python / numpy:

```
_, n = np.unique(t, return_inverse=True)
```


Before

After

Issue #4: Memory leaks

CASToR reconstructions

Reconstruction with CASToR

- Capable of handling unconventional geometries
- Using MLEM without TOF
- Multi-Siddon projector
- 1 mm image spacing

Merlin et al.: "CASTOR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction" *Phys. Med. Biol.* **63** (2018)

GATE: Derenzo phantom

GATE: Derenzo phantom

6 x 30 x 3 mm³ insert crystals

4 x 18 x 3 mm³ insert crystals

• Multi-detector geometries are possible (with simple patches) with Gate v9.3 and onwards

- Multi-detector geometries are possible (with simple patches) with Gate v9.3 and onwards
- For plastic scintillators (relying on Compton interactions) bigger adjustments were necessary

- Multi-detector geometries are possible (with simple patches) with Gate v9.3 and onwards
- For plastic scintillators (relying on Compton interactions) bigger adjustments were necessary
- Preferably fix or at least warn about the issues presented here to prevent others from finding & fixing the same ones

- Multi-detector geometries are possible (with simple patches) with Gate v9.3 and onwards
- For plastic scintillators (relying on Compton interactions) bigger adjustments were necessary
- Preferably fix or at least warn about the issues presented here to prevent others from finding & fixing the same ones
- Ideally, also make sure that the same does not happen with Gate 10

Thank You for Your attention!

Thanks to the **J-PET collaboration**:

Funding:

Backup slides

Backup: Background & Motivation

Rationale of brain PET

Moses. Nucl. Instrum. Methods Phys. Res. A 648 (2011)

Rationale of brain PET

PET enables imaging of

- Metabolism
- Neurochemistry
- Connectivity
- ..

Marcus et al.: "Brain PET in the Diagnosis of Alzheimer's Disease" Clinical nuclear medicine (2014)

Pavese: "PET studies in Parkinson's disease motor and cognitive dysfunction" *Parkinsonism & related disorders* (2012)

Galldiks et al.: "PET imaging in patients with brain metastasis – "report of the RANO/PET group *Neuro-Oncology* (2019)

Novel contrast mechanisms based on positronium imaging:

Bass et al.: "Colloquium: Positronium physics and biomedical applications" *Rev. Mod. Phys.* 95, 021002 (2023)

April 1st 2025

Horizontal brain PET scanners 😿 👰

	HRRT	jPET-D4	Rainbow VHD	CerePET	NeuroPET/CT	BresTome	NX
Crystal	LSO:Ce	GSO	LYSO	LYSO	LYSO	LSGO	LYSO
Layers	2	4	1	1	2	1	1
Sens.	1.04%	11%	-	-	~1%	7-8%	4.6%
Res.	2.5 mm	< 3 mm	~ 3 mm	2.1 mm	~ 3 mm	~ 2.5 mm	< 2 mm

Catana: "Development of dedicated brain PET imaging devices: recent advances and future perspectives" *Journal of Nuclear Medicine* 60 (8) 1044-1052 (2019) April 1st 2025 Majewski: "Perspectives of brain imaging with PET systems" *Bio-Algorithms and Med-Systems* 17(4): 269–291 (2021) Allen et al.: "New Horizons on Brain PET Instrumentation" *PET clinics* 19(1):25-36(2024)

Upright brain PET scanners

Catana: "Development of dedicated brain PET imaging devices: recent advances and future perspectives" *Journal of Nuclear Medicine* 60 (8) 1044-1052 (2019) April 1st 2025 Majewski: "Perspectives of brain imaging with PET systems" *Bio-Algorithms and Med-Systems* 17(4): 269–291 (2021) Allen et al.: "New Horizons on Brain PET Instrumentation" *PET clinics* 19(1):25-36(2024)

40

Unconv. brain PET scanners

Catana: "Development of dedicated brain PET imaging devices: recent advances and future perspectives" *Journal of Nuclear Medicine* 60 (8) 1044-1052 (2019) April 1st 2025 Majewski: "Perspectives of brain imaging with PET systems" *Bio-Algorithms and Med-Systems* 17(4): 269–291 (2021) Allen et al.: "New Horizons on Brain PET Instrumentation" *PET clinics* 19(1):25-36(2024)

Backup: CASToR reconstructions

Estimating the contrast

Estimating the contrast

6 x 30 x 3 mm³ insert crystals

4 x 18 x 3 mm³ insert crystals

GATE v9.3 simulations

Simulation

Physics list	emlivermore_polar	
Scintillator material	EJ-230	_
Source volume	Line source	
Source type	511 keV back-to-back photons	
Source activity	1 MBq	
Scan time	100 s	

Event selection

Lower threshold	200 keV	4
Coincidence window	3 ns	

Sensitivity: Frontal detector

Sensitivity: TB & Brain insert

Sensitivity: TB & Brain insert

