SOLAR & GEO NEUTRINOS

LIVIA LUDHOVA

GSI DARMSTADT & JGU MAINZ UNIVERSITY, GERMANY

JULY 4, 2025, STRASBOURG, FRANCE SUMMER SCHOOL ON NEUTRINO PHYSICS BEYOND THE STANDARD MODEL

Mitglied der Helmholtz-Gemeinschaft

✓ W2 Professor at JGU Mainz and head of the neutrino group at GSI Darmstadt since September 2024.

- ✓ W2 Professor at RWTH Aachen and head of the neutrino group at IKP-2 FZ Jülich, Germany, November 2015 – September 2024.
- ✓ Postdoc and researcher @ INFN Milano, Italy, 2005 2015.
- ✓ Ph.D. in Physics in 2005, Fribourg University, Fribourg, Switzerland.
- ✓ Ph.D. (1999) & M.Sc. (1996) in Geology and M.Sc. in Physics (2001), Comenius University, Bratislava, Slovakia.

✓ **Geology:** evolution of metamorphic rocks in the Tatra Mts., Slovakia

✓ Exotic atoms:

- **DAΦNE/DEAR** (Kaonic hydrogen spectroscopy), INFN Frascati, Italy.
- ο **CREMA** (μp-Lamb shift), PSI, Switzerland.

✓ Neutrino Physics:

- ✓ **Borexino** @ LNGS, Italy data taking 2007 2021.
 - \circ solar neutrinos and geoneutrinos.
- ✓ JUNO in Jiangmen, China topic of today!

ABOUT ME

Passion for Physics: at the JUNO site.

Passion for Geology: Mutnovka Volcano, Kamchatka, Russia.

ABOUT MY NEUTRINO GROUP

http://neutrino.gsi.de/

- Focused on experimental neutrino physics with liquid scintillator detectors.
- Dynamic and international group established in November 2015.
- Funded from Helmholtz recruitment initiative and DFG JUNO Research Unit.
- Typically about 10 persons: 2-3 postdocs, 7-8 PhDs, 1-2 Master/Bachelors.

OUTLINE

- 1. Introduction to neutrinos
- 2. Detection of MeV neutrinos
- 3. Solar neutrinos
- 4. Geoneutrinos

Ask questions

There are no stupid questions (and if, it happened to all of us ③)

- Historical perspective
- Motivation of the measurements
- Overview of the results
- Outlook

NEUTRINOS ARE SPECIAL

<u>Small interaction cross sections → low rates in the detector!</u>

Imagine.....

7 x 10¹⁰ solar neutrinos / cm² / s

and about 200 interactions / day / 100 tons of liquid scintillator

IMPORTANCE OF RADIOPURITY

- In 100 ton of scintillator: ~200 events/day from solar v expected (200 / 86400 / 100 000 kg ~ 2 10⁻⁸ Bq/kg)
- The scattering of a neutrino on an electron is **intrinsically not distinguishable** from a β **radioactivity** event or from Compton scattering from γ **radioactivity**
- <u>Typical natural radioactivity:</u>

\checkmark Good mineral water:	~10 Bq/kg	⁴⁰ K, ²³⁸ U, ²³² Th
✓ Air:	$\sim 10 \ Bq/m^3$	²²² Rn, ³⁹ Ar, ⁸⁵ Kr
✓ Typical rock	~100 - 1000 Bq/kg	^{40}K , ^{238}U , ^{232}Th , + many others

If you want to detect solar neutrinos with liquid scintillator, you must be **<u>9-10 orders of magnitude more radio-pure than anything on Earth!</u>**

NEUTRINOS ARE SPECIAL

Only weak interactions

linked

✓ Difficult to detect

- Large detectors
- Underground laboratories
- Extreme radio-purity
- Bring unperturbed information about the source (Sun, Earth, SN)

Open questions in neutrino physics

- Mass Hierarchy
 (Normal vs Inverted)

 CP-violating phase
 Octant of θ₂₃ mixing angle
 Absolute mass-scale
 - Origin of neutrino mass (Dirac vs Majorana)
- Existence of sterile neutrino

 Δm_{31}^2 = has opposite signs in the two hierarchies!

NEUTRINO MIXING AND OSCILLATIONS

- **3 mixing angles** θ_{ij} :
 - θ_{23} H45° (which quadrant?)
 - $\circ \theta_{I3}$ H9° (non-0 value confirmed in 2012)
 - $\circ \theta_{12}$ H33°
- Majorana phases $\alpha 1$, $\alpha 2$ and CPviolating phase δ unknown

Neutrino oscillations

- Non-0 rest mass (Nobel prize 2015)
- $\circ~$ Survival probability of a certain flavour

= f(baseline L, E_v)

- Different combination (L, E_v) => sensitivity to different (θ_{ii} , Δm_{ii}^2)
- Oscillations in matter -> effective (θ_{ij} , Δm_{ij}^2) parameters = f(e⁻ density N_e, E_v)

v-oscillations in matter: MSW effect

Electrons exist in standard matter $-\mu$, τ do not. Electron neutrinos travelling in matter can experience an extra charged current interaction that other flavours cannot.

