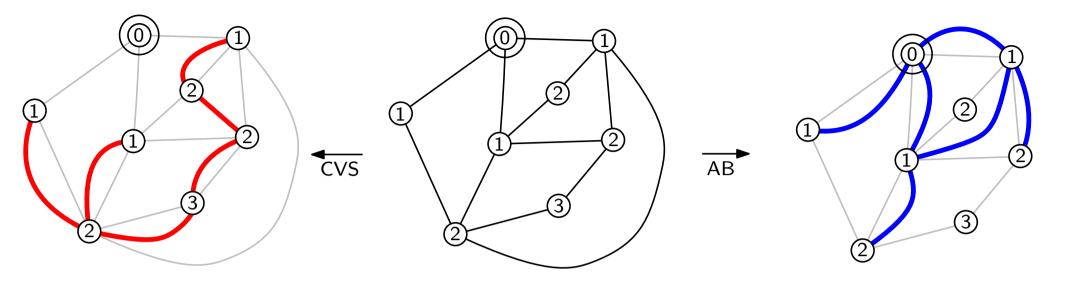
Schnyder orientations for d-irreducible maps

Éric Fusy (CNRS/LIGM, Université Gustave Eiffel) Joint work with Olivier Bernardi and Shizhe Liang

L'esprit des cartes, une conférence en l'honneur d'Emmanuel Guitter IPhT, CEA, May 15,16 2025

