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Introduction

QCD sum rules were first invented by Shifmann, Vainstein and
Zhakarov in the 80’s.
The thecnique’s aim is to obtain analitic expressions for different
hadronic parameters.
They also have a series of advantages when compared to other
methods.
There are two types of sum rules in QCD...
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SVZ sum rules

These are specially useful when trying to obtain decay constants of
hadrons, as it is our case.

The starting point is a correlation function:

Πµν(q) = i
∫

d4xe iq·x ⟨0|T{jµ(x)jν(0)}|0⟩ = (qµqν−q2gµν)Π(q2) , (1)

Figure 1: Feynmann diagram for the SVZ sum rule



4/14

We begin by considering we are in the high-energy regime
(Q2 = −q2 ≫ ΛQCD) and using the optical theorem:

2ImΠµν(q) =
∑

n
⟨0|jµ|n⟩⟨n|jν |0⟩dτn(2π)4δ(4)(q − pn) . (2)

where n are all possible intermediate states. Let’s only take into account
a vectorial meson, like the pion.

One can use ⟨V (q)|jν |0⟩ = fV mV ϵ
(λ)∗
µ . Adding up the polarizations, the

imaginary part yields:

1
π

ImΠ(q2) = f 2
V δ(q2 −m2

v ) + ρh(q2)θ(q − sh
0 ) . (3)
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One now is to use a dispersion relation linking q2 > 0 and q2 < 0
regimes, as well as to obtain the whole correlation function and not only
its imaginary part.

We do this by integrating in the complex plane, yielding:

Π(q2) = q2f 2
V

m2
V (m2

V − q2) + q2
∫ ∞

sh
0

ds ρh(s)
s(s − q2) − Π(0) . (4)

where we substract its first Taylor series term as it is UV divergent.
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Finally, one has to perform a Borel transform, which aims to
exponentially supresses the continuous contributions.

BM2 [Π(q2)] = lim
−q2,n−→∞

(−q2)n+1

n!

(
d

dq2

)n
Π(q2) , (5)

Π(M2) = f 2
V e−m2

V /M2
+

∫ ∞

s0
h

ds ρh(s)e−s/M2
. (6)
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The first step is to explicitly calculate the correlator. For that purpose,
we make use of the OPE for the two currents inside the T-product. The
local operators are the following:

O3 = ψ̄ψ

O4 = Ga
µνGaµν

O5 = ψ̄σµν
λa

2 Gaµνψ

Oψ6 = (ψ̄Γrψ)(ψ̄Γsψ)
OG

6 = f abcGa
µνGbν

σ Gcσµ

(7)
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Adding up the perturvative part and all the contributions from the
condensates we get to the complete expression of the perturbative part
after applying the corresponding Borel transform:

Π(q2) = 1
4π2

(
1 + αs(M)

π

) ∫ ∞

0
ds e−s/M2

+ 2m⟨ψ̄ψ⟩
M2

+
⟨αs
π Gµν

a Gaµν⟩
12M2 − 112π

81
αs⟨ψ̄ψ⟩2

M4 .

(8)

The next step is then to match both sides of the correlation function,
yielding:

f 2
V e−m2

V /M2
+

∫ ∞

sh

ds ρh(s) e−s/M2
= 1

4π2

(
1 + αs(M)

π

) ∫ ∞

0
ds e−s/M2

+ 2m⟨ψ̄ψ⟩
M2 +

⟨αs
π Gµν

a Gaµν⟩
12M2

− 112π
81

αs⟨ψ̄ψ⟩2

M4 .

(9)
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Quark-hadron duality

As the last step for finally obtaining the final form of the sum rule, one
has to perform a useful as well as necessary aproximation. One must
notice that for q2 →∞, the correlation function can be approximated by
its perturbative part:∫ ∞

sh
0

dsρh(s)e−s/M2
≃ 1
π

∫ ∞

s0

dsImΠ(pert)(s)e−s/M2
. (10)

This allows us to eliminate the continuous part on the hadronic part. The
final sum rule reads:

f 2
V e−m2

V /M2
= 1

4π2

(
1 + αs(M)

π

) ∫ sh
0

0
ds e−s/M2

+ 2m⟨ψ̄ψ⟩
M2

+
⟨αs
π Gµν

a Gaµν⟩
12M2 − 112π

81
αs⟨ψ̄ψ⟩2

M4 .

(11)
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Extra. Perturbative part calculation (I)

Starting from eq. 1 we contract the operators using Wick’s
theoremand matching color indices we arrive at:

⟨0|T{jµ(x)jν(0)}|0⟩ = δijTr [γµS0(x , 0)γνS0(0, x)] . (12)

Write explicitly the propagators and integrate in d4x . Then use the
delta function to get rid of the integral in one of the momentums.
Take traces in dimension D and integrate using dimensional
regularization.

Tr
[
γµ(/p −m)γν((/p − /q)−m)

]
=D(2pµqν − gµνp2)
− D(pµqν + pνqµ − gµνp · q)
+ Dm2gµν .

(13)
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Extra. Perturbative part calculation (II)

Finally, we arrive at:

q2Π(q2) = − 12i
D − 1

∫ 1

0
dv

∫ dDp
(2π)D

(2− D)(p2 − q2v(1− v)) + Dm2

(p2 + q2v(1− v)−m2)2 .

(14)
One will need to integrate this expression and write it in the form of a
dispersion integral to arrive to the desired result.
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Extra. Perturbative part calculation (III)

Doing so, it yields:

Π(0)(q2) = q2

π

∫
ds ImΠ(0)(s)

s(s − q2) (15)

where
ImΠ(0)(s) = 1

8π v(3− v2)θ(s − 4m2) , (16)

and v =
√

1− 4m2/s. The perturvative part can also be computed up to
O(αs):

ImΠ(pert)(s) = ImΠ(0)(s)
[
1 + αsCF

(
π

2v −
v + 3

4

(
π

2 −
3

4π

))]
. (17)
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Extra. Quark condensate calculation (I)

For the quark condensate we have:

Π(ψ̄ψ)
µν (q) =i

∫
d4x e iq·x ⟨0|{ψ̄i(0)γµS ij(x , 0)γνψj(0)

+ ψ̄j(0)γνS ij(0, x)γµψi(0)}|0⟩ ,
(18)

where we can expand the spinors as

ψ(x) = ψ(0) + xρ
−→
D ρψ(0) + ... ,

ψ̄(x) = ψ̄(0) + ψ̄(0)
←−
D ρxρ + ... .

(19)

Finally one arrives at:

Π(ψ̄ψ)(q) = 2m
q4 ⟨ψ̄ψ⟩ . (20)