Oscillation probabilites are now function of $(\Delta m^2_M, \sin^2 2\theta_M)$ Effective oscillation parameters $(\Delta m^2_M, \theta_M)$ instead of the vacuum ones $(\Delta m^2_V, \theta_V)$

$$\Delta m_{M}^{2} = \Delta m_{V}^{2} \sqrt{\sin^{2}(2\theta) + (\cos 2\theta_{\nabla} \zeta)^{2}}$$

$$\sin^{2} 2\theta_{M} = \frac{\sin^{2} 2\theta_{V}}{\sin^{2} 2\theta + (\cos 2\theta_{\nabla} \zeta)^{2}}$$

$$\zeta = \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{V}^{2}}$$

v-oscillations in matter: MSW effect

Mixing angle determines flavors (flavor content) of eigenstates of propagation

 $\theta_{\rm m}$ depends on n_e , E

$$\Delta m_{M}^{2} = \Delta m_{V}^{2} \sqrt{\sin^{2}(2\theta) + (\cos 2\theta_{V} - \zeta)^{2}}$$
$$\sin^{2} 2\theta_{M} = \frac{\sin^{2} 2\theta_{V}}{\sin^{2} 2\theta_{V} + (\cos 2\theta_{V} - \zeta)^{2}}$$

$$\zeta = \frac{2\sqrt{2}G_F N_e E}{\Delta m_V^2}$$

 N_e = matter electron density

E= neutrino energy

Flavour content of mass eigenstates changes.

Resonance character of the MSW effect

$$\sin^{2}2\theta_{M} = \frac{\sin^{2}2\theta}{\sin^{2}2\theta_{V} + (\cos^{2}\theta_{V} - \zeta)^{2}} \qquad \zeta = \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{Vac}^{2}}$$

✓ The effect can be enhanced by a resonance
 <u>Mikheyev–Smirnov–Wolfenstein effect</u>

For solar neutrinos

 $\Delta m^2 = m_2^2 - m_1^2$ Matter effects
on solar
neutrinos,
we know $m_2 > m_1$.

There is a combination of electron density N_e and neutrino energies E, for which the effective mixing angle = 1 (even if the vacuum mixing is small)

$$\zeta = \frac{2\sqrt{2}G_F N_e E}{\Delta m^2} = \cos 2\theta_V \Rightarrow \sin^2 2\theta_M = 1$$
Maximal mixing

 ✓ This yields the energy dependence of the "survival probability": Pee(E) ∨

Adiabatic conversion in the Sun

MSW for solar neutrinos

Before reaching the Earth:

- pp neutrinos: ~15 million oscillation lengths
- ^8B neutrinos: ~900,000 oscillation lengths

Vacuum oscillation (57%): $P_{ee} = 1 - \sin^2 2 heta_{12} \sin^2 \left(rac{\Delta m_{12}^2 L}{4E_
u}
ight)$

$$in^2$$
 averages to $\frac{1}{2}$

 \sin^2 averages to $\frac{1}{2}$.

Matter enhanced oscillation (33%):

$$|\langle
u_e |
u_2
angle|^2 = \sin^2 heta_{ ext{12}}$$

Neutrino detection is special

Cosmogenic background -> underground laboratories

BASIC DETECTION INTERACTIONS

1) Charged current (CC) interaction

Inverse β decay on a proton or a nucleus ve ONLY at MeV energies

• Muon and Tau lepton too heavy

BASIC DETECTION INTERACTIONS

1) Charged current (CC) interaction

Inverse β decay on a proton or a nucleus ve ONLY at MeV energies

• Muon and Tau lepton too heavy

2) Neutral current (NC)

Elastic scattering on a nucleus

- either with the emission of a recoil neutron
- All neutrino flavors have the SAME cross section

BASIC DETECTION INTERACTIONS

1) Charged current (CC) interaction

Inverse β decay on a proton or a nucleus ve ONLY at MeV energies

• Muon and Tau lepton too heavy

2) Neutral current (NC)

Elastic scattering on a nucleus

- either with the emission of a recoil neutron
- All neutrino flavors have the SAME cross section

3) Elastic scattering off an electron

(charged current (CC) + neutral current (NC))

