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Exercises - WG3 - WISPS and Compact Object

You may not have time to complete all of these exercises, so consider picking a subset which

interests you most. You are encouraged you to work in groups of ∼ 2 to 4 to aid collaboration.

1. Superradaint Scatttering off a Rotating Cylinder.

[You may use a computer algebra package such as Mathematica in this exercise.]

Consider the problem discussed in the lectures, which describes a rotating conducting

cylinder, for which the governing equation can be written as

□ϕ− σ(Ω∂φ − ∂t)ϕ = 0, (1)

where σ is constant for cylindrical radial distances r < R and zero for r > R.

(a) Assume an infinitely tall cylinder, such that you can choose a z-independent

separable solution of the form ϕ = ϕ(t, r, φ) = ψ(r)eimφeiωt, where m is an integer.

Obtain a radial equation for ψ(r).

(b) Solve this radial equation to obtain an expression for ψ(r) in terms of known

functions. You will need to impose sensible boundary conditions, e.g., regularity at

the origin, continuity across r = R, etc.

(c) By using the asymptotic forms of these known functions as r → ∞, express the

exterior solutions at r → ∞ as a sum of outgoing and ingoing waves, with amplitudes

Aout and Ain respectively.

[hint: it may be useful to express the asymptotic solutions in terms of Hankel functions]

(d) Finally, derive an expression for Z = 1− |Aout|2/|Ain|2 in the small ωR≪ 1 limit

to linear order in σ.

2. Resonant Axion-Photon Conversion in an Inhomogeneous 3D Medium

Consider the Boltzmann-like equation we will see in lectures:

∂kH · ∂xfγ − ∂xH · ∂kfγ = g2aγγ
∣∣k · Fext · ε

∣∣22πδ (Eγ(k, x)
2 − Eϕ(k)

2
)
fϕ . (2)

Here k = kµ and x = xµ are the 4-momentum and spacetime position of photons re-

spectively, which have a phase-space density f = fγ(k, x). Note ε is the 4-polarisation

vector of the photon and fϕ gives the phase-space density of axions.
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(a) Solve this equation by a method of characteristics by using characterstic curves

x = x(λ) and k = k(λ) which give the characteristic curves of photons corresponding

to the operator appearing on the left-hand side of Eq. (2). What is the interpretation of

the charactersitic equations for x′(λ) and k′(λ), have you seen such equations before?

You should find that you end up with an equation for the form

df(k(λ), x(λ))

dλ
= · · · (3)

(b) By integrating this equation and assuming a stationary background, derive the

following expression for the conversion probability Paγ = fγ(kc, xc)/fϕ(kc, xc) where

(kc, xc) are the points where the resonance occurs, i.e. where the argument of the

delta-function above vanishes.

Paγ =
πg2aγγ

∣∣k · Fext · ε
∣∣2

Eγ∂k0H |vp · ∇xEγ(k,x)|
, (4)

where vp = k/k0 is the phase-velocity. You may find the chain-rule result ∂xH/∂k0H =

∇xEγ helpful.

3. Radio telescope sensitivity to axion dark matter

In general, the Hamiltonian H for a photon in a magnetised plasma can be quite

complicated. Instead we’ll do something simpler and assume an weakly magnetised

plasma where

H = kµk
µ + ω2

p, (5)

where ωp is the plasma mass. We will model the plasma around a neuton star as

spherical toy model:

ω2
p =

4παne
me

, ne =
2ΩB

e
, B = Bs

(
R

r

)3

, (6)

where R is the neutron star radius, Ω = 2π/P is the angular frequency with which the

neutron star is rotating, and P is its corresponding period. Bs is the surface magnetic

field. Let’s assume a stationary setup, in which case, by integrating Eq. (9) over phase

space, we arrive at1∫
d3k

∫
dA · vg ωfγ =

∫
d3k

∫
dΣk · vpωPaγfϕ ≡ P (7)

1 You can show this in the bonus exercise of this problem sheet.
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where P is the power (i.e. energy per unit time) produced by axions converting into

photons. Hence by deriving an expression for the right-hand side of (7), you will be

able to derive an expression for the total power P emitted by resonantly produced

photons. You may estimate the flux density (that is, power, per unit area, per unit

freqeuncy) arriving on earth as

S =
P

4πd2
1

∆f
, (8)

where d is the distance to source, and ∆f is the bandwidth of the signal, which for an

axion line signal you can take to be ∆f = v20ma.

(a) Argue that for the toy model above, the critical surface is spherical, with radius

rc, and drive an expression of rc in terms of ma and other quantities.

(b) By evaluating the expression in the right-hand side of Eq. (7) using the

model described above, obtain, and evaluate an integral for the total power P in this

model. You may take the axion density to be fa(x,k) = vaρ
rc
DM/ma

δ(|k|−ωc)
4πk2

where

ωc =
√
m2

a + k2c and kc = mava. Where ρrcDM = ρ∞DM
2√
π

1
v0

√
2GMNS

rc
.[

hint: it may be useful to express the conversion probability in the following form

Paγ = π
2

g2aγγ

∣∣Bext·ε
∣∣2

|vp·∇xEγ(k,x)| .
]

(c) Finally, let’s consider a pulsar PSR J2144-3933 which is d = 180 parsec from Earth.

You can assume a stellar radius of R = 10 km, va ≃
√

GM
rc

, Bs = 2× 1012Gauss, and

ρ∞DM ≃ 0.45 × GeV cm−3, P = 8.5s and v0 ∼ 200 km/sec. Using these numbers and

the results above, derive an expression for S for a generic axion mass.

(d) Finally, the minimal detectable signal is

Smin = SNRmin
SEFD√
npol∆ftobs

.

By taking a typical system equivalent flux density of a telescope to be SEFD = 2

Jy, an observing time of 100 hours and an SNR of 3, derive the value of gaγγ to

which you would be sensitive for an axion mass of ma = µeV . You may also wish

to find a generic expression for fiducial values of different parameters of the form

gaγγ ∼ (µeV/ma)
index(Ba/10

14)index · · etc to get some feel for the scaling.

4. Bonus Question - Continuity Equation
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This question allows you to derive the result (7) from first principles. By

integrating Eq. (2) over a finite spatial 3-volume V, whose bounding surface

has area element dA, and a region in 4-momentum space
∫
d4k running over

all momenta. Derive the following equation:

d

dt

∫
dV

∫
d3kωfγ+

∫
d3k

∫
dA·vg ωfγ+

∫
d3k

∫
dV ∂tEγfγ =

∫
dV Q,

(9)

You can use the chain-rule definitions, ∂kH/∂k0H = vg and ∂xH/∂k0H =

∇xEγ . Where

Q =

∫
d3k ωg2aγγ(k · F̃ext · εc)22πδ

(
Eγ(k, x)

2 − Eϕ(k)
2
) 1

∂k0H
fϕ. (10)

Next, show that∫
dV Q =

∫
d3k

∫
dΣk ω

πg2aγγ
∣∣k · F̃ext · ε

∣∣2
Eγ∂k0H |∇xEγ |

fϕ ≡
∫

d3k

∫
dΣk·vpωPaγfϕ

(11)

You can make use of the identity:∫
dnx δ(G(x)) =

∫
G−1(0)

dΣ
1

|∇G|
, (12)

where dΣ is the area element on the surface defined by G(x) = 0 and where

Σk is the spatial surface on which Eγ(k,x) = Eϕ(k). What’s the interpre-

tation of Σk ?

(b) What is the interpretation of Eq. (9) ? Staring at the connection be-

tween Eqs. (4) and (11).

[hint : you can cheat at look at question 3 for a clue on interpretation.]


