

Sreemanti Chakraborti

cnrs

IN SCIENCE & TECHNOLOGY

Funded by the

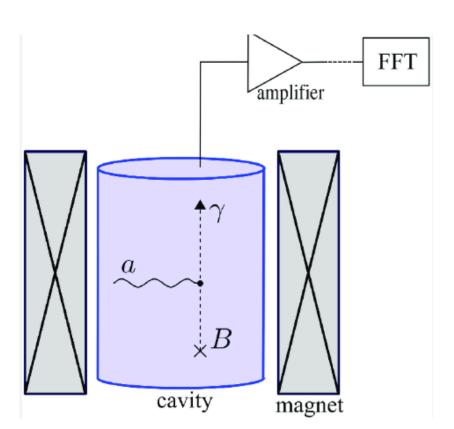
European Union

Laboratoire d'Annecy de

Physique Théorique

Resonant Cavities

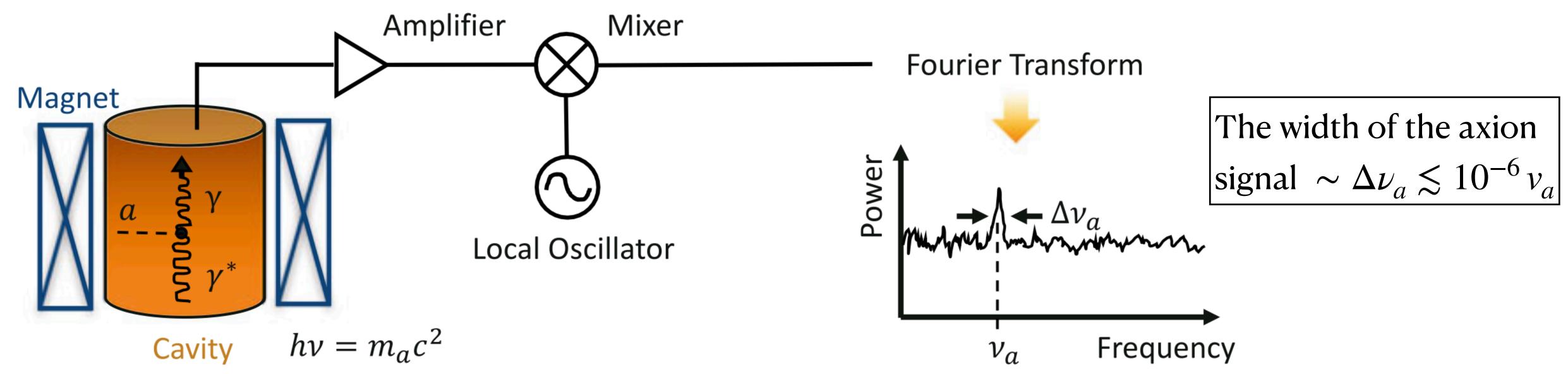
Cavity Haloscopes



- Haloscopes are microwave cavities tuned to detect the resonant conversion of dark matter ALPs into photons in the presence of a strong static magnetic field
- ALP conversion takes place through **Inverse Primakoff production** which is primarily induced by the linear ALP-photon interaction

$$g_{a\gamma\gamma} \frac{a}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} = g_{a\gamma\gamma} a \vec{E} \cdot \vec{B}$$

- In a resonant microwave cavity immersed in a magnetic field, axions interact with the virtual photons of the magnetic field and convert to an oscillating electromagnetic field.
- The ALP conversion maximises if its Compton frequency matches the frequency of a resonant mode of the cavity resonator.



- The resonant conversion condition is that the ALP mass is within the bandwidth of the microwave cavity at its resonance frequency.
- Since the axion mass is unknown, the cavity resonance frequency must be tuned to access a range of axion masses.
- Photons generated from ALP-photon conversion give rise to excess power generation inside the cavity. The frequency dependent signal power extracted on resonance-

$$P_{a\to\gamma} = g_{a\gamma\gamma}^2 \frac{\rho_{\rm DM}}{m_a} B_0^2 VC \min(Q_L, Q_a)$$

Key scaling relations

Signal power depends on:

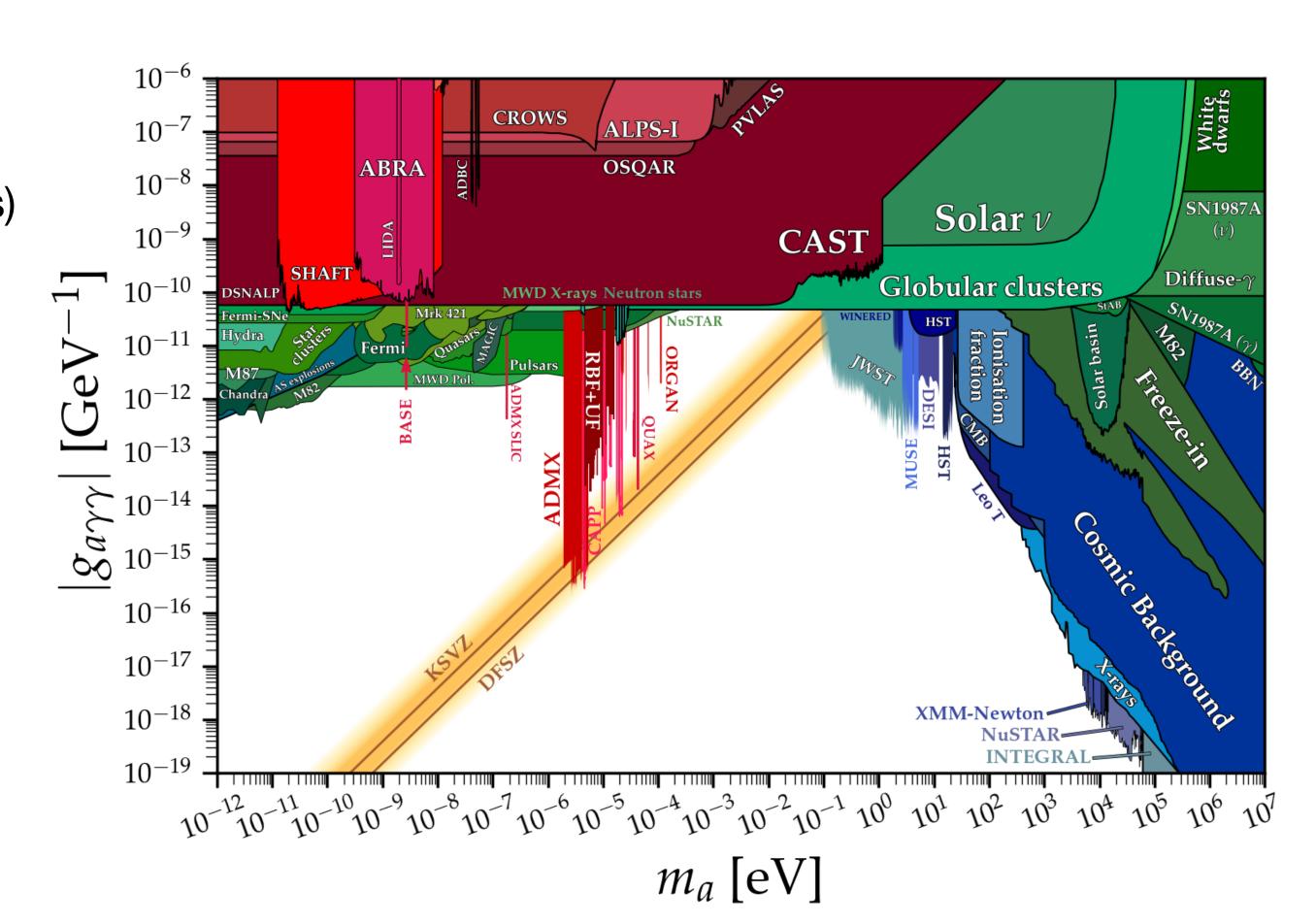
$$P\sim g_{a\gamma}^2\,
ho_a\,B^2\,V\,C\,Q$$

- B field: stronger magnets = stronger signal
- V: larger cavities for lower masses
- Q: sharp resonances, limited by material losses

Trade-offs: Large volume vs. High frequency

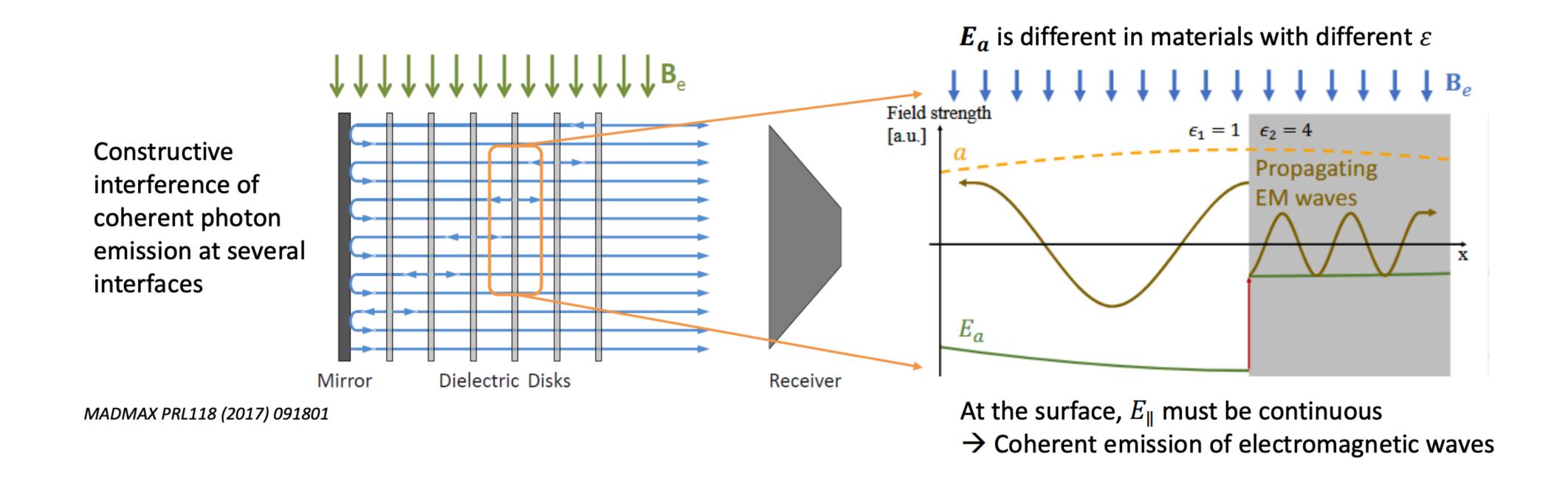
Experimental implementations

- \bullet **ADMX** (pioneering, μ eV range)
- HAYSTAC (quantum-limited amplifiers, squeezed states)
- ADMX-SLIC (Tunable LC circuits, lighter mass)
- ADMX-SIDECAR, ORGAN (tunable to higher cavity modes, heavier masses)
- QUAX (Ferromagnetic haloscopes exploiting the principle of magnetic resonances)