- Cross section for v_e and $v_{\mu,\tau}$ is different
- for $v_{\mu,\tau}$ NC only;

The secondary particles are typically detected in :

Water – Cherenkov radiation (solars)
 Liquid scintillator – scintillation light (solars and geoneutrinos)

Cherenkov cone

The geometry of the emitted photon with speed of c/n, being slower than the charged particle with speed of v = β c, results in a cone-shaped shock wave front

Momentum threshold : $(m\beta c > mc/n \text{ in the figure})$ $\beta > 1/n$ (with the n~1.34 in the water, the momentum thresholds (MeV/c) are: e : 0.57 $\mu : 118$ $\pi^{+-} : 156$ p : 1051

19

Energy threshold $\frac{E_s}{m_0 c^2} = \frac{1}{\sqrt{1-\beta_s^2}} = \frac{1}{\sqrt{1-1/n^2}}$

 m_0 : particle mass

Cherenkov angle:
$$\cos \theta_C = \frac{c/n}{\beta c} = \frac{c}{nv}$$

1) maximum angle for a particle with the speed v=c \sim 42° in the water 2) slower particle -> smaller Cherenkov angle

Cherenkov radiation in neutrino detection

Solar neutrinos

Kamiokande (past) /<u>Superkamiokand</u>e (present) /Hyperkamiokande (future) SNO (past) – Nobel Prize for solar detection!

Atmospheric and accelerator neutrinos:

Kamiokande/Superkamiokand /Hyperkamiokande

String detectors for atmospheric and Ultra High-Energy neutrinos

Ice-Cube KM3NET – ORCA & ARCA Baikal Super-Kamiokande Kamioka, Japan 50 kton water

SNO Sudbury, Canada 1 kton water

Cherenkov cone in SuperK

By reconstruction of timing & spacial pattern of Cherenkov ring, one can learn

 \rightarrow vertex position, direction,

Liquid-scintillator based detection

Scintillation based neutrino detection

Detection of ionizing radiation through the scintillation light induced in special organic liquid materials = scintillators

Important characteristics:

- High scintillation efficiency and high light yield.
- Good energy and position resolution.
- Low energy threshold.
- No directionality.
- Real time measurement (energy of single events).
- Quenching: non-linearities between energy deposit and produced light.
- Pulse shape discrimination (alpha/beta, positron/electron).
- High transparency.
- Fast pulses (short decay time of the scintillation light production).
- Refractive index similar to the glass (phototube matching).

Liquid scintillators in neutrino detection

Solar neutrinos

Borexino (ended in 2021), SNO+ (first data), JUNO – (about to start)

Geoneutrinos

```
Borexino, KamLAND (present), SNO+, JUNO
```

Reactor antineutrinos

KamLAND Daya Bay, RENO, Double Chooz (just ended) JUNO

0-ββ decay

KamLAND – Zen (present) SNO+ (present)

Sterile neutrino search with reactor antineutrinos

NEOS, Stereo, Neutrino-4, Prospect (present)

Supernovae neutrinos

LVD (past) Accelerator neutrinos LSND (past)

Solar neutrinos

Millennia of fascination continued.

THE SUN

(26.7 MeV) + 2 v

- Luminosity (3.8418.10³³ erg/s ($\pm 0.35\%$) (1 erg = 10⁻⁷ J)
- Age (~4.6.10⁹ years old meteorites)
- Mass M = $1.989 \cdot 10^{30}$ kg (± 0.02%)
- Radius R = $6.9598 \cdot 10^8 \text{m} (\pm 0.01\%)$

- Nucleosynthesis occurs only in the core.
- Neutrinos reach the Earth in ~ 8 minutes.
- Photons take order of 100,000 years to reach the photosphere.

HYDROGEN-TO-HELIUM FUSION $4p \rightarrow 4He + 2e^+ + 2\nu_e$ $Q \approx 26.7MeV$

pp-chain: ~99% solar energy

CNO-cycle: < 1% solar energy

HYDROGEN-TO-HELIUM FUSION $4p \rightarrow 4He + 2e^+ + 2\nu_e$ $Q \approx 26.7 MeV$

pp-chain: ~99% solar energy

CNO-cycle: < 1% solar energy

In stars with M > 1.3 solar mass, the CNO cycle is the dominant energy source.

That makes the CNO fusion cycle the main Hydrogen-to-Helium conversion process in the stars.

