Searching for the Dark photon with PADME

Kalina Dimitrova
Faculty of Physics, Sofia University
kalina@phys.uni-sofia.bg

3rd Training School COST Action COSMIC WISPers (CA21106) Sep 16 – 19, 2025 Annecy, France

The PADME Experiment

Positron Annihilation into Dark Matter Experiment

Small scale fixed target experiment

- e⁺ @ Frascati Beam Test Facility
- Solid state target
- Charged particles detectors
- Calorimeters: ECal and SAC
- Beam monitoring system

Active target

Polycrystalline diamond

- 100 µm thickness:
- 16 × 1 mm strip and X-Y readout in a single detector
- Graphite electrodes using excimer laser

• JINST 12 (2017) 02, C02036

Calorimeters

ECAL: The heart of PADME

- 616 BGO crystals, 2.1 x 2.1 x 23 cm³
- BGO covered with diffuse reflective TiO₂ paint
- Additional optical isolation: 50 100 µm black tedlar foils

Calibration at several stages:

- BGO + PMT equalization with ²²Na source before construction
- Cosmic rays calibration using the MPV of the spectrum
- Temperature monitoring

Small Angle Calorimeter (SAC)

- 25 crystals 5 x 5 matrix, Cherenkov PbF₂
- Dimensions of each crystal: 3 × 3 × 14 cm³
- 50 cm behind ECal
- PMT readout: Hamamatsu R13478UV with custom dividers
- Angular acceptance: [0,19] mrad

Nucl.Instrum.Meth.A 919 (2019) 89-97

Charged particle detectors

- Three sets of detectors detect the charged particles from the PADME target (at E_{beam} = 550 MeV):
 - PVeto: positrons with 50 MeV < p_{e+} < 450 MeV
 - **HEPVeto**: positrons with 450 MeV < p_{a+} < 500 MeV
 - **EVeto**: electrons with 50 MeV < p_{e+} < 450 MeV
- 96 + 96 (90) + 16 (x2) scintillator-WLS-SiPM RO channels
- Segmentation provides momentum measurement down to ~ 5 MeV resolution

- Custom SiPM electronics, Hamamatsu S13360 3 mm,
 25µm pixel SiPM
- Differential signals to the controllers, HV, thermal and current monitoring

JINST 19 (2024) 01, C01051

- Online time resolution: ~ 2 ns
- Offline time resolution after fine T₀ calculation better than 1 ns

PADME RUN I and II

Run I and PADME commissioning

- Started in Autumn 2018 and ended on February 25th
 - ~7 x 10¹² PoT recorded with secondary beam
 - PADME DAQ, Detector, beam, collaboration commissioning
 - Data quality and detector calibration
- PADME test beam data
 - July 2019, few days of valuable data
 - Certification of the primary beam
 - Detector performance/calibration checks
 - Primary beam with E_{beam} = 490 MeV

RUN II: primary beam

- July 2020
 - New environment/detector parameter monitoring and control system
 - Remote operation confirmation
- Autumn 2020:
 - A long data taking period with O(5x10¹²) e⁺
 on target
 - \circ E_{beam} = 430 MeV

$N_{A'}=N_{pots}\sigma(\epsilon)rac{ ho d\mathcal{N}_{\scriptscriptstyle A}Z}{M}$ 5 x 10^{12} 0.0106/barn (number of e'/unit of area of the target)

Monte Carlo estimations of the missing mass distribution for different Dark photon masses

Single photon events treatment

Check obtained cross-section values using yy result

$$\frac{\sigma(e^+e^- \to U\gamma)}{\sigma(e^+e^- \to \gamma\gamma)} = \epsilon^2 * \delta$$

k

Cross section for A' boson production

Main background processes

- Bremsstrahlung in the field of the target nuclei
 - Photons mostly @ low energy, background dominates the high missing masses
 - An additional lower energy positron that could be detected due to stronger deflection
- 2 photon annihilation
 - Peaks at $M_{miss} = 0$
 - Quasi symmetric in gamma angles for $E_{v} > 50 \text{ MeV}$
- 3 photon annihilation
 - Symmetry is lost decrease in the vetoing capabilities
- Radiative Bhabha scattering
 - Topology close to bremsstrahlung

Background process	Cross section e ⁺ @550 MeV beam	Comment Carbon target
e⁺e⁻ → γγ	1.55 mb	
$e^+ + N \rightarrow e^+ N \gamma$	4000 mb	Eγ > 1MeV
e⁺e⁻ →γγγ	0.16 mb	CalcHEP, Eγ > 1MeV
$e^+e^- \rightarrow e^+e^-\gamma$	180 mb	CalcHEP, Eγ > 1MeV

PADME ML methods

Modified
autoencoder
Keeps the
waveform length but
only extracts signal
arrival times and
amplitudes

Performance of the algorithms evaluated on synthetic data

- Models already implemented in the real data reconstruction
- Achievement of better time resolution by upsampling

Event analysis and background cuts

Background events are rejected first in the ECal by:

- Defining a minimal energy and time isolation criteria for single clusters
- Applying geometry cuts

Machine learning models were tested for the reconstruction of e+e- → yy events in Run II data and compared to the conventional reconstruction

Bremsstrahlung:

- Clusters in the SAC are matched with positrons in the PVeto to obtain the relation between the positron energy and its position in the veto.
- This relation is used to reject ECal single clusters as Bremsstrahlung events.
- Technique extended by adding the HEPVeto

Bremsstrahlung fitting using the Pveto and the SAC on MC data

Conclusions

- PADME Run II collected 5 x 10¹² positrons on target
- Analysis of events where a single photon is registered in the calorimeter uses the missing mass technique to probe for a Dark photon in the 2-20 MeV mass range
- Main issue: precise estimation of the different background processes
 - Bremsstrahlung
 - $e+e-\rightarrow yy(y)$ events
- Different event rejection procedures explored on MC data; ML reconstruction aims to achieve more precise results