Next generation innovations

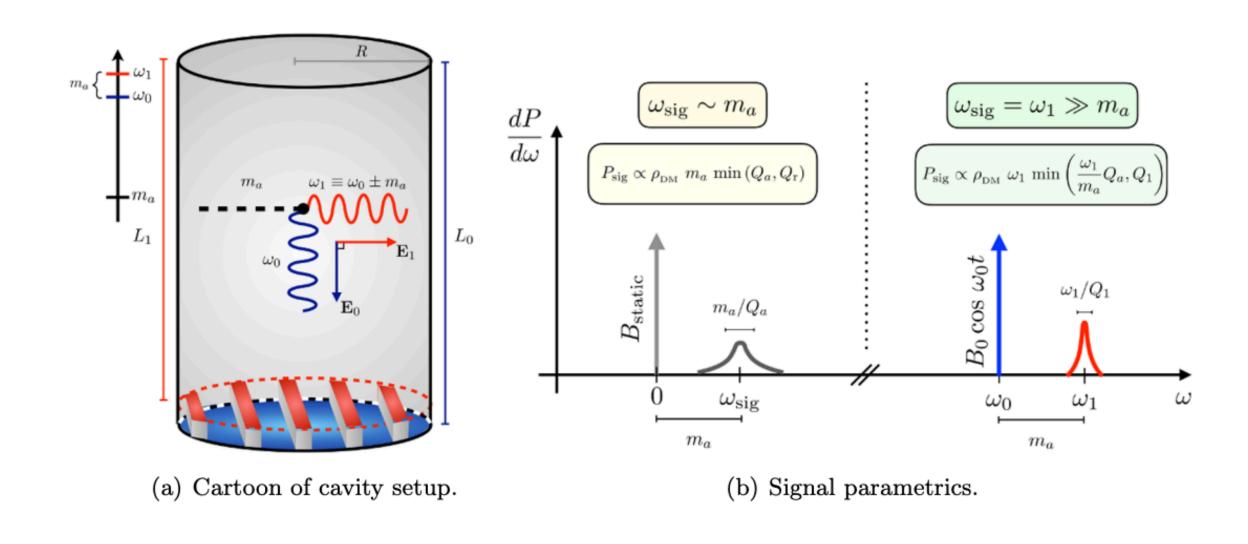
MADMAX (dielectric haloscope): stacked dielectric disks

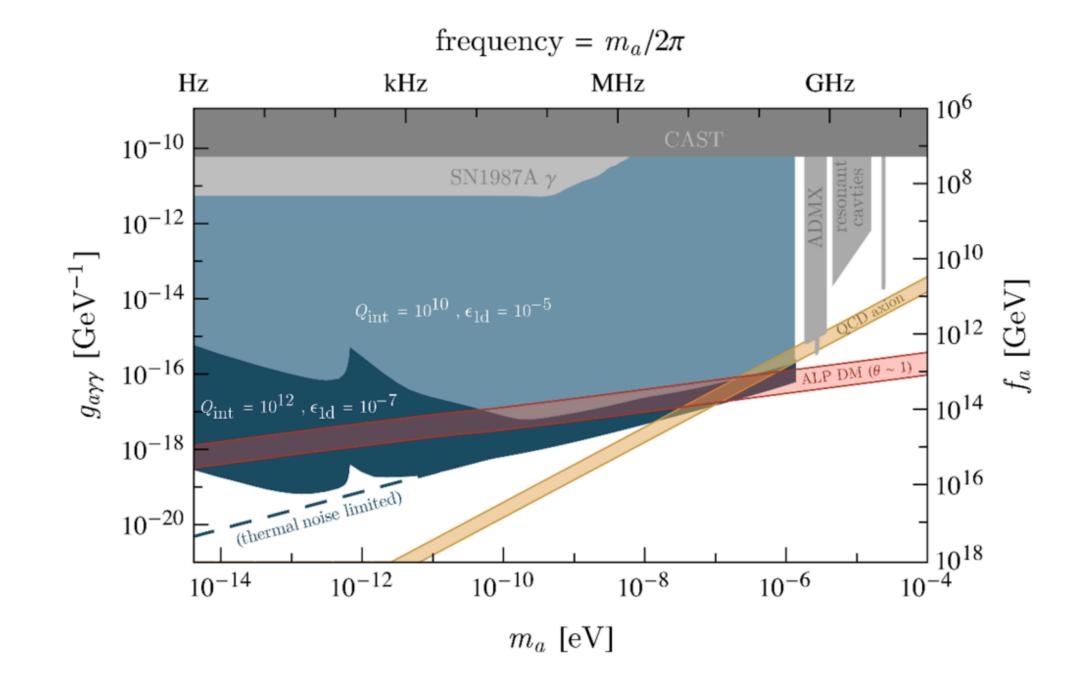


proposed to probe a up to a few orders above the μeV scale

Next generation innovations

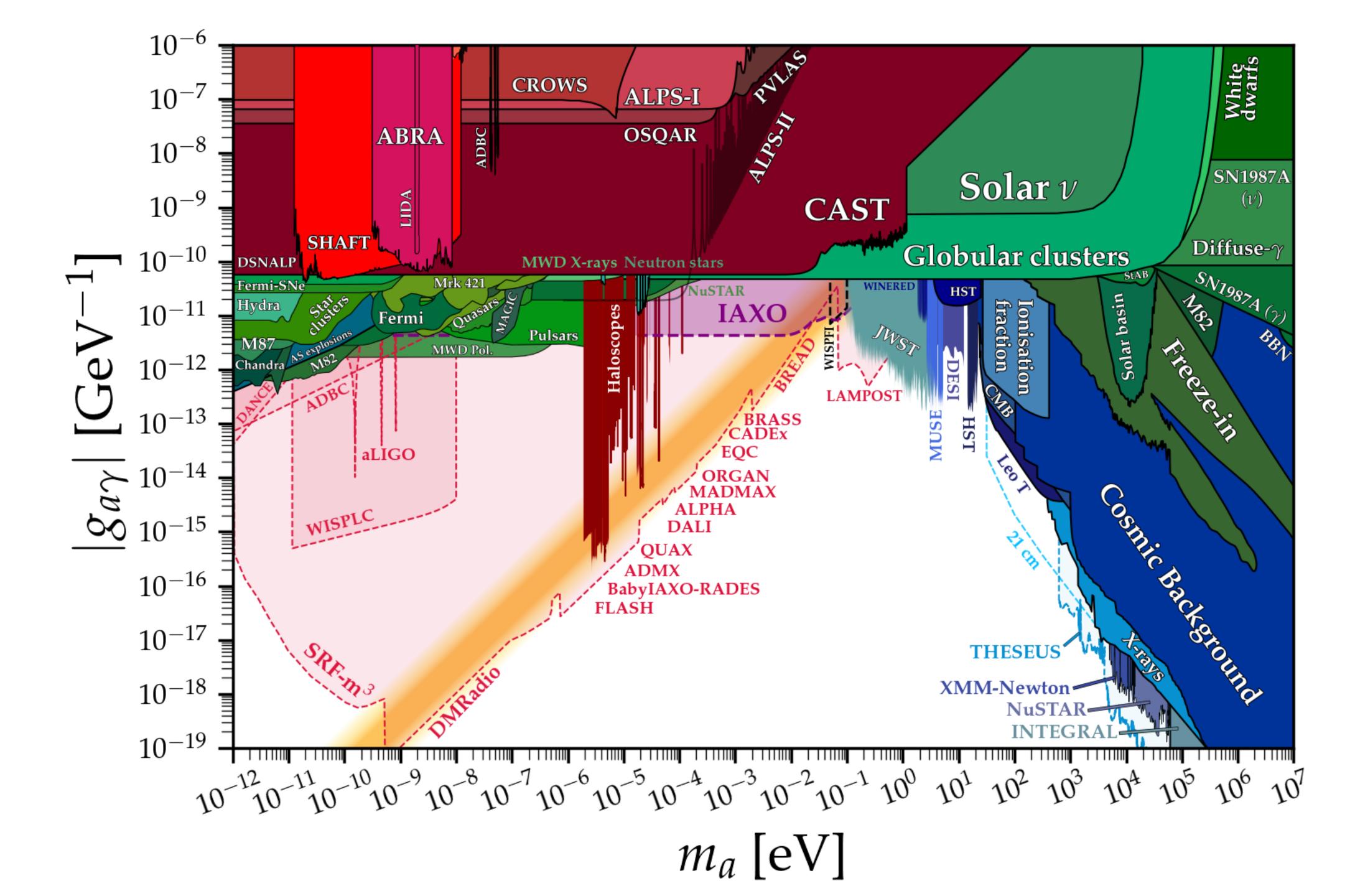
SRF Cavities: superconducting resonant frequency conversion