STANDARD SOLAR MODELS (SSM)

Inputs:

- Basic properties of the Sun:
 - luminosity
 - age, mass, radius
- Nuclear parameters
 - cross sections
 - Q-values...
- Radiation opacity
- Surface abundance of metals (C, N, O, Ne, Mg, Si, Ar, Fe) to hydrogen ratio (Z/X = metallicity)
- Elemental physics laws
 - Equations of state
 - Energy-transport equations
 - Conservation laws

Outputs: to be compared with independent data

- Helioseismology (sound-waves speed profiles)
- Neutrino fluxes

Metallicity influences **the solar neutrino fluxes** in two ways:

- Indirect for all neutrinos: opacity -> temperature -> cross sections -> flux
- Direct for the CNO neutrinos: influence through C, N, O catalyzing the fusion

SOLAR METALLICITY PROBLEM

B16 Standard Solar Model with different metallicity inputs: **High-Metallicity HZ-SSM:** older GS98 metallicity input: Z/X = 0.0229 **Low-Metallicity LZ SSM:** newer AGSS09 metallicity input: Z/X = 0.0178

Low metallicity inputs, based on the new spectroscopic analysis and 3D models of solar atmosphere, spoil the agreement of the **HZ-SSM (using older metallicity)** with the helio-seismological data. The **LZ-SSM** in contrast with the helio-seismological data.

31

EVOLUTION OF THE METALLICITY PREDICTIONS

1998

GS98*: high metallicity

Uses 1D hydrodynamical model of solar atmosphere

Z/X= 0.023

Helioseismology: ok *Grevesse et al.,Space Sci.Rev. **(1998**)85]

SOLAR NEUTRINOS AND WHY TO STUDY THEM

Neutrino physics

- Neutrino oscillation parameters: solar sector (θ_{12} , Δm_{12}^2) and global fits.
- Survival probability P_{ee} as f(E_v): matter effects, testing LMA-MSW prediction and its upturn.
- Searches for Non-standard Neutrino Interactions.

Solar and stellar physics

- Direct probe of **nuclear fusion**.
- Photon vs neutrino luminosity: testing thermo-dynamical stability of the Sun.
- Standard Solar Models:
 - ✓ Metallicity problem.

SOLAR NEUTRINOS FROM PP CHAIN AND CNO CYCLE

ENERGY SPECTRUM OF SOLAR NEUTRINOS

Short history of solar v experiments in 1 slide

Super/HyperK & SNO+ - first ⁸B data & JUNO in commissioning phase
FIRST DETECTION: HOMESTAKE - NOBEL 2002

- collect ~1 atom/day out of 10^{31}
- Charged current interaction, but no detection of the electron
 ve + ³⁷Cl --> e⁻ + ³⁷Ar

1 SNU (Solar Neutrino Unit) = 10^{-36} interactions on target nuclei per second

SUPER-KAMIOKANDE: START IN 1986, NOBEL IN 2002, STILL ONLINE! THE FIRST REAL-TIME SOLAR NEUTRINO DETECTION

Detection in Water

1991-2003 GALLEX-GNO @ LNGS, ITALY RADIOCHEMICAL EXPERIMENT

Charged current interaction:

 $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$

1990-2011 SAGE EXPERIMENTAL RESULTS BAKSAN, RUSSIA

Vladimir Gavrin (Russia)

Liquid metallic Ga

Total Rates: Standard Model vs. Experiment Bahcall-Serenelli 2005 [BS05(0P)]

SNO 2001: DISCOVERY OF SOLAR NEUTRINO OSCILLATIONS

- Prove that $\Phi(v_e)$ is DIFFERENT from $\Phi(v_{\mu}, v_{\tau})$.
- Prove that the TOTAL neutrino flux is consistent with the Standard Solar Model.
- Big success for SNO, neutrino oscillations, and solar model theoreticians.

Total Rates: Standard Model vs. Experiment Bahcall-Serenelli 2005 [BS05(0P)]

PRECISE MEASUREMENT OF Δm²₁₂ AND FINAL PROOF OF OSCILLATIONS (ON ANTI-NEUTRINOS FROM REACTOR!)

KamLAND, 2002

OSCILLATION PATTERN WAS SEEN! Credit: Borexino Collaboration

Precision solar neutrino detection: SINGLES

- <u>Elastic scattering</u> off electrons both in liquid scintillator (Borexino, SNO+) and water Cherenkov (SNO, Super-Kamiokande) based detectors.
- No threshold.
- All flavours (cross section for v_e ~6x higher) MEASURED RATE DEPENDS ON P_{ee.}
- Even mono-energetic neutrinos continuous spectrum with a Compton-like edge.
- Undistinguishable from normal radioactivity.

Isotropic scintillation light is produced by charged particles

Number of hit PMTs = energy estimator Hit PMTs time pattern = vertex reconstruction

BOREXINO @ LNGS, ITALY

- Data taking: 2007 2021;
- PC based LS: 280 tons;
- Depth: 3800 m.w.e.

