Exercises - WG3 - WISPS and Compact Object

You may not have time to complete all of these exercises, so consider picking a subset which
interests you most. You are encouraged you to work in groups of ~ 2 to 4 to aid collaboration.

1. Superradaint Scatttering off a Rotating Cylinder.

[You may use a computer algebra package such as Mathematica in this exercise.]

Consider the problem discussed in the lectures, which describes a rotating conducting

cylinder, for which the governing equation can be written as

D¢ — (R, — 91)¢ = 0, (1)

where ¢ is constant for cylindrical radial distances r < R and zero for r > R.

(a) Assume an infinitely tall cylinder, such that you can choose a z-independent

separable solution of the form ¢ = ¢(t,7,p) = ¥(r)e™¥ei! where m is an integer.

Obtain a radial equation for (r).

(b) Solve this radial equation to obtain an expression for ¢(r) in terms of known
functions. You will need to impose sensible boundary conditions, e.g., regularity at
the origin, continuity across r = R, etc.

(c) By using the asymptotic forms of these known functions as r — oo, express the
exterior solutions at  — 0o as a sum of outgoing and ingoing waves, with amplitudes
Agut and Aj, respectively.

[hint: it may be useful to express the asymptotic solutions in terms of Hankel functions]

(d) Finally, derive an expression for Z = 1 — | Agut|?/| Ain|? in the small wR < 1 limit

to linear order in o.
2. Resonant Axion-Photon Conversion in an Inhomogeneous 3D Medium
Consider the Boltzmann-like equation we will see in lectures:
OWH - Oufy — OuH - Oty = g2 |k - Foxe - |20 (B, (k,2)2 — By(k)?) fy.  (2)

Here k = k, and x = x# are the 4-momentum and spacetime position of photons re-
spectively, which have a phase-space density f = f,(k,z). Note ¢ is the 4-polarisation

vector of the photon and f4 gives the phase-space density of axions.



(a) Solve this equation by a method of characteristics by using characterstic curves
x = x(A) and k = k() which give the characteristic curves of photons corresponding
to the operator appearing on the left-hand side of Eq. (2). What is the interpretation of
the charactersitic equations for z/(\) and &’()), have you seen such equations before?

You should find that you end up with an equation for the form
kN, 2(N) 5
dA
(b) By integrating this equation and assuming a stationary background, derive the
following expression for the conversion probability P,y = fy(ke, zc)/ fo(ke, xc) where
(ke,x.) are the points where the resonance occurs, i.e. where the argument of the
delta-function above vanishes.
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where v, = k/kq is the phase-velocity. You may find the chain-rule result OxH /O, H =
VxE, helpful.

3. Radio telescope sensitivity to axion dark matter

In general, the Hamiltonian H for a photon in a magnetised plasma can be quite
complicated. Instead we’ll do something simpler and assume an weakly magnetised

plasma where
H = k" + w, (5)

where w), is the plasma mass. We will model the plasma around a neuton star as

spherical toy model:

Aman, 20B 3
wp= T m= T2, B=B, (R> : (6)
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where R is the neutron star radius, 2 = 27/ P is the angular frequency with which the
neutron star is rotating, and P is its corresponding period. By is the surface magnetic
field. Let’s assume a stationary setup, in which case, by integrating Eq. (9) over phase

space, we arrive at!
/dgk/dA-vgwfw = /d?’k/dzk'vame(b =P (7)

! You can show this in the bonus exercise of this problem sheet.



where P is the power (i.e. energy per unit time) produced by axions converting into
photons. Hence by deriving an expression for the right-hand side of (7), you will be
able to derive an expression for the total power P emitted by resonantly produced
photons. You may estimate the flux density (that is, power, per unit area, per unit

freqeuncy) arriving on earth as

P 1

5= B Af ®)
where d is the distance to source, and Af is the bandwidth of the signal, which for an

axion line signal you can take to be Af = U(Q) M.

(a) Argue that for the toy model above, the critical surface is spherical, with radius

r¢, and drive an expression of r. in terms of m, and other quantities.

(b) By evaluating the expression in the right-hand side of Eq. (7) using the

model described above, obtain, and evaluate an integral for the total power P in this

(k| —we)

2~ Where

model. You may take the axion density to be f,(x,k) = vapy/Ma
We = \/m and kc = MgVq. Where ng = poDOM % % \/%

[hint: it may be useful to express the conversion probability in the following form

2
2
p. = x 9 Be’“'s‘
@y = 3o, VaBy (k)|

(c) Finally, let’s consider a pulsar PSR J2144-3933 which is d = 180 parsec from Earth.

You can assume a stellar radius of R = 10km, v, ~ GT]CW, B, = 2 x 10" Gauss, and

pov = 0.45 x GeV cm ™3, P = 8.5s and vy ~ 200 km/sec. Using these numbers and

the results above, derive an expression for S for a generic axion mass.

(d) Finally, the minimal detectable signal is
SEFD

\V npolAftobs ‘

By taking a typical system equivalent flux density of a telescope to be SEFD = 2

Smin = SNRmin

Jy, an observing time of 100 hours and an SNR of 3, derive the value of g4, to
which you would be sensitive for an axion mass of m, = peV. You may also wish
to find a generic expression for fiducial values of different parameters of the form

Gary ~ (1€V/mg)m9%(B, /10M)ndex .. ete to get some feel for the scaling.

4. Bonus Question - Continuity Equation



This question allows you to derive the result (7) from first principles. By
integrating Eq. (2) over a finite spatial 3-volume V, whose bounding surface
has area element dA, and a region in 4-momentum space [ d*k running over

all momenta. Derive the following equation:

jlt/dv/df’>1<wf¢r/d3k/dA.vgwfﬁ/c13k/cnzatEVf7 = /dVQ,
(9)
You can use the chain-rule definitions, oM /Ok, H = vy and OxH Ok, H =

VxE,. Where

1

quﬁ- (10)

Q= / PPk wgl (k- Foxe - €9)?2m6 (B, (k, 7)* — Ey(k)?)
Next, show that
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You can make use of the identity:

1
/d"x §(G(x)) = /G—1<0) dEW, (12)
where dX is the area element on the surface defined by G(x) = 0 and where
Y is the spatial surface on which E,(k,x) = E4(k). What’s the interpre-
tation of Xy 7
(b) What is the interpretation of Eq. (9) ? Staring at the connection be-
tween Egs. (4) and (11).

[hint : you can cheat at look at question 3 for a clue on interpretation.]