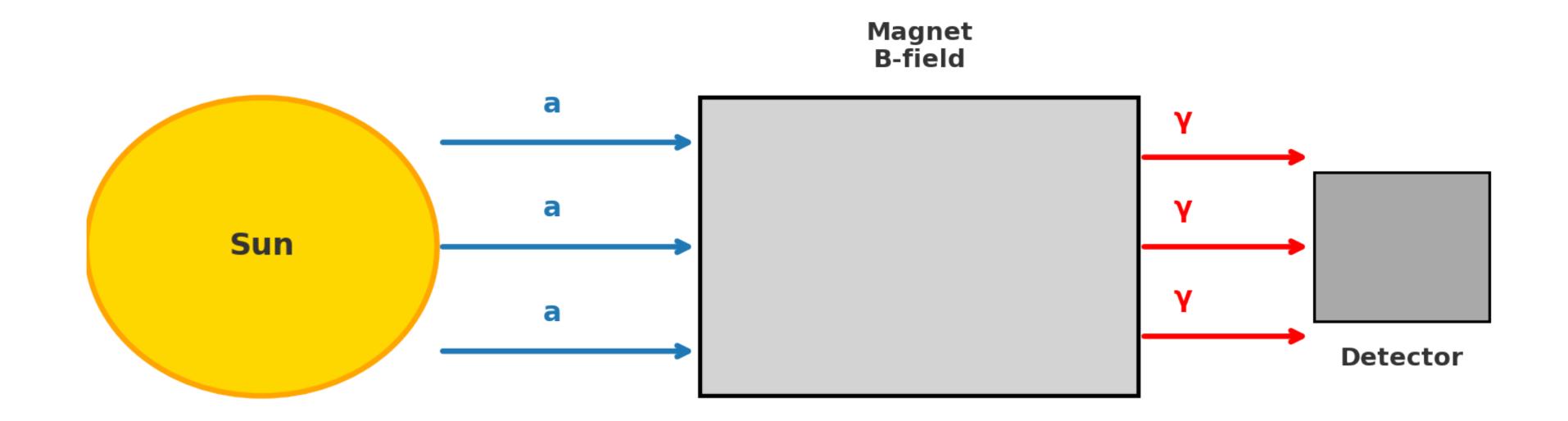


Cavities with much higher quality factor, $Q \sim 10^9$

Berlin et. al : JHEP07(2020)088

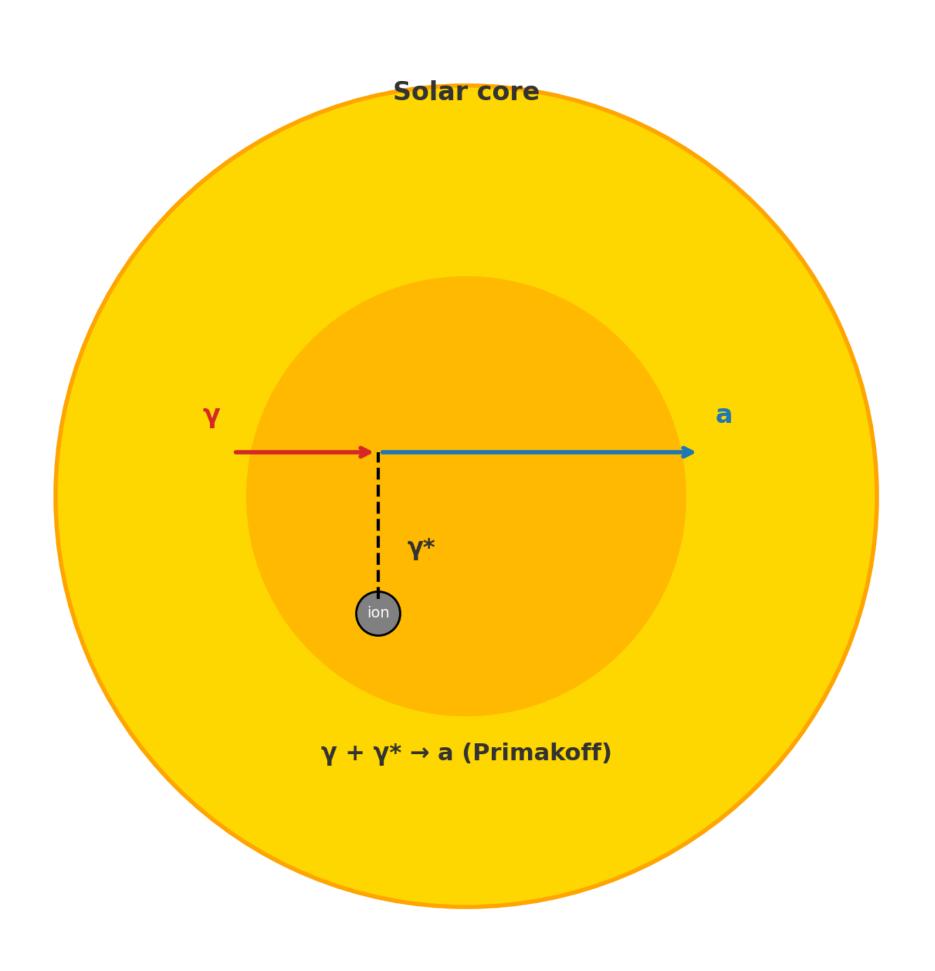


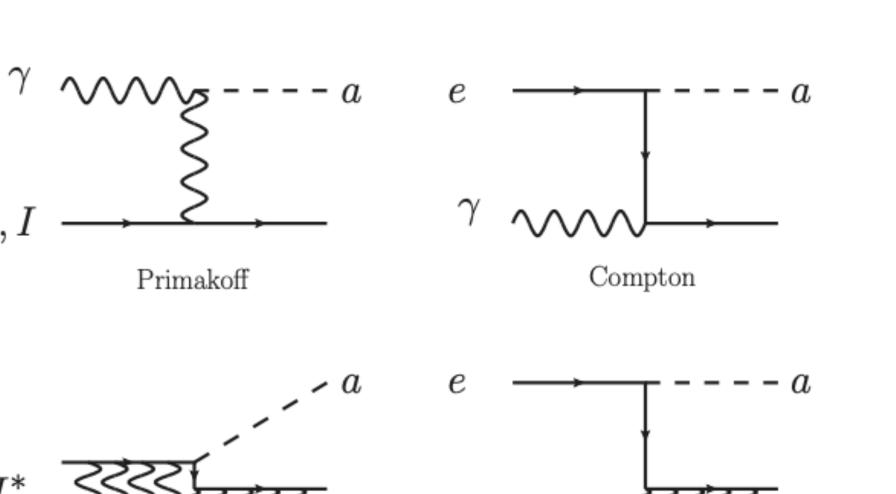
Helioscopes



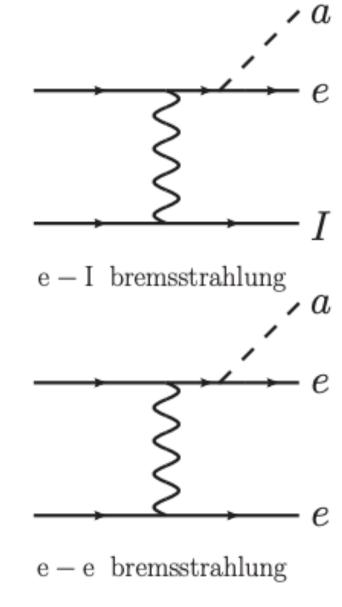
Inside the sun

axio - deexcitation

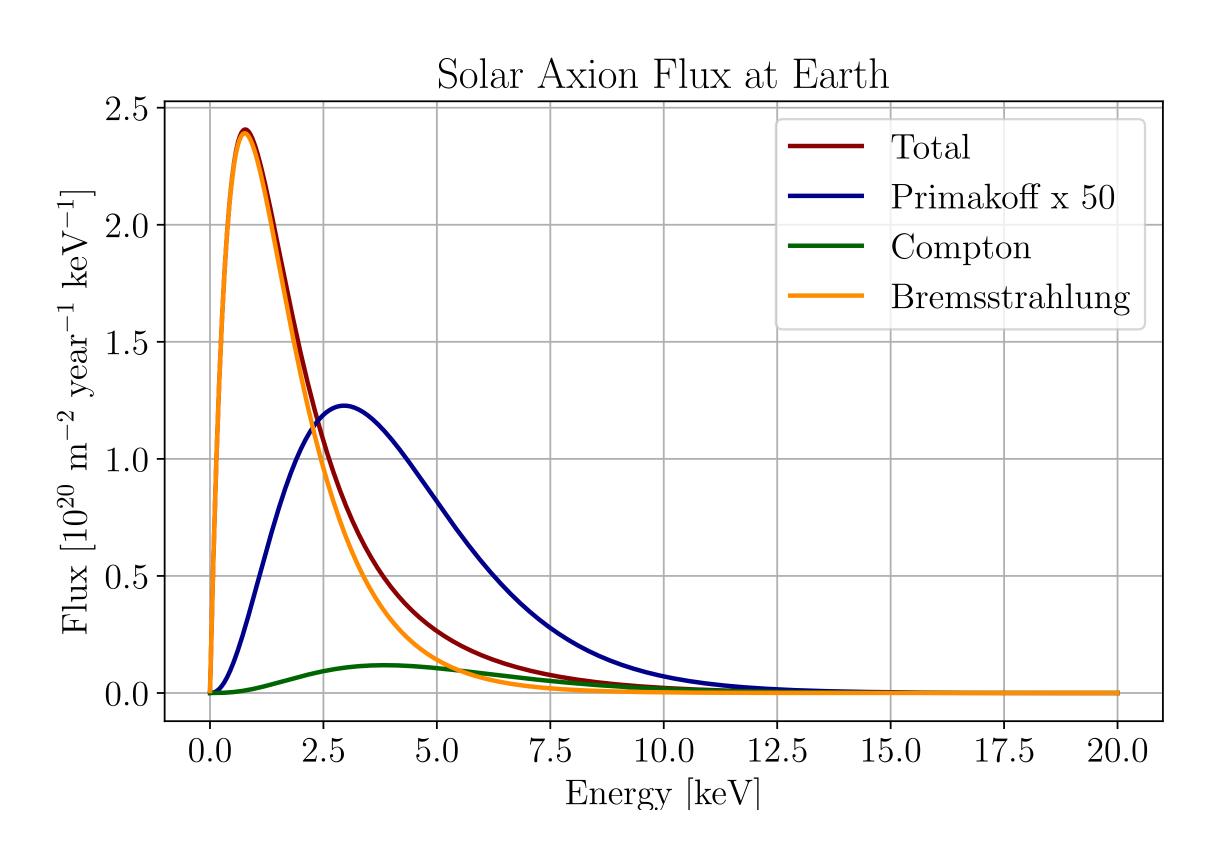




axiorecombination

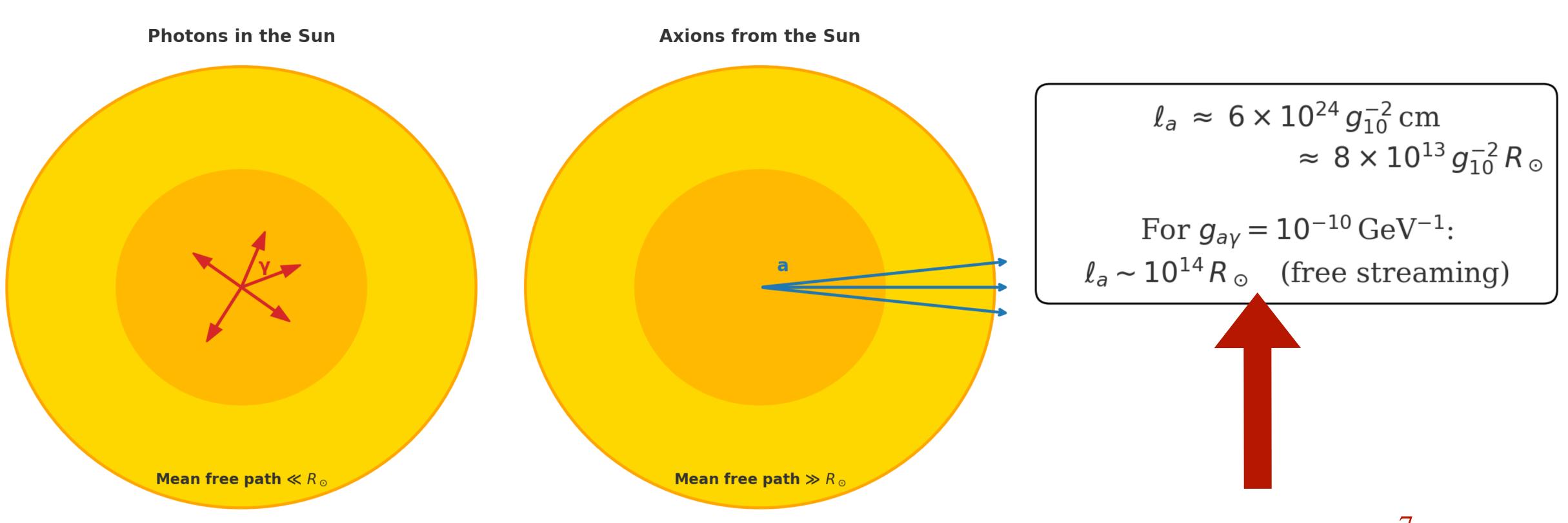


Fluxes



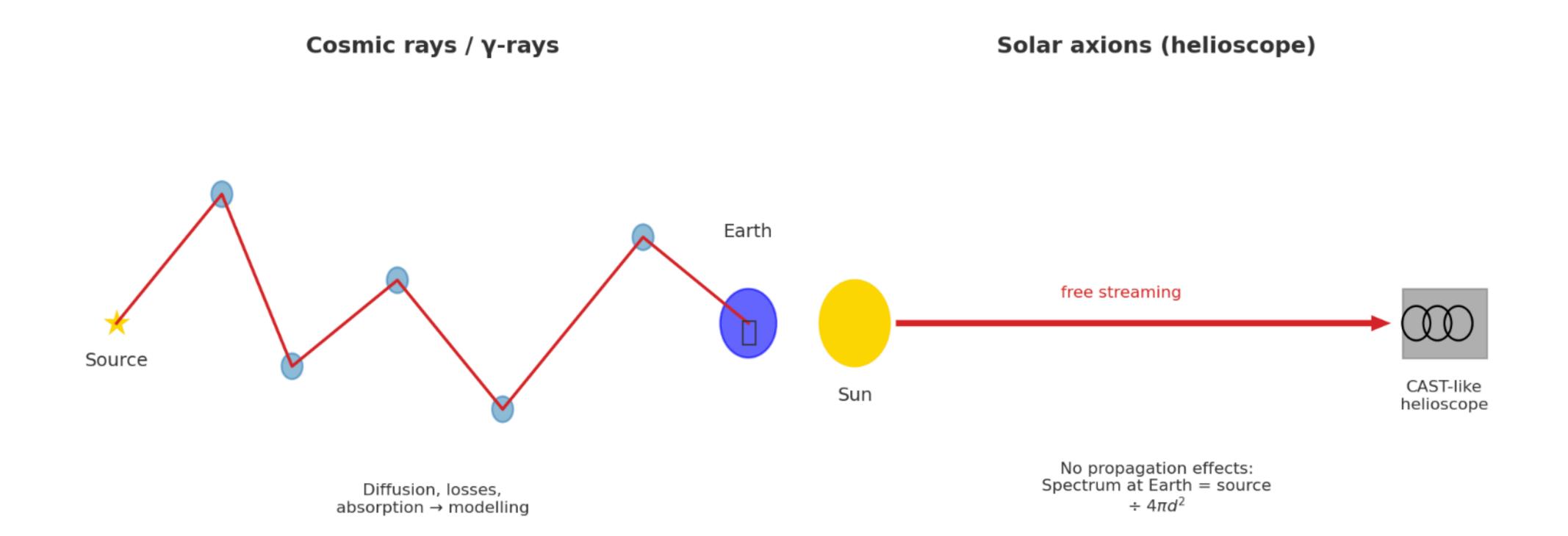
$$\begin{split} \frac{\mathrm{d}\Phi_{a}}{\mathrm{d}\omega}\Big|_{P} &= 2.0 \times 