Main goal: solar neutrinos below 2 MeV <u>Unprecedented radio-purity</u> was the key to the success of the experiment.

BOREXINO TIMELINE AND SOLAR NEUTRINO RESULTS ⁴⁸

CNO observation with the Correlated Integrated Directionalty (CID) using Cherenkov photons PRD 108 (2023) 102005

BOREXINO SOLAR RESULTS IN 1 SLIDE

CNO Phase III spectral fit

200

SN

vents

300 400 500 ^Nn 600

1000

700 800

cosmogenic ¹¹C

2000

- Total fit: p-value = 0.2

1500

Energy [keV]

 $(> 8\sigma, +18\% -12\% \text{ precision})$

external backgrounds

other backgrounds

900

2500

8B with 3 MeV threshold (8%)

High Energy Range (HER) [3.2 - 16.0 MeV]

Fit of **radial distribution** – no assumption on oscillation mechanism in solar matter. Matter effect is important at these energies.

CNO Phase I+II+III CID directional analysis

Exploiting sub-dominant Cherenkov light in LS detector!

 $N_{CN} = (C + N)/H$ in the Sun: 1st value based on neutrinos Solar metallicity: ~2 σ preference for high - Z

Comprehensive spectroscopy of pp-chain and discovery of CNO cycle solar neutrinos.

SUPERKAMIOKANDE

Higher backgrounds as expected, but 4 /4.5 MeV threshold is possible.

Water Cherenkov detector Large FV mass of 22.5 kton

> 20 years of ⁸B solar data in 4 Phases 1996 – 2018

Phase	SK-I	SK-II	SK-III	SK-IV
Period (Start)	April '96	October '02	July '06	September '08
Period (End)	July '01	October '05	August '08	May '18
Livetime [days]	1,496	791	548	2,970
ID PMTs	11,146	5,182	11,129	11,129
OD PMTs	1,885	1,885	1,885	1,885
PMT coverage [%]	40	19	40	40
Energy thr. [MeV]	4.49	6.49	3.99	3.49

Phase IV

- 90% triggering efficiency down to 2.99 MeV;
- Improved analysis techniques and clear ⁸B measurement above <u>3.5 MeV;</u>

Complete analysis of SK phases I – IV

PHYS. REV. D 109, 092001 (2024)

Since 2020: Gd loading of LS for neutron capture to observe DSNB via IBDs.

- SK-V: preparation
- SK-VI (0.01% Gd)
- SK-VII (0.03% Gd)

SUPER-KAMIOKANDE LATES RESULTS PHYS. REV. D 109, 092001 (2024)

- ⁸B flux measurement consistent among different phases total precision 2%.
- Spectrum still compatible with flat survival probability, but predicted low energy **MSW upturn is favoured at 1.2** σ . Jointly with SNO data, at 2.1 σ .
- No time variations except eccentricity and **Day/Night variation** (MSW electron flavour regeneration when crossing the Earth):

 $A_{D/N}^{SK,fit} = -0.0286 \pm 0.0085 (stat.) \pm 0.0032 (syst.).$

SUPERKAMIOKANDE: SOLAR OSCILLATIONS

PHYS. REV. D 109, 092001 (2024)

Solar best-fit value

 $\Delta m_{21}^2 = 6.10^{+0.95} - 0.81 \times 10^{-5} eV^2$

~1.5 σ away from KamLAND Previously, larger tensions.

P_{ee}: VACUUM TO MATTER TRANSITION

Transition region crucial for testing BSM ideas.

53

SNO+ IN SUDBURY, CANADA

J. Maneira. Neutrino 2024

SNO+ AND 8B SOLAR ANALYSIS

Elastic scattering (singles)

- ES interactions in 138.9 live days of scintillator data.
- Fitted oscillation parameters compatible with global fits.
- Smaller FV opens door towards < 3 MeV.

Charge current on ¹³C (coincidence)

 $\nu_{e} + {}^{13}C -$

- 1.1% isotopic abundance, but $\sigma \sim 12 \times$ higher than ES.
- Never observed 2 events indicative and compatible with expected signal.