Journées Cartes 2013 at IPhT

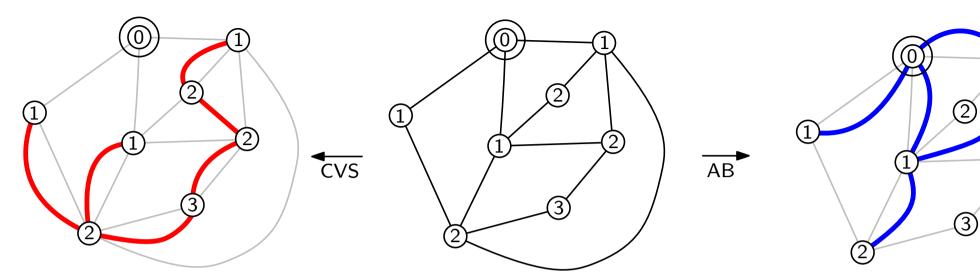
Ambjørn-Budd bijection



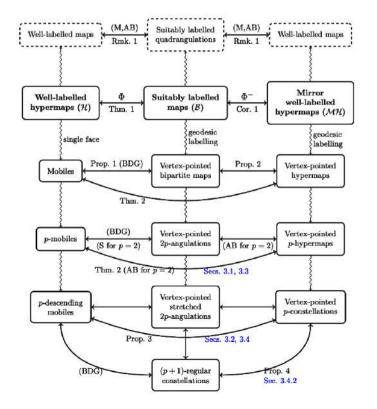
Journées Cartes 2013 at IPhT

Ambjørn-Budd bijection

2

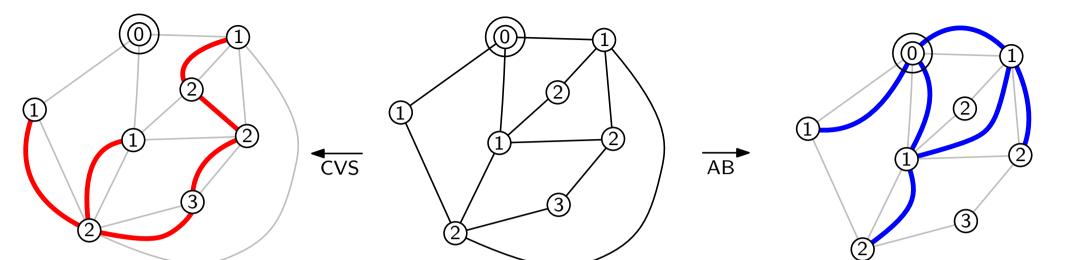


extension to the BDG setting

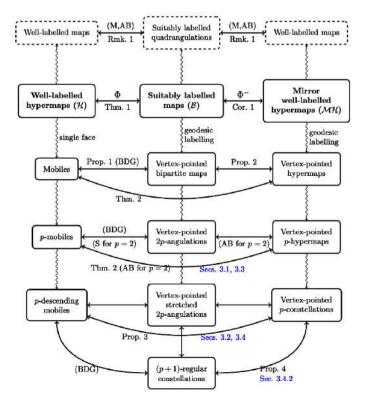


Journées Cartes 2013 at IPhT

Ambjørn-Budd bijection



extension to the BDG setting

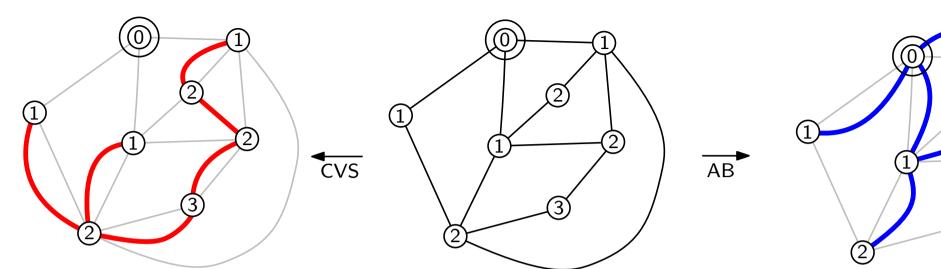


two bivariate extensions of 2-point function:

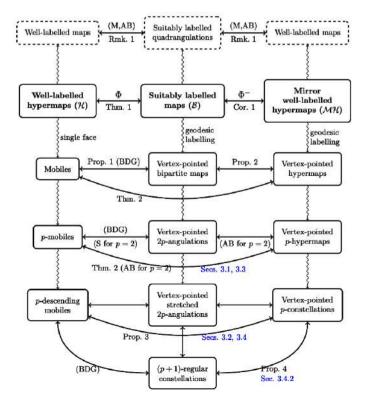
- odd labels (faces via Tutte's bijection)
- local-max labels (faces via AB)

Journées Cartes 2013 at IPhT

Ambjørn-Budd bijection



extension to the BDG setting

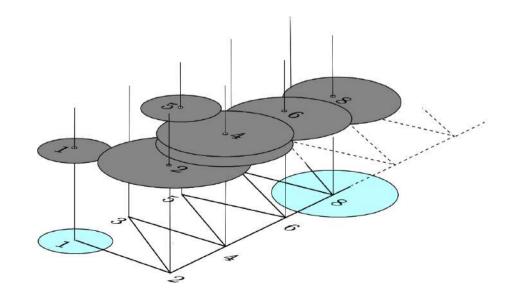


two bivariate extensions of 2-point function:

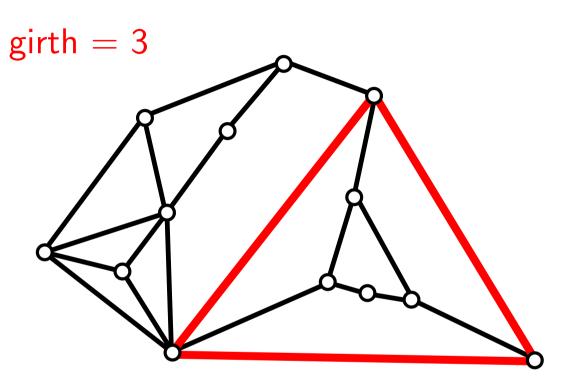
2

3

- odd labels (faces via Tutte's bijection)
- local-max labels (faces via AB)



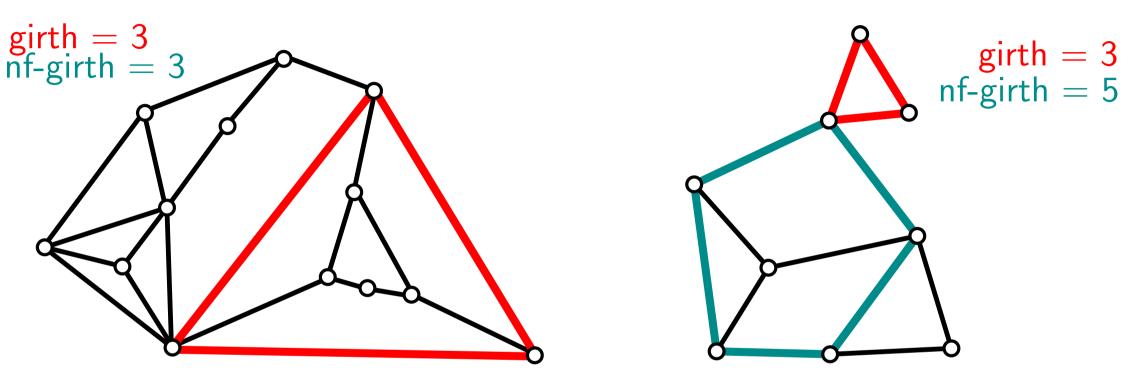
Girth parameters on maps girth = length of a shortest cycle