10^{18} \left(\frac{g_{a\gamma}}{10^{-12} \mathrm{GeV}^{-1}}\right)^{2} \omega^{2.450} \, e^{-0.829 \, \omega} \\ \frac{\mathrm{d}\Phi_{a}}{\mathrm{d}\omega}\Big|_{C} &= 4.2 \times 10^{18} \left(\frac{g_{ae}}{10^{-13}}\right)^{2} \omega^{2.987} \, e^{-0.776 \, \omega} \\ \frac{\mathrm{d}\Phi_{a}}{\mathrm{d}\omega}\Big|_{B} &= 8.3 \times 10^{20} \left(\frac{g_{ae}}{10^{-13}}\right)^{2} \frac{\omega}{1 + 0.667 \, \omega^{1.278}} \, e^{-0.77 \, \omega} \end{split}$$

Axions Escape the Sun Freely

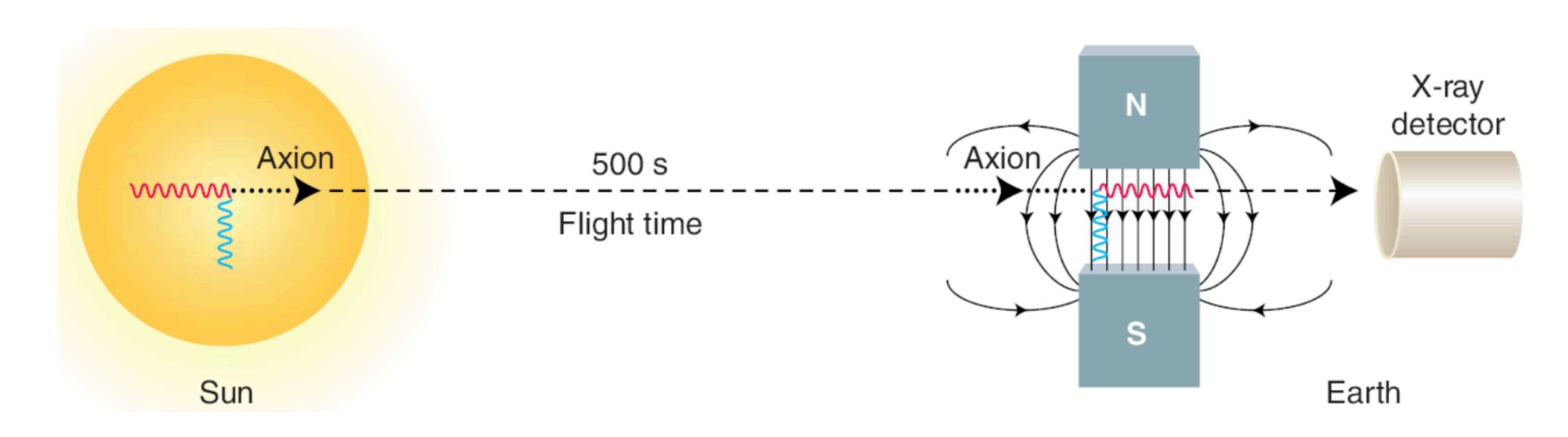


 $g_{a\gamma}$ needs to be $\sim 10^7$ larger to get reabsorbed in the sun !!!