JUNO

20 kton LS detector in China designed for NMO with reactor neutrinos

MODEL INDEPENDENT MEASUREMENT OF ⁸B SOLAR NEUTRINOS

ES: Chinese Phys. C 45 (2021) 1 ES+NC+CC: Ap. J. 965 (2024) 122

Potential to search for possible discrepancies

14

16

18

SENSITIVITY TO 7Be, pep, CNO SOLAR NEUTRINOS

ES: $v_x + e^- \rightarrow v_x + e^-$

- Several radio-purity scenarios: from the Borexino level up to the "IBD" one (minimum required for the NMO)
- JUNO has potential to improve the precision of the existing Borexino measurements
 - ⁷Be: in 1-2 years time < 2.7% (current Borexino precision) for all radiopurity scenarios
 - pep: in 1-2 years time < 17% (current Borexino precision), only in IBD scenario after more than 6 years
 - CNO: constraining pep rate is crucial, precision of 20% possible in 2 to 4 years (except for the IBD scenario)
 - constraint of ²¹⁰Bi radioactive background not needed (applied in Borexino analysis *Nature* 587 (2020) 577–582)
 - Independent measurement of ¹³N and ¹⁵O might be possible for the first time.

- Borexino (Italy): comprehensive solar neutrino spectroscopy, CNO discovery, stopped data-taking in October 2021.
- SuperKamiokande (Japan): the most precise ⁸B analysis, data taking with Gd loading ongoing, solar analysis with special analyses possible.
- **SNO+** (Canada): first ⁸B analyses, CC on ¹³C seems feasible.
- JUNO (China): 20 kton LS & comprehensive solar neutrino program. Fully filled detector in summer 2025.
- HyperKamiokande (Japan): 260 kton water, the largest solar detector, upturn & MSW test, precise D/N asymmetry, potential for *hep* discovery. Start expected in 2027.
- JINPING (China): deepest lab, 500 m³ to be filled with water and later LS (slow or loaded), data 2027.
- **DUNE, THEIA, SUPER CHOOZ –** solar also among their goals, further future.

Vulcanism

Geoneutrinos

From where is coming the energy driving these processes?

How can neutrino physics help us to understand?

Earth shines in geoneutrinos: $flux \sim 10^6 \text{ cm}^{-2} \text{ s}^{-1}$

Plate tectonics ⁶⁰ & mantle convection

https://transportgeography.org

Earthquakes

Geo-dynamo

GEONEUTRINOS AND GEOSCIENCE

Abundances (mass) of radioactive elements

Nuclear physics

 \rightarrow ²⁰⁶Pb + 8 α + 8 e⁻ + 6 anti-neutrinos + 51.7 MeV 238 ²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 e⁻ + 4 anti-neutrinos + 42.8 MeV $^{40}K \rightarrow ^{40}Ca + e^- + 1$ anti-neutrino + 1.32 MeV

Main goal:

Mantle radiogenic heat

- Mantle homogeneity
- U/Th ratio •
- Earth formation

Geoneutrino flux (signal)

Troretatir

Neutrino geoscience: a truly inter-disciplinary field!

THE EARTH TODAY

U and Th distribution

Refractory (high condensation T) & Lithophile (silicate loving)

U/Th distribution in the mantle (3 scenario)

THE EARTH'S HEAT BUDGET

(From Smithsonian National Museum of Natural History - http://www.mnh.si.edu/earth/text/5_1_4_0.html)

BULK SILICATE EARTH (BSE) MODELS

Modeling the composition of the Earth primitive mantle *Various inputs:* composition of the chondritic meteorites, composition of rock samples from the upper mantle and crust, energy needed to run the mantle convection, <u>correlations with</u> <u>the composition of the solar photosphere</u>,

silicate present-day primitive mantle = crust + mantle

PHYS. REV. D 101, 012009 (2020)

BSE model	M (U) [10 ¹⁶ kg]	M (Th) [10 ¹⁶ kg]	M (K) [10 ¹⁹ kg]	H _{rad} (U+ [⊺∨	
Cosmochemical (CC)	5 <u>+</u> 1	17 <u>+</u> 2	59 <u>+</u> 12	11.3 ± 1.6	Low Q
Geochemical (CC)	8 <u>+</u> 2	32 <u>+</u> 5	113 <u>+</u> 24	20.2 ± 3.8	Middle Q
Geodynamical (GD)	14 <u>+</u> 2	57 ± 6	142 <u>+</u> 14	33.5 <u>+</u> 3.6	High Q
"Fully radiogenic" (FR)	20 <u>+</u> 1	77 <u>+</u> 3	224 <u>+</u> 10	47 -	_ 2

- Mantle composition is inferred from the BSE models by subtracting the relativly well-known crustal composition
- Ratios of different elements, including U and Th, are much better known than their absolute abundances: mass ratio of Th/U = 3.9

65 GEONEUTRINO SIGNAL WORLDWIDE: from φ ~10⁶ cm⁻² s⁻¹ to a handful of events

Expected crustal signal: "known and big"

The signal is small, we need big detectors!