Rk: If girth = d then all faces have **degree at least** d

Girth parameters on maps

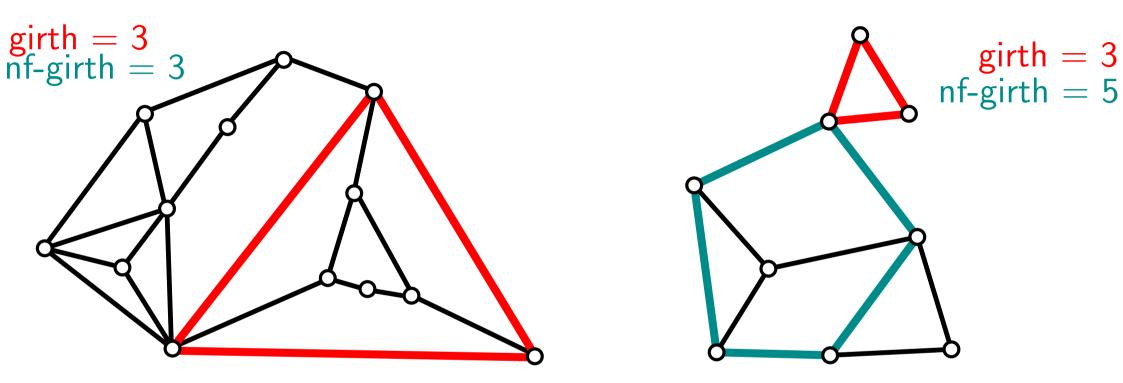
girth = length of a shortest cycle non-facial girth = length of a shortest non-facial cycle



Rk: If girth = d then all faces have **degree at least** d

Girth parameters on maps

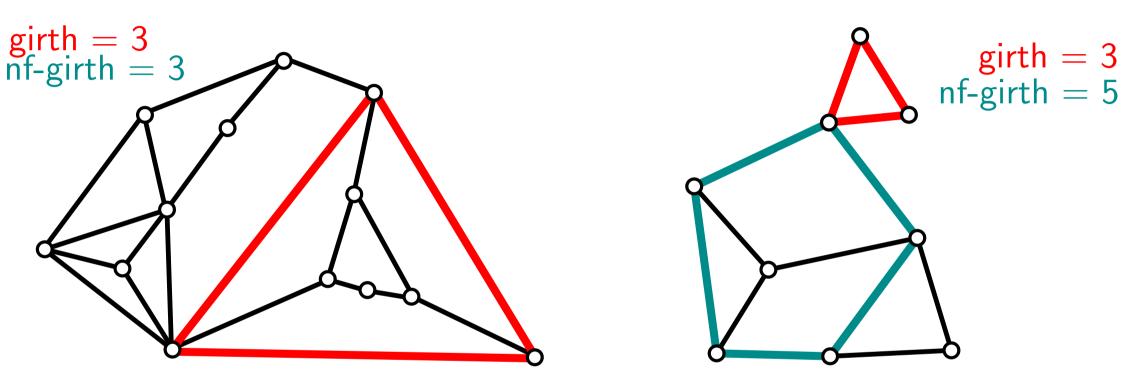
girth = length of a shortest cycle non-facial girth = length of a shortest non-facial cycle



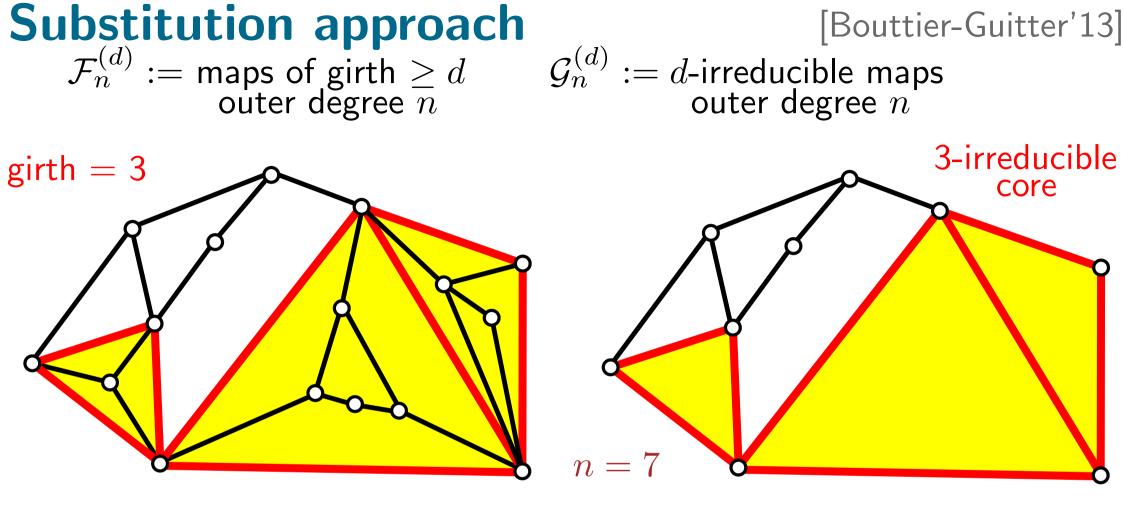
Rk: If girth = d then all faces have **degree at least** d**Def:** d-irreducible map = map such that girth $\geq d$ and nf-girth > d