Why Solar Axion Signals Are Clean on Earth



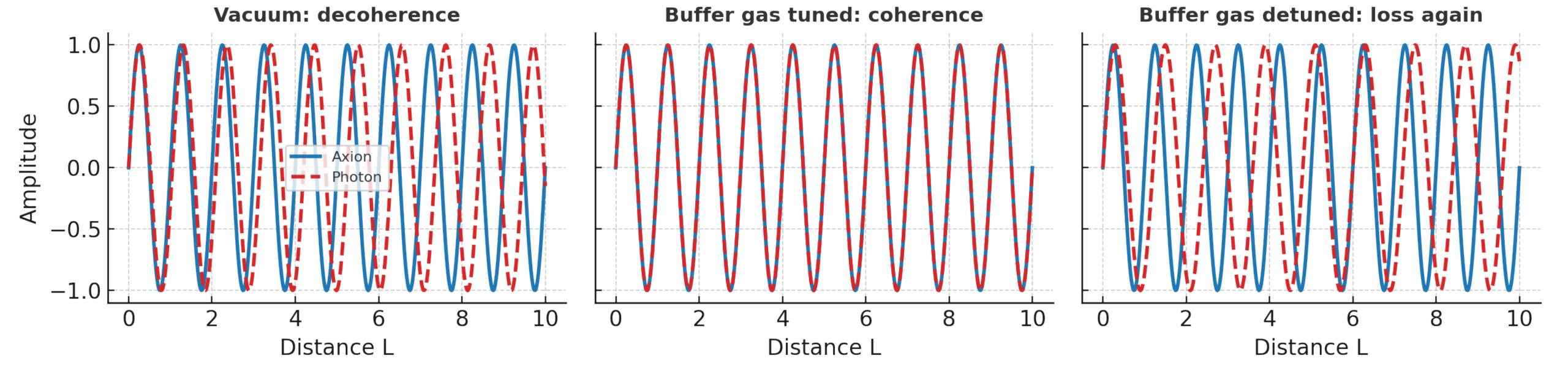
Inside a helioscope



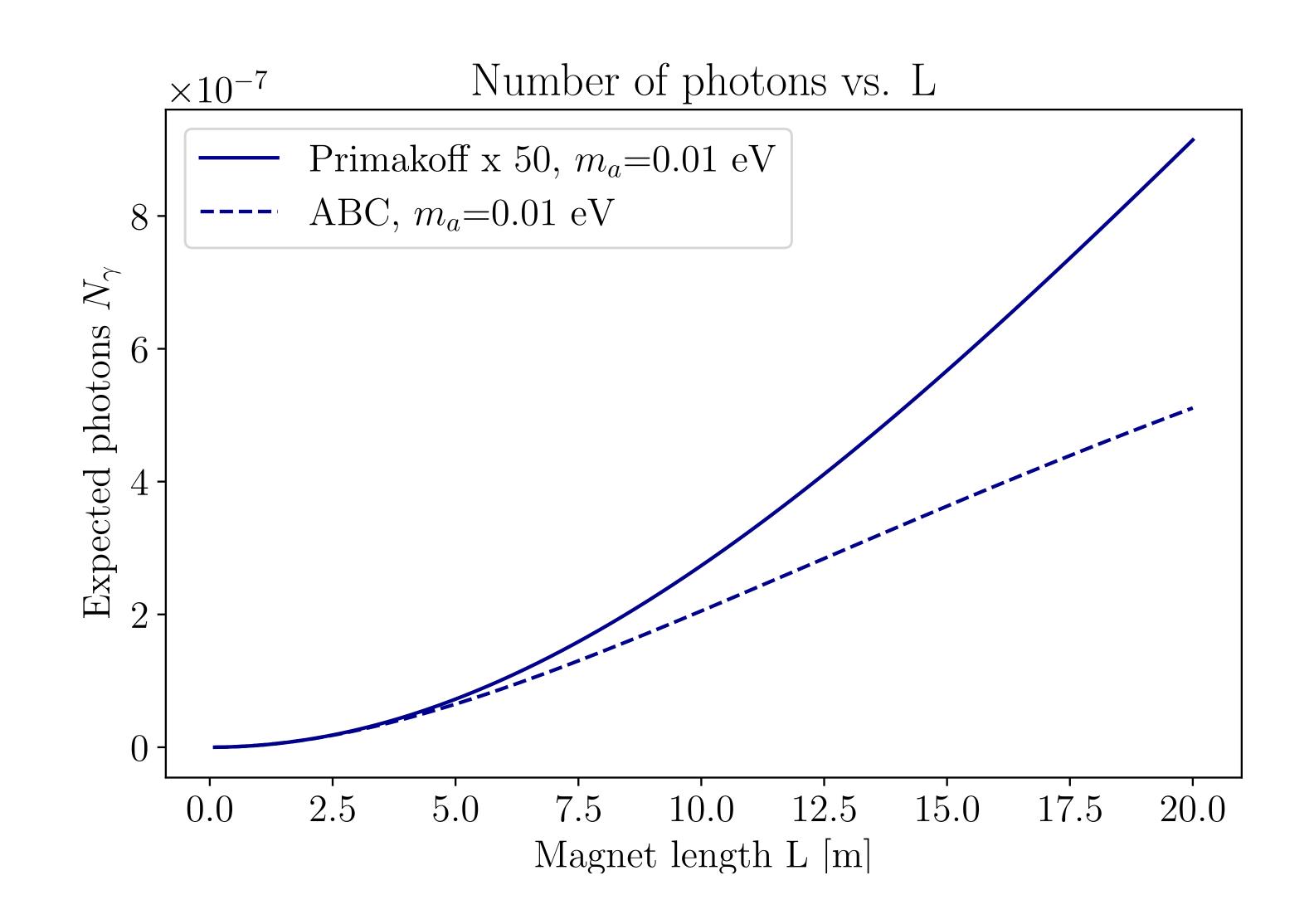
- \diamond Conversion: Axions \rightarrow X-rays via *inverse Primakoff* in strong transverse B
- Photon energy: Matches solar production spectrum (few keV)
- **Detectors:**
 - CCDs— pixel imaging, keV sensitivity
 - Micromegas/TPCs gaseous, strong background rejection
 - Cryogenic calorimeters high resolution, low thresholds
- * Background control: shielding, anticoincidence, low-noise setups

Coherence

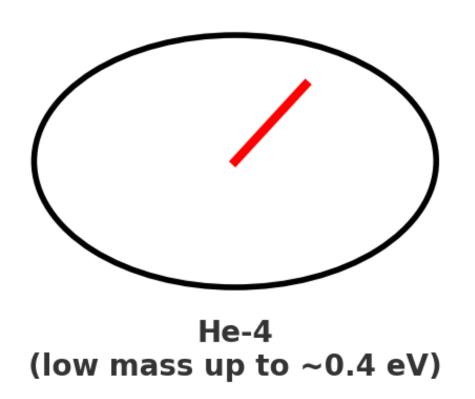
$$P_{a\to\gamma} = \left(\frac{BLg_{a\gamma\gamma}}{2}\right)^2 \left(\frac{\sin\left(\frac{qL}{2}\right)}{\left(\frac{qL}{2}\right)}\right)^2, \quad q \simeq \frac{|m_a^2 - m_\gamma^2|}{2E} = k_a - k_\gamma \qquad \text{Coherence condition: } \frac{qL}{2} \lesssim \pi$$

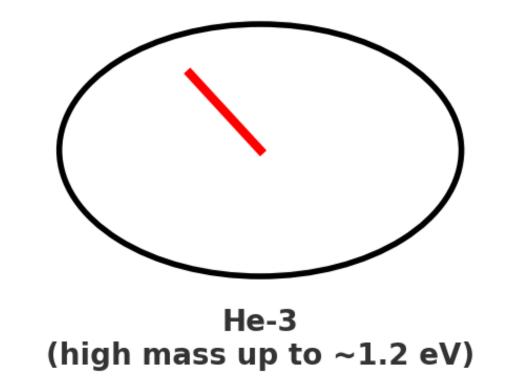


$$N_{\gamma} = \int_{E} \frac{d\Phi\left(E_{a}, g_{a\gamma\gamma}^{2}\right)}{dE_{a}} P_{a\to\gamma}\left(E_{a}, m_{a}, g_{a\gamma\gamma}^{2}\right) \epsilon\left(E_{a}\right) \Delta t \ A \ dE_{a}$$



Buffer gas





Each pressure step → small axion mass interval

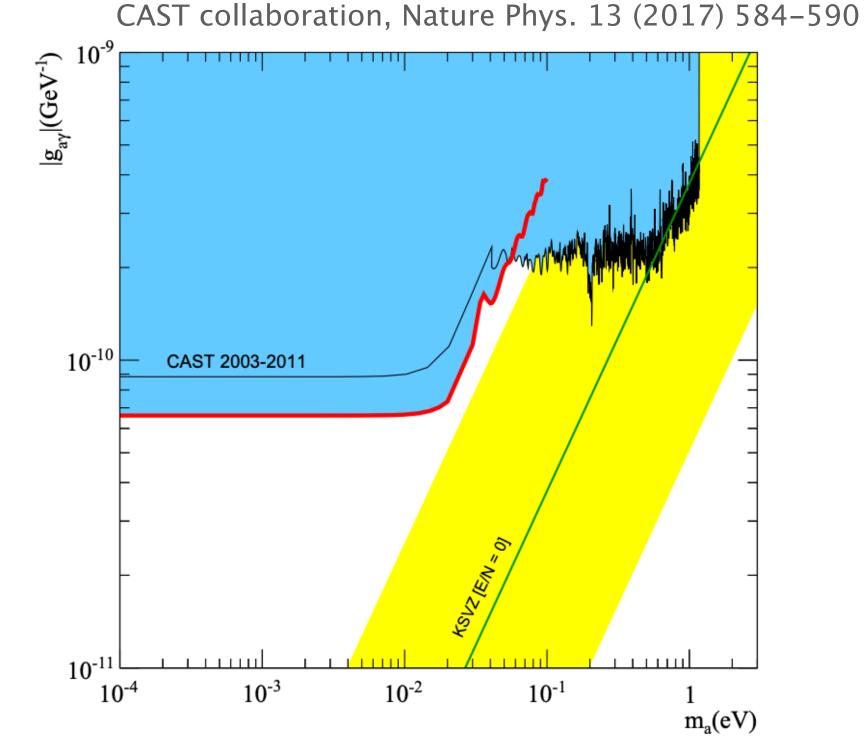
	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
I						

Step N (hundreds)

$$\Delta m_{\gamma} \lesssim \frac{2\pi E}{Lm_{\alpha}}$$

$$\Delta P = \frac{\Delta m_{\gamma}}{m_{\gamma}} P$$

CAST-CERN Axion Solar Telescope



Magnet: LHC dipole magnets, B= 9T, L= 9.3 m

Bores: 2x14.5 cm²

Phases: I (vacuum), II (⁴He, ³He), 2 more until 2014

X-ray optics: CCD (ESA spare)

Detectors: Micromegas, TPC, others

The first helioscope to have crossed the KSVZ line

Signal: X-ray excess from focused solar axions

Background: low, dominated by noise and cosmic rays

Detector parameters

Detection Toolkit

- B magnetic field strength
- L magnet length
- A cross-sectional area
- ed detector efficiency
- ϵ_0 optics throughput
- ϵ_t tracking efficiency
- *t* exposure time
- **b** background rate
- *a* optics spot size

$$N_{\gamma} \propto B^2 L^2 A \epsilon \, t \, g^4$$
 — Signal counts: conversion, flux, efficiency, exposure $N_b = b \, a \, \epsilon_t \, t$ — Background counts: rate, spot area, tracking, time $SNR = \frac{N_{\gamma}}{\sqrt{N_b}}$ — Signal-to-noise ratio (discovery potential) $g \sim \left(\frac{N^*}{\sqrt{N_b}}\right)^{-1/4}$ — Coupling sensitivity from SNR scaling

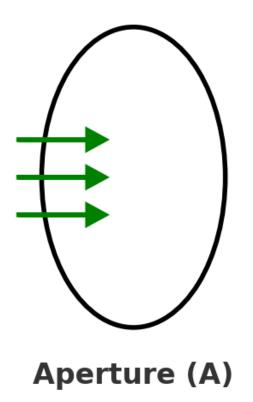
$$f = \frac{N^*}{\sqrt{N_b}} = f_{\rm M} f_{\rm DO} f_{\rm T}$$

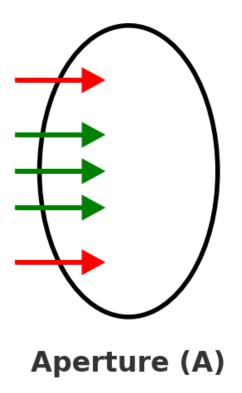
$$f_{
m M}=B^2L^2A$$
 Magnet strength and geometry
$$f_{
m DO}=\frac{\epsilon_d\,\epsilon_0}{\sqrt{ba}}$$
 Detector+optics performance
$$f_{
m T}=\sqrt{\epsilon_t\,t}$$
 Tracking efficiency and exposure