<u>Terrestrial Neutrino Unit</u> 1 TNU = 1 event / 10³² target protons / year cca 1 IBD event /1 kton /1 year, 100% detection efficiency

Expected mantle signal: super-tiny and unknown

Hypothesis of heterogeneous mantle composition **m**otivated by the observed Large Shear Velocity Provinces at the mantle base

Mantle signal is even more challenging!

GEONEUTRINO DETECTION WITH LIQUID SCINTILLATOR ⁶⁶

р

Electron antineutrino detection: delayed coincidence

- Inverse Beta Decay on proton (IBD)
- Charge current interaction mediated by W bosons
- Sensitive only to electron flavour antineutrinos
- Cross section very well known
- Generally, powerful **background suppression** tool
- Reactor neutrinos irreducible background with ~10 MeV end-point, geoneutrinos ~3.3 MeV

Energy threshold = 1.8 MeV

 σ @ few MeV: ~10⁻⁴² cm²

(~100 x more than elastic scattering on e⁻)

Geoneutrino from radioactive decay

GEONEUTRINO SPECTRAL SHAPE @ LNGS (BOREXINO SITE)

- We are able to detect geoneutrinos only from the decay chains of ²³⁸U and ²³²Th above 1.8 MeV energy.
- ⁴⁰K geoneutrinos cannot be detected.
- ²³⁸U and ²³²Th have different end points of their spectra: the key how to distinguish them.
- Effect of neutrino oscillations: for 3 MeV antineutrino, the oscillation length is ~100 km; considering the Earth's dimensions and the continuous distribution of U and Th: for the precision of the current experiments only suppression of the visible signal without spectral deformation.c

EXPERIMENTS THAT MEASURED GEONEUTRINOS

CONTINENTAL CRUST

KamLAND, Kamioka, Japan

- Main goal: reactor neutrinos
- Data taking: since 2022
- LS: 1000 tons;
- Depth: 2700 m.w.e.
- S(reactors)/S(geo) ~ 6.7 (up to 2010)
 - ~ 0.4 (from 2011 after Fukushima)

Borexino, LNGS, Italy

- Main goal: solar neutrinos: extreme radio-purity needed & achieved;
- Data taking: 2007 2021
- LS: 280 tons;
- Depth: 3800 m.w.e.
- •S(reactors)/S(geo) ~ 0.3 (2010)

SNO+ CONTINENTAL SHIELD (OLD CRUST)

- Main goal: $0\nu\beta\beta$ decay
- Data taking: since 2022
- LS: 780 tons;
- Depth: 6000 m.w.e.
- Background dominated by (α, n) and not reactors.

LATES RESULTS: SPECTRAL FIT with chondritic Th/U ratio

69

154 in total (~90 in the geonu energy window)	IBD candidates	1178 in the geoneutrino energy window
52. $6^{+9.4}_{-8.6}$ (stat) $^{+2.7}_{-2.1}$ (sys) $^{+18.3}_{-17.2}$ %	Geoneutrinos (mass Th/U fixed to 3.9)	183 ⁺²⁹ ₋₂₈ (stat + sys): ^{+15.8} _{-15.3} %
47.0 $^{+8.4}_{-7.7}$ (stat) $^{+2.4}_{-1.9}$ (sys) / (39.3 - 55.4)	Signal [TNU] / (68% CL interval)	Not provided
Shape only, reactor- v free – results compatible with prediction	Analysis with S(Th)/S(U) = 2.7 (corresponds to chondritic Th/U mass ratio of 3.9)	Rate + shape + time

LATEST RESULTS: SPECTRAL FIT with Th and U free

U: $29.0_{-12.9}^{+14.1}$ events Th: $21.4_{-9.1}^{+9.4}$ events U + Th: $50.4_{-9.2}^{+10.1}$ events

The resulting Th/U ratio is compatible with the chondritic value,

but with the achieved exposure **1.29 x 10³² proton x years,** Borexino has no sensitivity to measure the Th/U ratio.

 Due to the strong anticorrelation of U and Th components, the total geonu signal is very similar in this fit.
 But to measure the Th/U ratio, large statistics is needed.

KamLAND (Geophys. Res. Lett. 49 e2022GL099566)

 $6.39 \ge 10^{32}$ proton x year

	N of event	Osignal rejection	
U	117 ⁺⁴¹ -39	3.3σ	
Th	58 ⁺²⁵ -24	2.4σ	
U+Th	174 ⁺³¹ -29	8.3σ	

MANTLE SIGNAL: IMPORTANCE OF LOCAL GEOLOGY

Distance [km]

BOREXINO: MANTLE SIGNAL & RADIOGENIC HEAT

PRD101 (2020) 012009

Lithospheric signal: (28.8 ± 5.6) events with S(Th)/S(U) = 0.29 Mantle: S(Th)/S(U) = 0.26

Maintaining for the bulk Earth chondritic Th/U

Borexino U+Th mantle signal: +34% 30

Smantle(U+Th) [TNU] FR median 20 GD -34% 10 GC 20 10 30 Hrad (U+Th) [TW]

LOC: Coltorti et al. Geochim. Cosmoch. Acta 75 (2011) 2271. FFL: Y. Huang et al., Geoch. Geoph. Geos. 14 (2013) 2003.