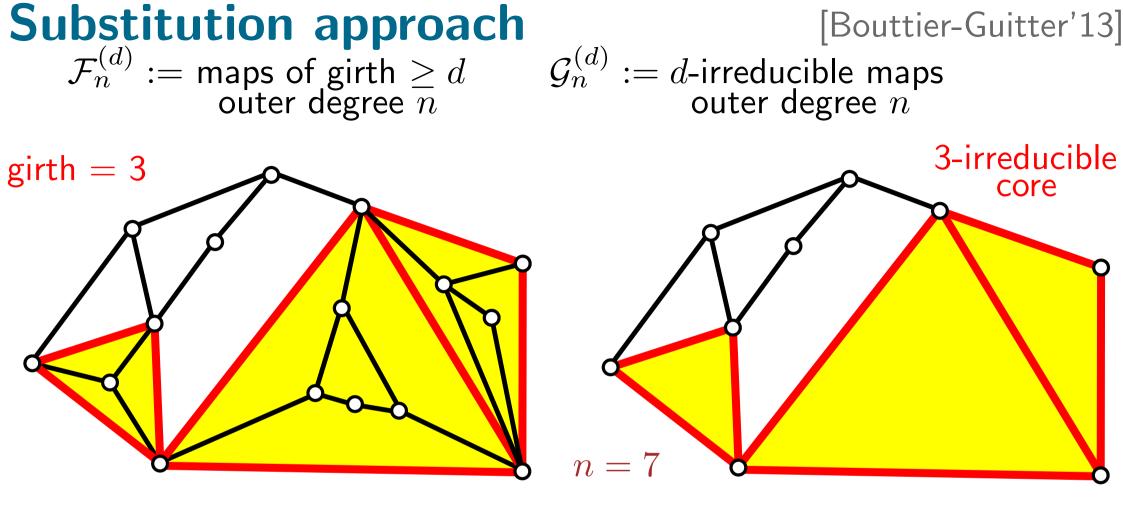
Girth parameters on maps

girth = length of a shortest cycle non-facial girth = length of a shortest non-facial cycle



Rk: If *girth* = *d* then all faces have **degree** at least *d* **Def:** *d*-irreducible map = map such that **girth** $\geq d$ and **nf-girth** > d **Rk:** letting $\mathcal{F}^{(d)} :=$ maps of girth $\geq d$ $\mathcal{G}^{(d)} := d$ -irreducible maps then $\mathcal{F}^{(d)} \supset \mathcal{G}^{(d)} \supset \mathcal{F}^{(d+1)}$





$$\begin{cases} F_n^{(d)}(x_d, x_{d+1}, \ldots) = G_n^{(d)}(X_d, x_{d+1}, \ldots) & \text{with } X_d = F_d^{(d)}(x_d, \ldots) \\ F_n^{(d+1)}(x_{d+1}, \ldots) &= G_n^{(d)}(0, x_{d+1}, \ldots) \end{cases} \end{cases}$$

 \Rightarrow can carry algebraic expressions by induction on d, starting from $F_n^{(1)}$

Counting maps by girth and face-degrees

• Substitution method

[Bouttier-Guitter'13]

metric irreducible maps: [Budd'22] [Budd-Castro'25]

• Slice decomposition

[Bouttier-Guitter'13] [Bouttier-Guitter-Manet'24]

related problem: maps with tight boundaries [Bouttier-Guitter-Miermont'22]

• Bijections with families of trees via orientations [Bernardi-F'12] [Albenque-Poulalhon'15] [Bernardi-F-Liang'23]

Counting maps by girth and face-degrees

• Substitution method

[Bouttier-Guitter'13]

metric irreducible maps: [Budd'22] [Budd-Castro'25]

Slice decomposition

[Bouttier-Guitter'13] [Bouttier-Guitter-Manet'24]

related problem: maps with tight boundaries [Bouttier-Guitter-Miermont'22]