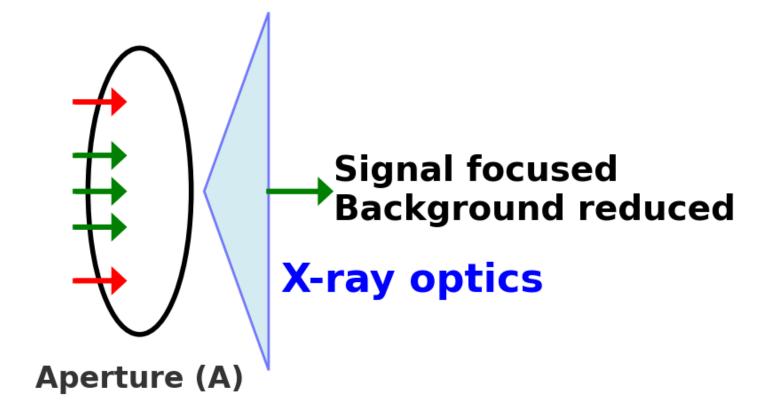
$$f \sim (B^2 \, L^2 \, A) imes rac{\epsilon_d \epsilon_0}{\sqrt{ba}} imes \sqrt{\epsilon_t t}$$

Larger A → more signal photons But also more background

Optics: signal ∝ A, background ∝ a





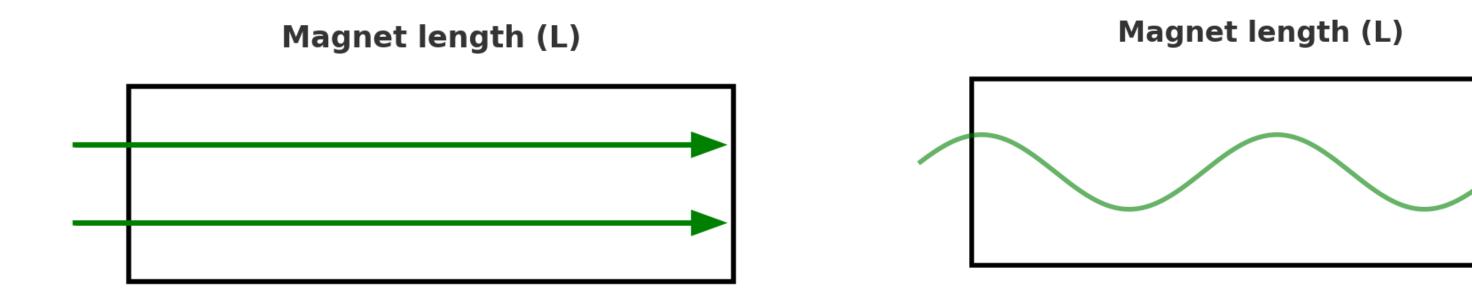


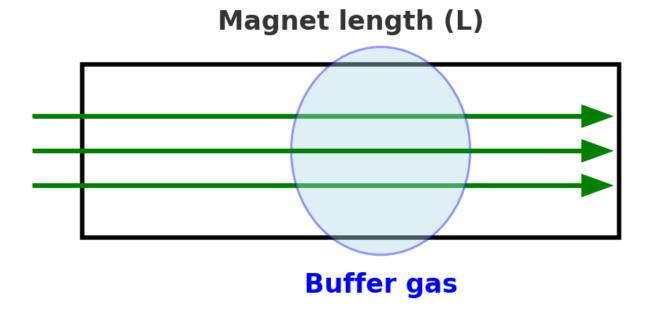
$$f \sim \left(B^2 \, iggledownder{ L}^2 \, A
ight) imes rac{\epsilon_d \epsilon_0}{\sqrt{ba}} imes \sqrt{\epsilon_t t}$$

Larger L → **more conversion**

But decoherence occurs

Buffer gas restores coherence

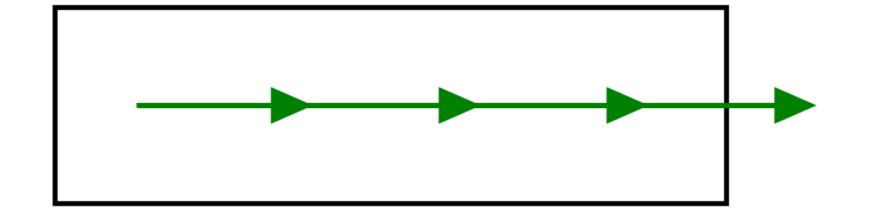




$$f \sim ({m B}^2 \ _{L^2A}) imes {rac{\epsilon_d \epsilon_0}{\sqrt{ba}}} imes \sqrt{\epsilon_t t}$$

Increase B

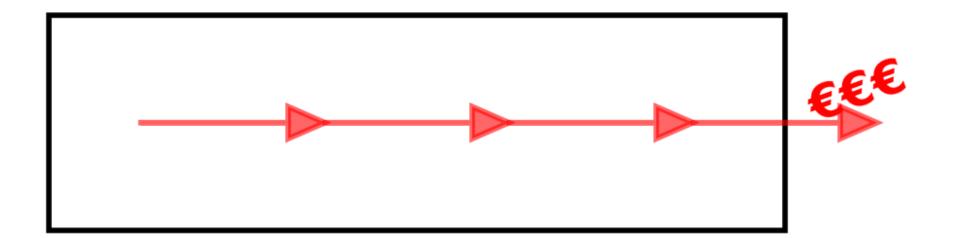
Magnet field (B)



Stronger B → more photons (α B²)

Limitations of large B

Magnet field (B)

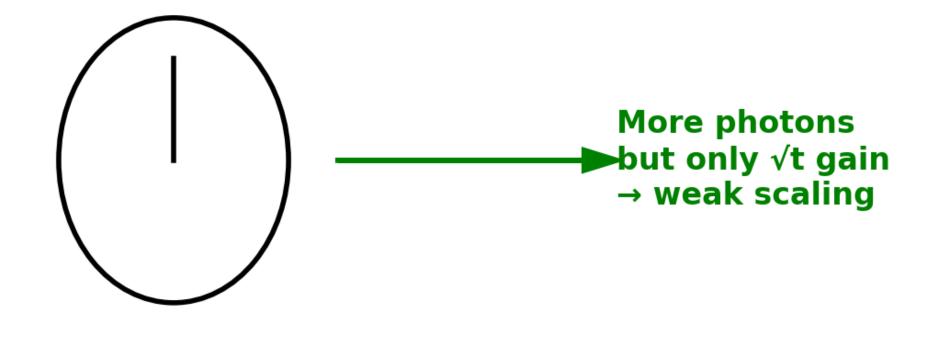


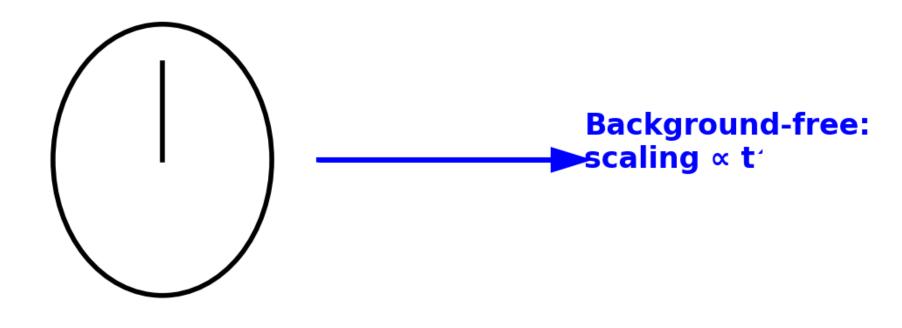
But high-field magnets are costly and hard to scale

$$f \sim \left(B^2 \, L^2 \, A
ight) imes rac{\epsilon_d \epsilon_0}{\sqrt{ba}} imes \sqrt{\epsilon_t} \, m{t}$$

Longer integration time (background-limited)

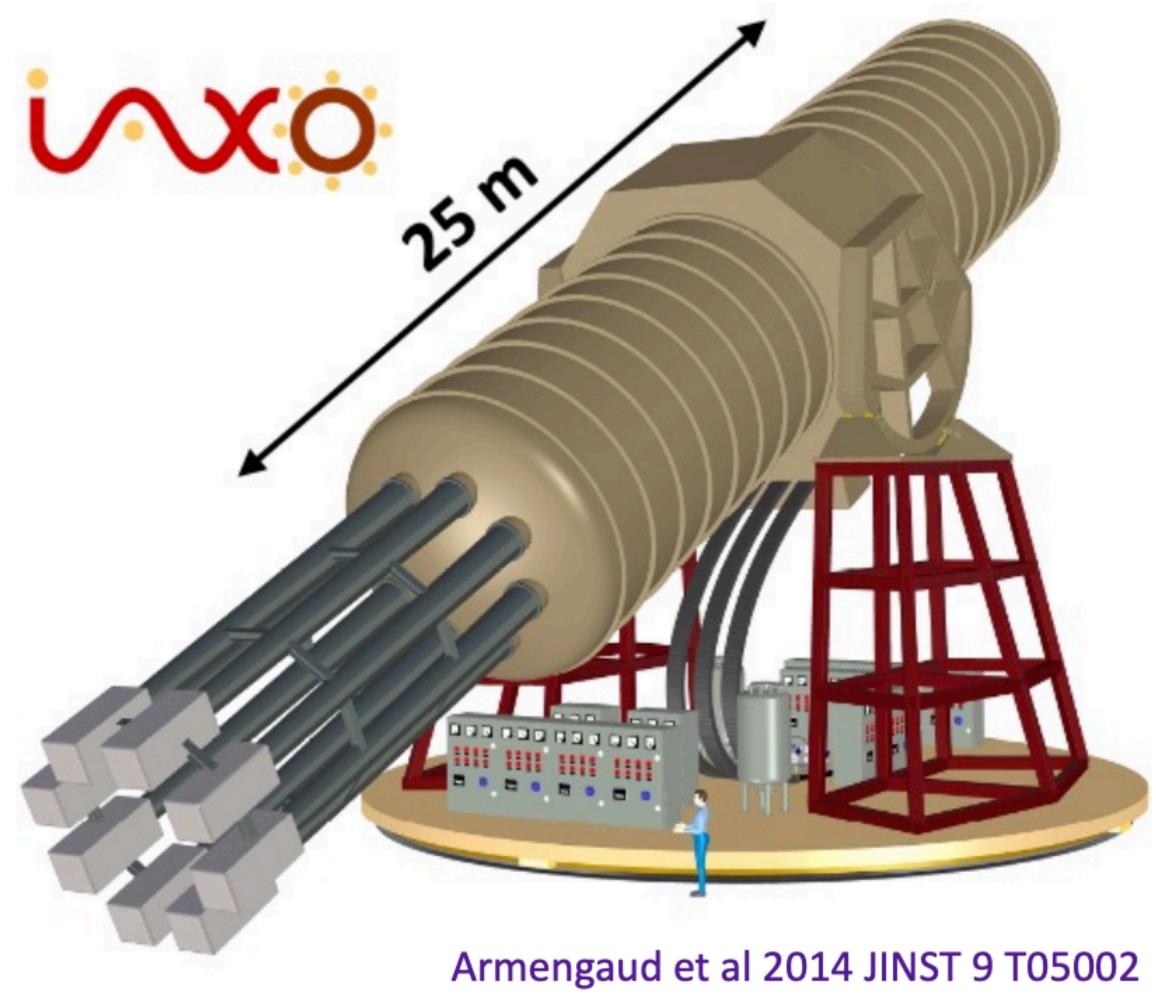
Longer integration time (background-free)

