Interferometry for a measurement of vacuum magnetic birefringence

With the ALPSII magnet string

Laura (Lo) Roberts, 3rd COST Training School, Annecy France, September 2025

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) & Deutsches Elektronen Synchrotron (DESY)

Introduction to VIMB:

A fine subtlety of quantum electrodynamics

Originally predicted by the four field interactions involving only photons

$$n_{\parallel} - n_{\perp} = 3A_e B^2 \to \Delta n \approx 3.96 \times 10^{-24} \text{ T}^{-2}$$

• Supported by Dirac's theory of the positron and the Euler-Kockel-Heisenberg Lagrangian:

$$\mathcal{L} = \frac{1}{2\mu_0} \left[\frac{\vec{E}^2}{c^2} - \vec{B}^2 \right] + \frac{A_e}{\mu_0} \left[\left(\frac{E^2}{c^2} - B^2 \right)^2 + 7 \left(\frac{\vec{E}}{c} \cdot \vec{B} \right)^2 \right]$$

Main components of a signal

& ALPSII Infrastructure

What we need:

 We measure optical path length differences between orthogonally polarized fields

$$\Delta \Lambda = \Delta n \times L$$

- Generating VMB: $\Delta n_{vmb} \approx 3.96 \times 10^{-24} \times B^2$
- Figure of merit: $\Delta \Lambda \propto B^2 L$

ALPSII experiment at DESY is a light shining through a wall (LSW) axion dark matter search approaching final science runs.

Main components of a signal &

ALPSII Infrastructure

What we have:

 HERA superconducting magnet string at DESY, Hamburg Germany

$$B = 5.3 \text{ T} \rightarrow \Delta B^2 = 27 \text{ T}^2$$

with mHz modulation capabilities

$$L_{\text{magnets}} = 212 \text{ m}$$

- Predicted amplitude in differential path length changes: 2.37×10^{-20} meters.
- Cavity length: 245 m, with demonstrated lock

ALPSII experiment at DESY is a light shining through a wall (LSW) axion dark matter search approaching final science runs. [2]

ALPSII Infrastructure:

Optical cavities

- High finesse optical cavities are widely used tools in experimental physics
 - GW detection, axion searches, & fundamental interactions

Optical cavity characterization with a mode-matched heterodyne sensing scheme

Aaron D. Spector * ¹ and Todd Kozlowski¹

 Allows for amplification and frequency stabilization of laser light, with precisely characterized properties

What we have:

l [m]	FSR	\mathcal{F}	Storage Time [ms],	Round Trip losses [ppm]
9	$16.29~\mathrm{MHz}$	101,300	$1.99~\mathrm{ms}$	33
19	$7.89~\mathrm{MHz}$	32,300	$1.305~\mathrm{ms}$	15.1
122.6	$1.22~\mathrm{MHz}$	$25,\!850$	$6.73~\mathrm{ms}$	142
245	$609~\mathrm{kHz}$	7065	$3.693~\mathrm{ms}$	675

Free Spectral Range

• The free spectral range of an optical cavity is defined:

$$f_{FSR} = \frac{c}{2L}$$
 , where L is the length of the cavity.

- Conduct high precision differential cavity length measurements between \hat{s} and \hat{p} polarizations resonant inside cavity
 - Extract FSR changes due to magnet induced birefringence within δf_{FSR}

Figure: Free spectral range of optical cavity shown as transmission (left) or reflection as a function of wavelength.

Three resonance heterodyne readout

Reading VMB through the lines

- 1. Lock three fields to the same optical cavity, at orthogonal polarizations: 1 \hat{p} and 2 \hat{s} fields
- 2. Read out the relative beat notes between the three fields with a 4th laser: heterodyne readout
- 3. The relative changes of the beat notes correspond to the frequency splitting due to vmb: $\Delta \nu_{\theta}$

Figure: 4 resonance readout in frequency space.

Pink: LO

20m VIMB prototype status

- Earlier this year: simultaneous locks of two fields from the same laser of orthogonal polarizations
 - Read out static birefringence of the cavity
- Now: Demonstrated 3 laser fields locked to different resonances of the same optical cavity
 - Allows for cavity length noise suppression

Whats next:

- Suppression of RAM via active or passive feedback to the EOMs in all 3 paths
- Introduce 4th laser for heterodyne readout of the beat notes
- Demonstration of sensitivity required of the metrology system for a measurement of VMB with the ALPSII magnet string

laura.roberts@aei.mpg.de laura.roberts@desy.de