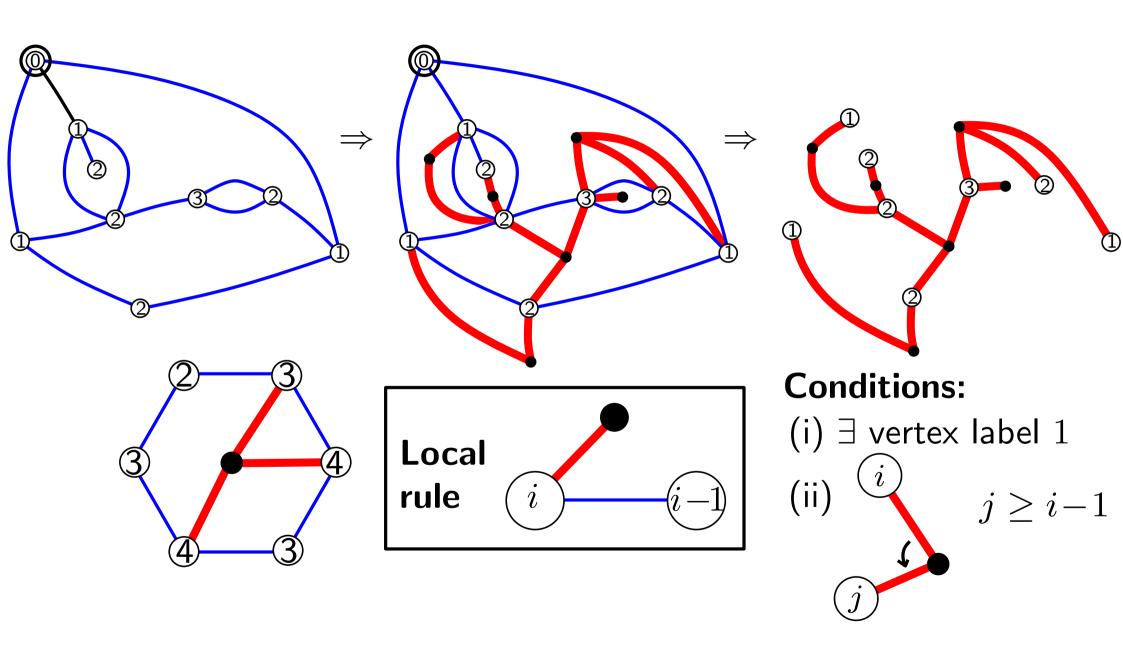
Bijections with families of trees via orientations
 [Bernardi-F'12] [Albenque-Poulalhon'15] [Bernardi-F-Liang'23]

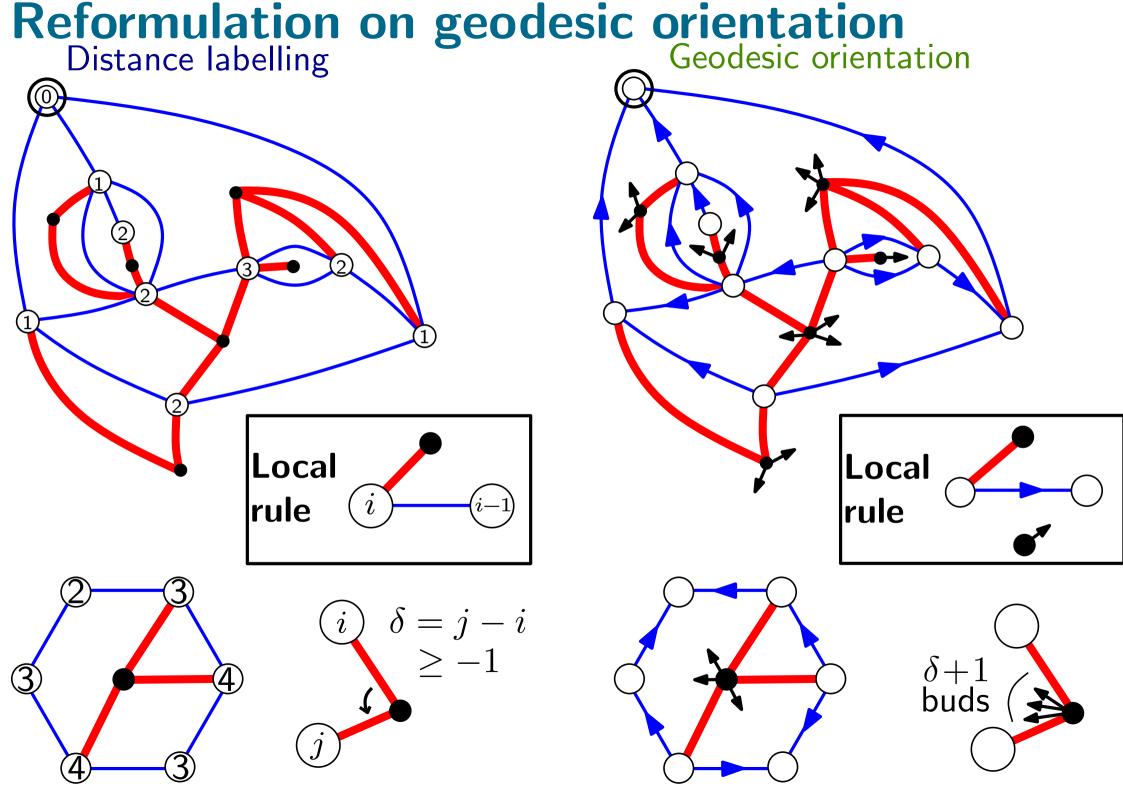
Bijections for *d***-angulations of girth** *d* **via orientations**