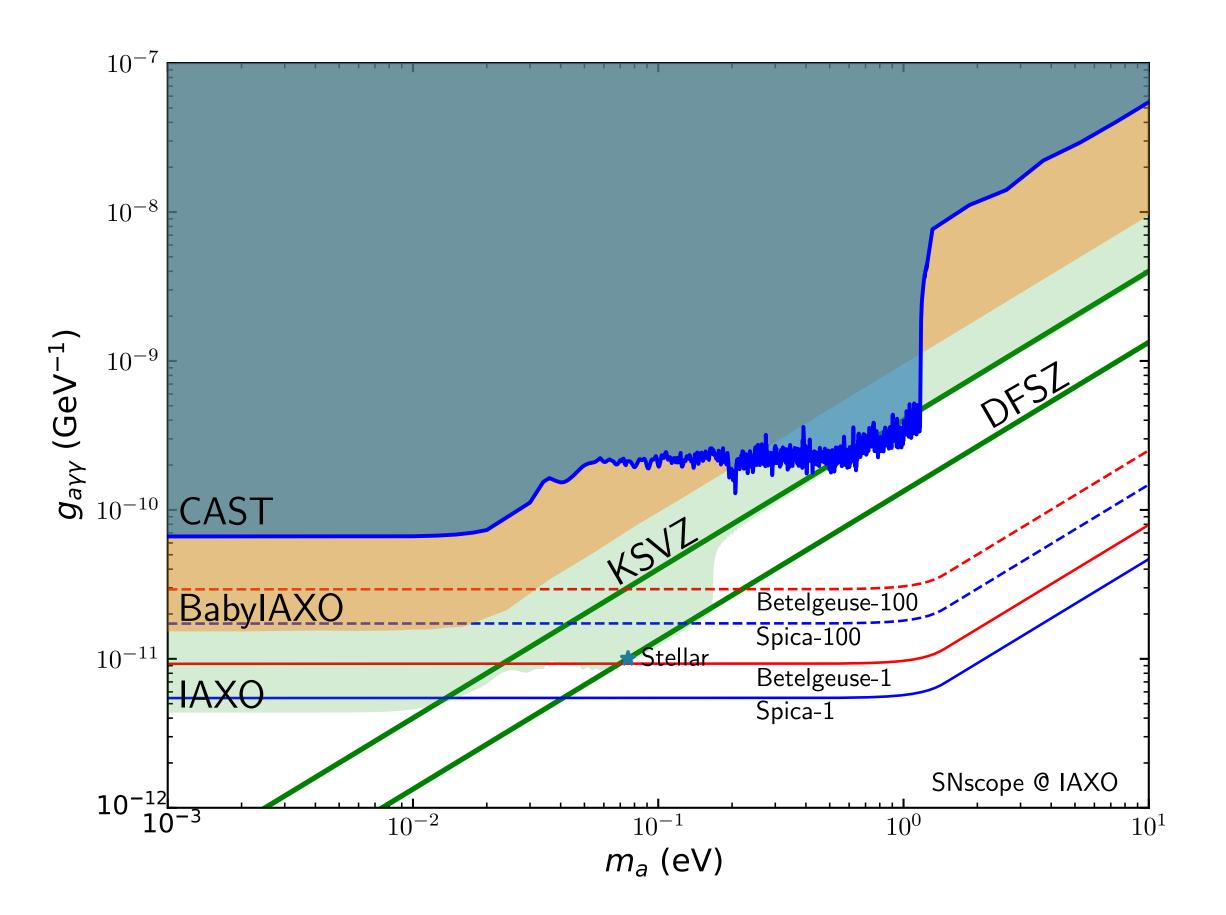




Integration time (t)

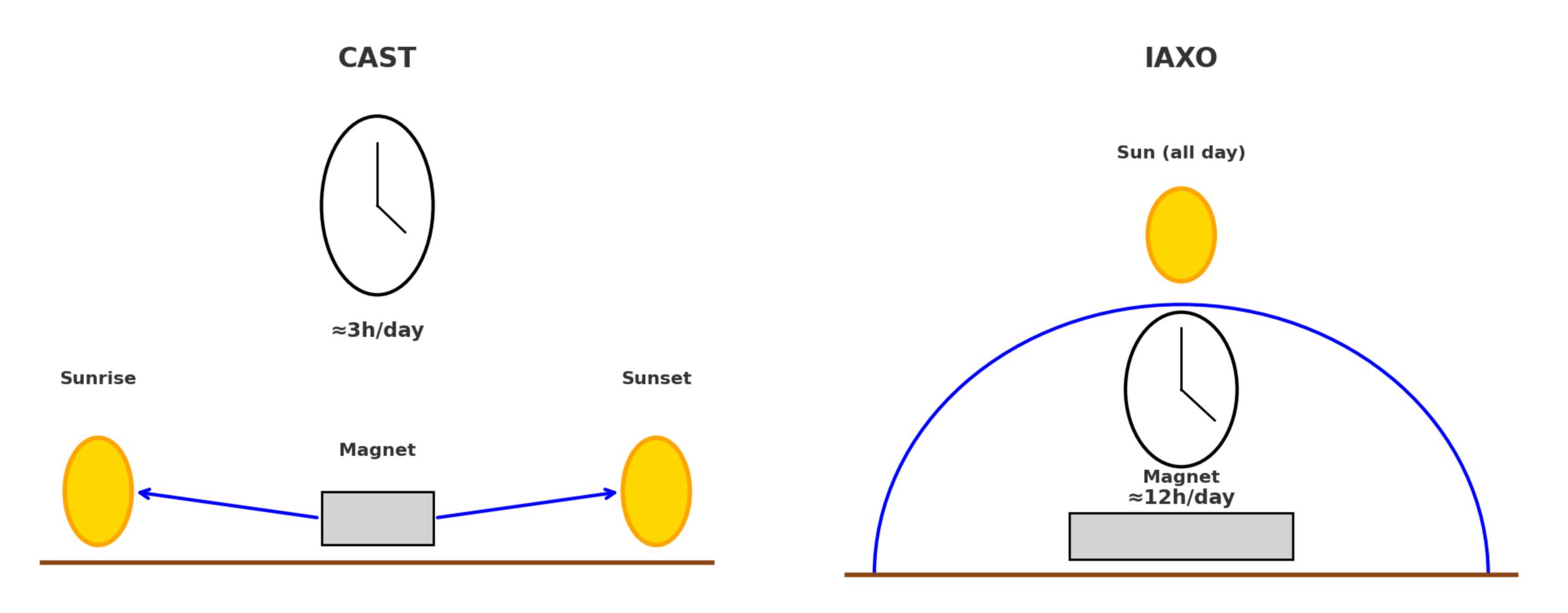
IAXO-International Axion Observatory





- Large toroidal 8-coil magnet L ≈ 20 m
- 8 bores: 600 mm diameter each
- 8 x-ray telescopes + 8 detection systems
- **Rotating platform with services**

Solar tracking



Fixed mount

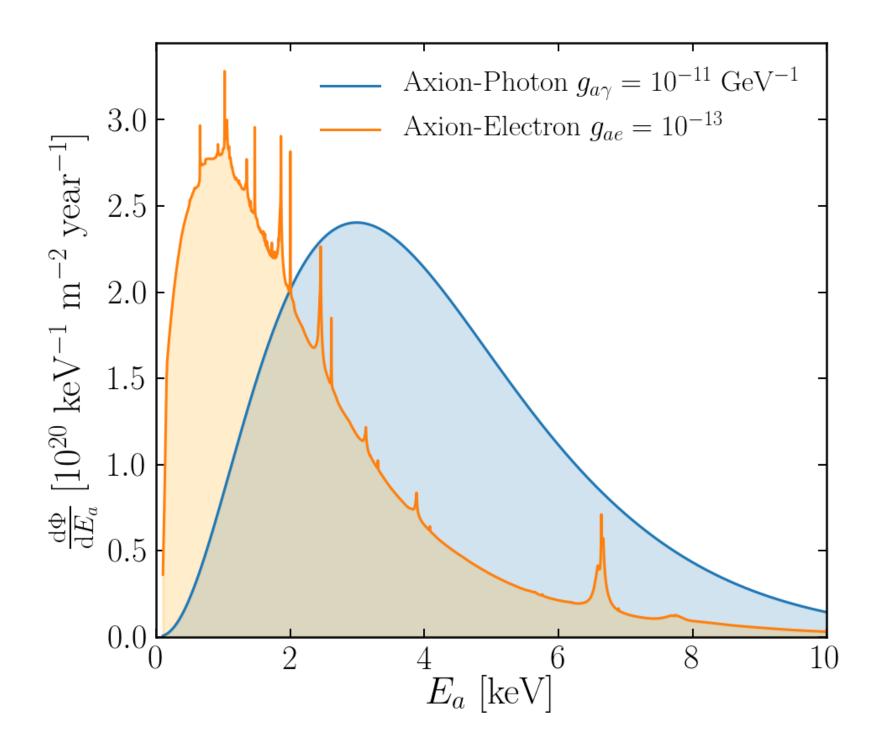
Full azimuthal + elevation drive → continuous solar tracking

