The Standard Model

Thomas Krajewski thomas.krajewski@cpt.univ-mrs.fr

Centre de Physique Théorique, Aix-Marseille Université

Summer School on Neutrino Physics Beyond the Standard Model Strasbourg, July 2025

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Overview of the Standard Model

Matter made of **quarks** and **leptons** (spin 1//2)

lepton	mass	charge	quark	mass	charge
e ⁻	0.511 MeV	-1	d	$\sim 2{ m MeV}$	-1/3
ν _e	?	0	u	$\sim 4{ m MeV}$	2/3
μ^-	105.7 MeV	-1	S	$\sim 95{ m MeV}$	-1/3
ν_e	?	0	с	$\sim~1.2{ m GeV}$	2/3
$ au^-$	1777 MeV	-1	b	$\sim 4.2{\rm GeV}$	-1/3
$\nu_{ au}$?	0	t	$\sim~173{ m GeV}$	2/3

Interactions mediated by gauge bosons

interaction	gauge boson	range	spin	remarks
electromagnetic	γ	∞	1	screened
weak	W^{\pm}, Z^0	$\lesssim 10^{-18}~{ m m}$	1	P violation
strong	gluons	confined	1	confinement
gravity	gravitons (?)	∞	2(?)	geometry

Masses generated by the **Higgs boson** (spin 0, m = 125.1 Gev)

Overview of the Standard Model

Successes of the standard model

- Consistent (unitary and renormalizable) theory
- Weak neutral currents and gauge bosons
- High energy chromodynamics
- P and CP violation
- Cancellation of chiral anomalies
- Masses generated by the Higgs scalar

Challenges to the Standard model

- Derivation of confinement and hadronic physics
- Hierarchy of masses ($m_e=0.5{
 m MeV},~m_t=173{
 m GeV}$)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Status of massive neutrinos
- Number of free parameters ≥ 18
- Fine tuning of the Higgs mass

Presentation of the course

• Lecture 1: relativistic quantum theory

Dirac equation and its symmetries coupling to the electromagnetic field introduction to QED

- Lecture 2: electroweak theory non abelian gauge theories spontaneous symmetry breaking electroweak theory
- Lecture 3: masses and mixings introduction of quarks and CKM mixing matrix neutrinos masses and PMNS mixing matrix
- Lecture 4: renormalization and effective theories renormalizable vs non renormalizable effective theories Majorana masses for neutrinos

More detailed slides with bibliography and homeworks https://amubox.univ-amu.fr/s/ZjtBDrmAcAqYXA3, $(a,b,b) \in \mathbb{R}^{3}$