BDG bijection

[Bouttier-Di Francesco-Guitter'04]

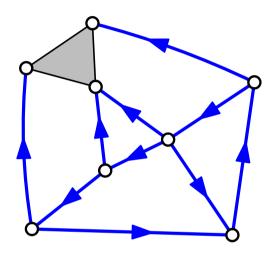
extends Cori-Vauquelin-Schaeffer bijection





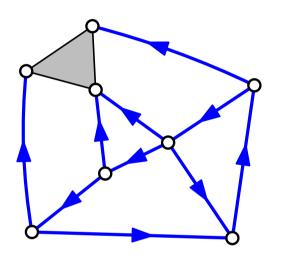
Extension to minimal sink-orientations

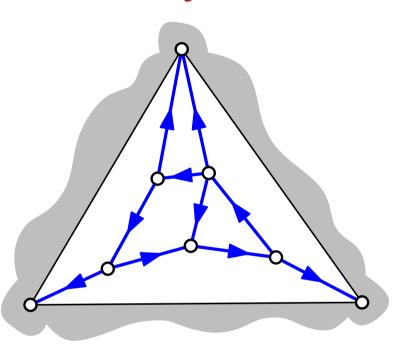
sink-orientation : d-gonal sink $(d \ge 0)$, accessible (all vertices can reach sink) minimal : no clockwise cycle



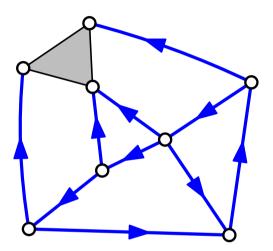
Extension to minimal sink-orientations

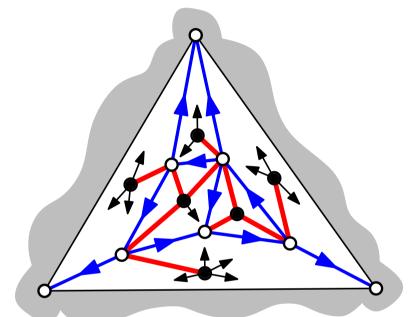
sink-orientation : d-gonal sink $(d \ge 0)$, accessible (all vertices can reach sink) minimal : no clockwise cycle

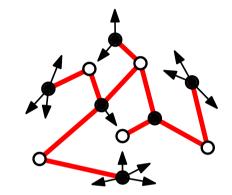


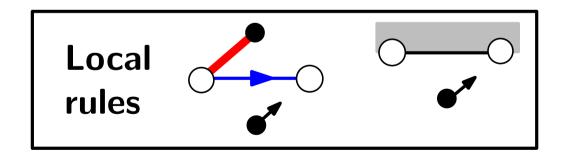


Extension to minimal sink-orientations sink-orientation : d-gonal sink $(d \ge 0)$, accessible (all vertices can reach sink) **minimal** : **no clockwise cycle**