Mantle events	$23.7 {}^{+10.7}_{-10.1}$
Mantle signal U + Th [TNU]	21.2 +9.6 -9.1
Mantle heat U + Th [TW]	24.6 ^{+11.1.} -10.4
Earth U + Th + K [TW]	38 . 2 ^{+13.6.} -12.7

Mantle null hypothesis rejected at 99.0% C.L.

Borexino is compatible with geological predictions but least (2.4σ) compatible with the BSE models predicting the lowest U+Th mantle abundances (CC & LowQ BSE).

+ 18% contribution of ⁴⁰K in the mantle

+ $8.1_{-1.4}^{+1.9.}$ TW from lithosphere (U+Th+K)

KAMLAND: RADIOGENIC HEAT

Geophys. Res. Lett. 49 e2022GL099566 & courtesy H. Watanabe

HighQ model is rejected at 99.76 % C.L. (homogeneous mantle) 97.9% C.L. (concentrated at CMB)

Madiogenic Heat

80

 6σ

High-C

6

Middle-O

5

Th/U free

Adding heat estimate from crust, ²³⁸U : **3.4** TW, ²³²Th : **3.6** TW

1_σ lower limit allows negative mantle signal.

BOREXINO + KAMLAND COMBINED

Bellini at al.: La rivista del Nuovo Cimento 45 (2022) 1

- Analysis assumes laterally homogeneous mantle
- Some level of disagreement between the two experiments
- Combined analysis perfectly compatible with MiddleQ BSE Models

SNO+ EXPERIMENT IN CANADA – LATEST NEWS

SNO+ can measure solar oscillation parameters with reactor neutrinos.

The first data: May 7 2025 arXiv: 2505.04469v1

SNO+ EXPERIMENT IN CANADA – LATEST NEWS

MANTLE SIGNALS COMPARISON

GEONEUTRINOS IN JUNO

Big advantage:

✓ Large volume and thus high statistics: **400 geoneutrinos / year.**

Main limitations:

- ✓ Large reactor neutrino background.
 - \checkmark Relatively shallow depth cosmogenic background.
 - Current (KamLAND and Borexino) precision on measured geoneutrino flux is ~16-18%.
- JUNO can reach this precision in a few years.
- JUNO will provide statistics sufficient to separate with a high significance U and Th.
- **Geological study of the local crust** important in order to separate the mantle contribution and it is ongoing.

Expected precision of the total geoneutrino signal: ~8% in 10 years (Th/U mass ratio fixed to 3.9)

Precision of U and Th individual components in 10 years:
 ²³²Th ~35%
 ²³⁸U ~30%
 ²³²Th + ²³⁸U ~15%
 ²³²Th/²³⁸U
 ~55%

- Borexino (Italy): stopped data-taking in October 2021 (last update till April 2019)
- KamLAND (Japan): latest update in summer 2022 more data expected to come this year.
- SNO+ (Canada): 780 ton & DAQ started & 30-40 geonus/year; Low cosmogenics; first events just detected!
- JUNO (China): 20 kton & completion this & 400 geonus/year! about to start (J. Phys. G: Nucl. Part. Phys. 43 (2016) 030401);
- JINPING (China): 5 kton; deepest lab, far away from reactors, very thick continental crust at Himalayan region; (PRD 95 (2017) 053001)
- HanoHano / Ocean Bottom Detector (Hawaii): ~10 kton movable underwater detector with ~80% mantle contribution: "THE" GEONU DETECTOR

Solar neutrinos take home message

- Importance in discovery of neutrino oscillations and neutrino mass.
- Evidence for matter effects shaping neutrino transformations.
- Detection of neutrinos from pp chain and CNO cycle, key to probing solar metallicity.
- Future: precision oscillation studies, new physics searches, deeper understanding of solar fusion and core composition.

Geoneutrinos take home message

- Measurements of geoneutrinos in general agreement with Bulk Silicate Earth (BSE) models.
- Slight tension in mantle contributions based on existing measurements.
- Key to understanding Earth's heat budget and geodynamics.
- Future: precision studies of mantle composition, radioactive element distribution, and thermal evolution of the Earth.

Thank you!