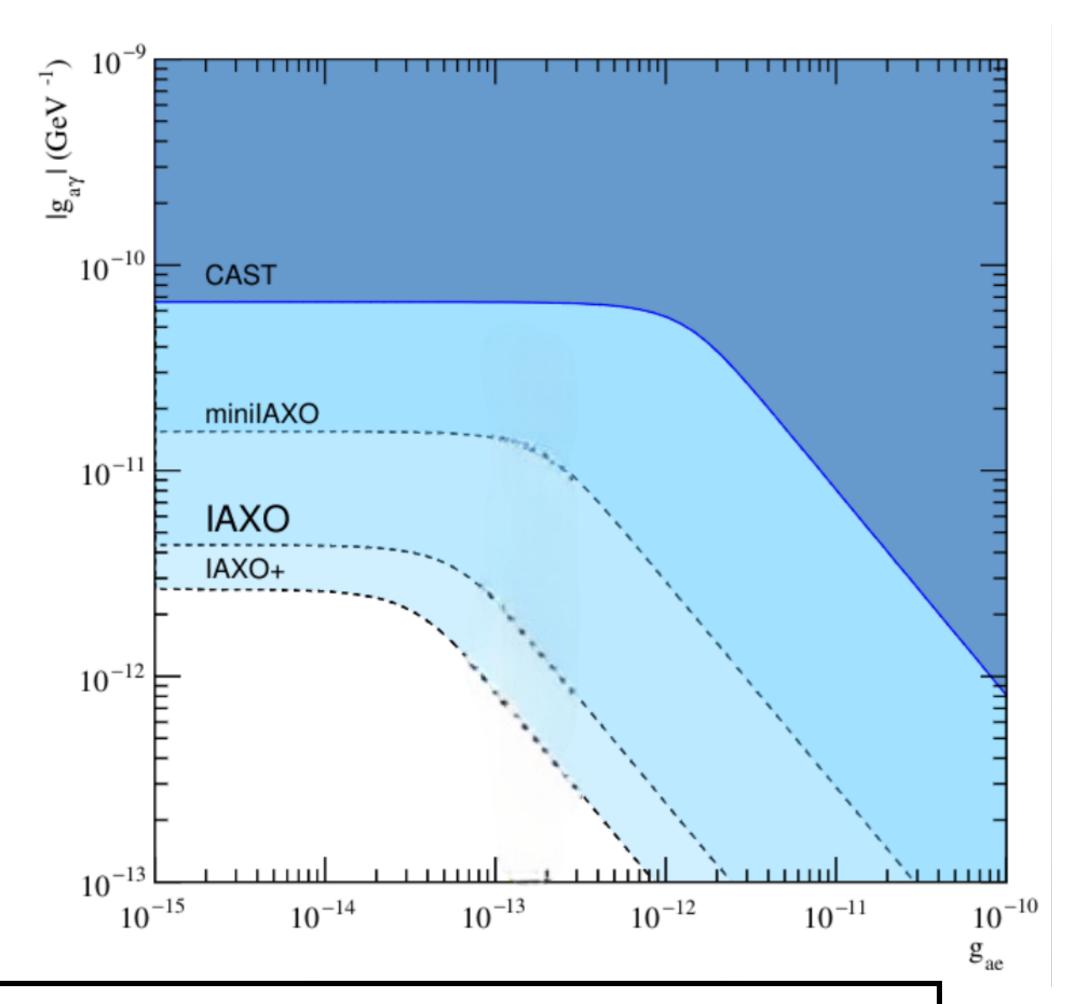
Tracking time ∝ exposure → sensitivity boost

Axion-electron couplings

Production

- ABC axions via axion-fermion couplings $\mathcal{L}_{aee} = g_{ae} a \bar{\psi}_e \gamma_5 \gamma^{\mu} \psi_e$
- Plasmon-ALP conversion in large-scale solar B-fields





Detection

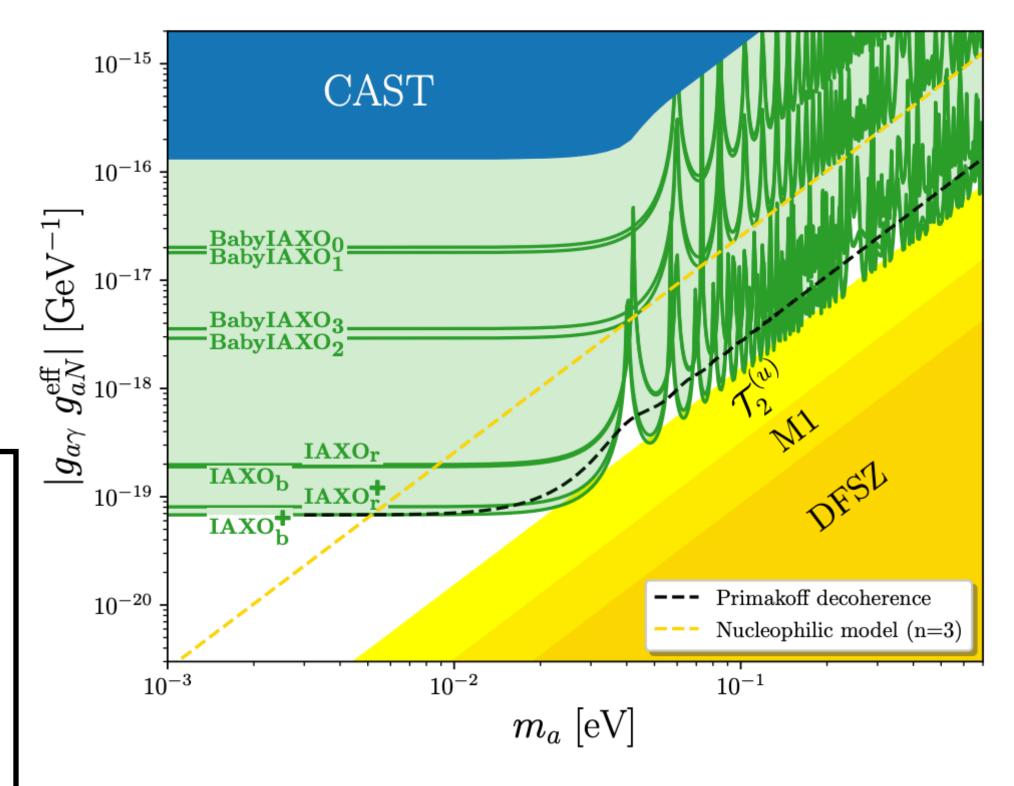
- ♣ Larger aperture (A) → higher acceptance
- Energy resolution to disentangle spectral features
- Low thresholds for soft axions (~10-100 eV)
- X-ray telescopes (XRTs)+detectors (Micromegas, cryogenic calorimeters)
 - → Background suppression+spectral sensitivity

Axion-nucleon couplings

$${\cal L}_{aN} \; = \; - i a \, ar{N} \gamma_5 ig(g^0_{aN} + g^3_{aN} au^3 ig) N$$

Production (57Fe line, 14.4 keV)

- ❖ Nuclear M1 transition in 57Fe → monoenergetic 14.4 keV axions
- Axion-nucleon couplings unavoidable in QCD axion models
- ❖ Updated nuclear data → ~30% stronger emission rates
- \clubsuit Oscillatory signal at Earth from conversion probability $\propto \sin^2(qL/2)/(qL/2)^2$



Di Luzio et. al., Eur. Phys. J. C 82, 120 (2022)

Instrumentation

- ❖ X-ray optics not optimised above 10 keV→efficient drops
- Detectors need good energy resolution to isolate narrow line
- Primakoff continuum at 14 keV acts as background
- Candidate technologies:
 - ◆ Micromegas → low background
 - ◆ CZT/cryogenic detectors → better resolution and thresholds

Good resolution + low thresholds

Generic model:

ALP can couple to anything.

How will you optimise then?

Larger area? Longer L?

Better resolution?

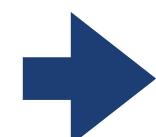
Efficient background rejection

Magnet length (L)

Thank you!!

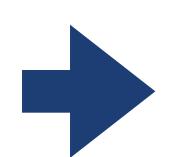
ALP interactions at different scales

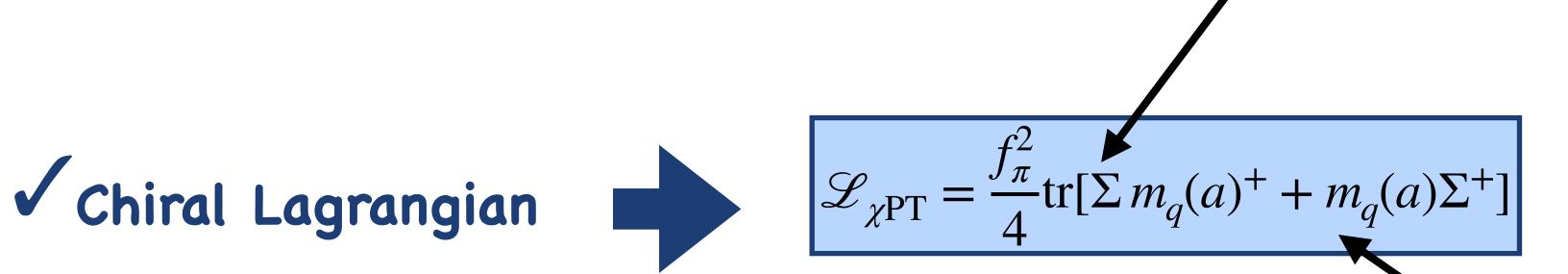
M. Bauer, SC and G. Rostagni, JHEP 05 (2025) 023



ALPs at the UV scale
$$\mathscr{L}_{\mathrm{eff}}^{D\leq 5}(\mu>\Lambda_{\mathrm{QCD}})\ni \frac{\partial^{\mu}a}{2f}\,c_{uu}\,\bar{u}\,\gamma_{\mu}\gamma_{5}\,u + \frac{\partial^{\mu}a}{2f}\,c_{dd}\,\bar{d}\,\gamma_{\mu}\gamma_{5}\,d + c_{GG}\frac{\alpha_{s}}{4\pi}\frac{a}{f}G_{\mu\nu}\tilde{G}^{\mu\nu} + \dots$$

- ✓ RG running
- Threshold matching





 $\Sigma = \exp(i\sqrt{2\Pi/f_{\pi}})$

Quark mass matrix is ALP-field dependent!!

$$m_q(a) = e^{-i\kappa_q \frac{a}{f}c_{GG}} m_q e^{-i\kappa_q \frac{a}{f}c_{GG}}$$

ALP linear interactions

At energy scales below $\Lambda_{\rm QCD}$, the relevant ALP couplings to photons, nucleons and electrons are written in the leading order of the expansion of the decay constant f as

$$\begin{split} \mathcal{L}_{\mathrm{eff}}^{D\leq 5}(\mu \lesssim \Lambda_{\mathrm{QCD}}) &= \frac{1}{2} \left(\partial_{\mu} a\right) (\partial^{\mu} a) - \frac{m_{a,0}^2}{2} \, a^2 \\ &+ \frac{\partial^{\mu} a}{2f} \, c_{ee} \, \bar{e} \, \gamma_{\mu} \gamma_5 \, e + g_{Na} \frac{\partial^{\mu} a}{2f} \bar{N} \gamma_{\mu} \gamma_5 N + c_{\gamma \gamma}^{\mathrm{eff}} \, \frac{\alpha}{4\pi} \, \frac{a}{f} \, F_{\mu \nu} \, \tilde{F}^{\mu \nu} \end{split}$$

$$c_{\gamma\gamma}^{\text{eff}}(\mu_0) = c_{\gamma\gamma}(\Lambda) - 1.92 c_{GG}(\Lambda)$$