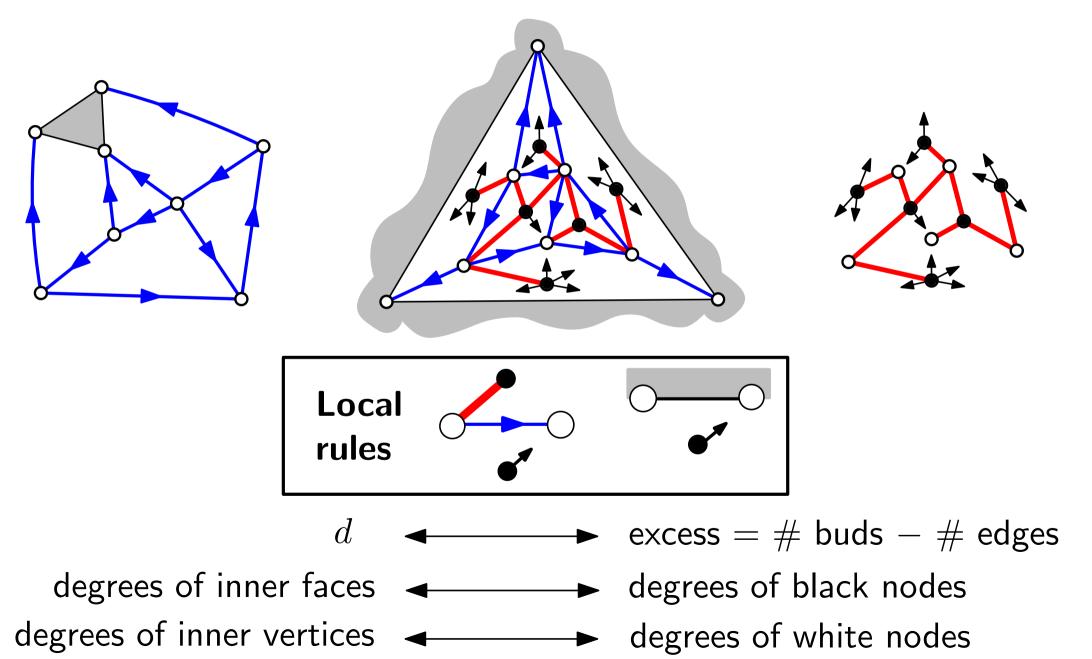




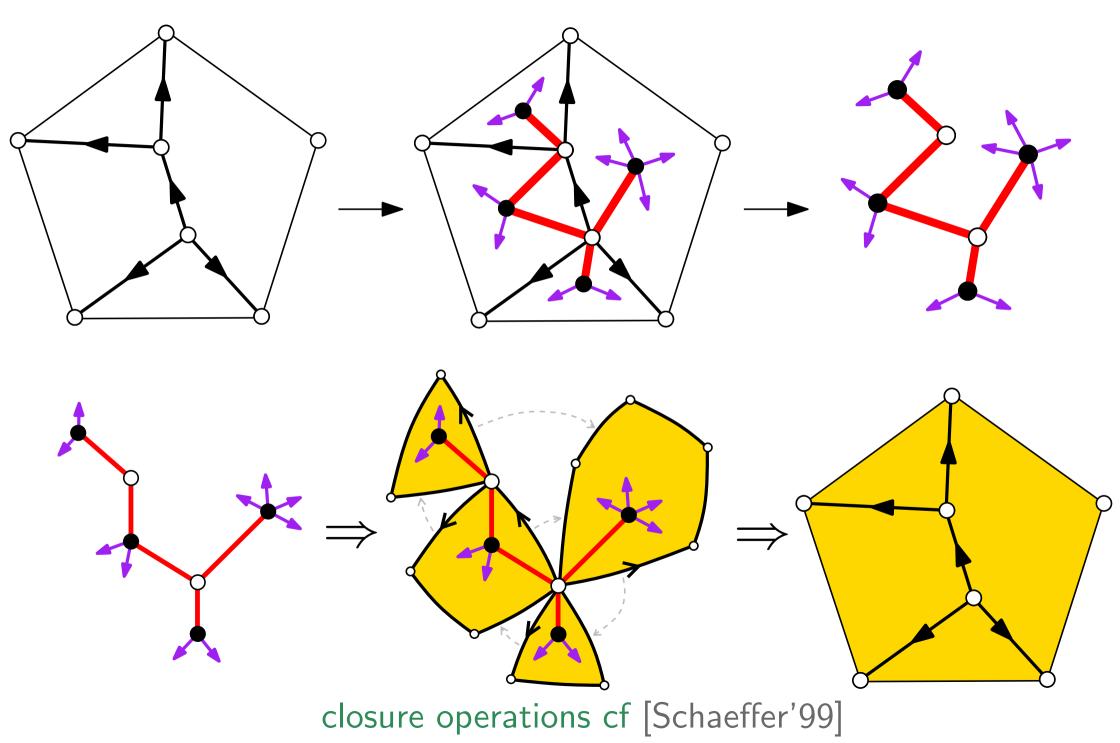




Extension to minimal sink-orientations sink-orientation : d-gonal sink $(d \ge 0)$, accessible (all vertices can reach sink) **minimal** : **no clockwise cycle**



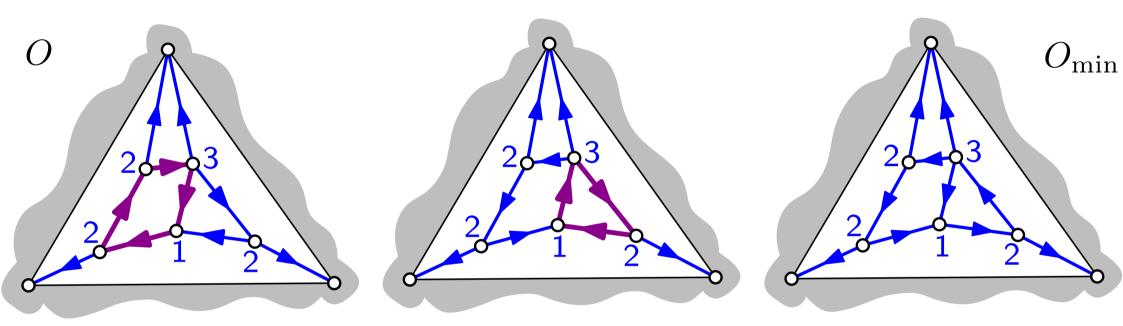
Inverse bijection



Minimizing a sink-orientation

[Propp'93], [Felsner'04]

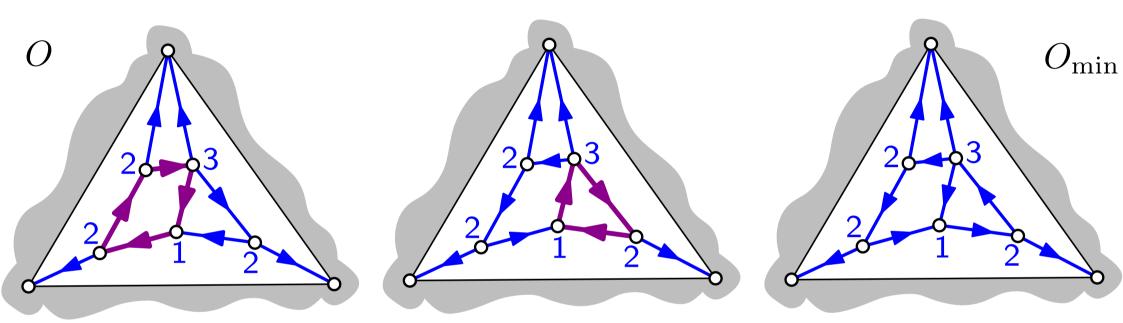
For O a sink-orientation, there is a unique minimal sink-orientation O_{\min} with same vertex outdegrees



Minimizing a sink-orientation

[Propp'93], [Felsner'04]

For O a sink-orientation, there is a unique minimal sink-orientation O_{\min} with same vertex outdegrees



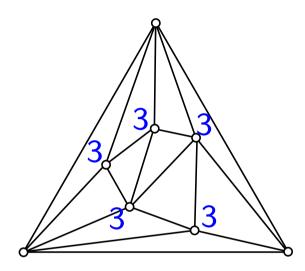
Edges to be returned on O can be obtained from a dual distance-labeling [Khuller, Naor, Klein'93]

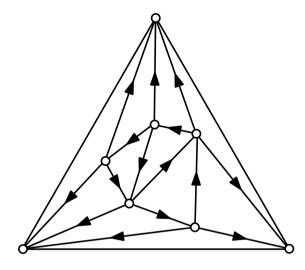
$$\ell(f) \stackrel{\text{travel-cost}=1}{\underset{\text{travel-cost}=0}{\overset{\text{travel-cost}=1}{\overset{\text{travel-cost}=0}{\overset{\text{trave-cost}=0}{\overset$$

Sink-orientations for simple triangulations

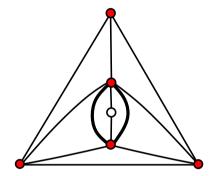
3-orientation = sink-orientation where inner vertices have outdegree 3 [Schnyder'89] every simple triangulation admits a 3-orientation

(can be computed in linear time from vertex-shelling [Brehm'00])





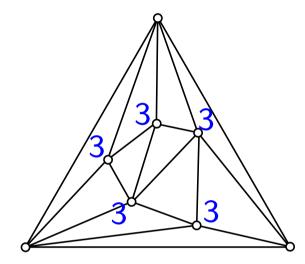
Rk: triangulation needs to be simple

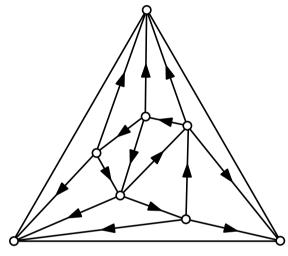


Sink-orientations for simple triangulations

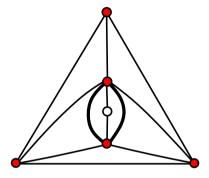
3-orientation = sink-orientation where inner vertices have outdegree 3 [Schnyder'89] every simple triangulation admits a 3-orientation

(can be computed in linear time from vertex-shelling [Brehm'00])



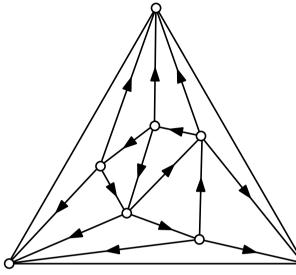


Rk: triangulation needs to be simple

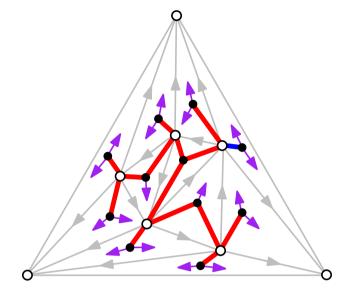


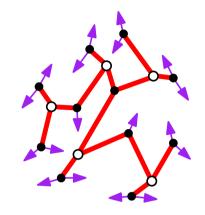
originally applied to straight-line drawing [Schnyder'90] v_R $A = \frac{4}{9}v_R + \frac{2}{9}v_B + \frac{3}{9}v_G$ v_G v_B v_G v_B v_B

Bijection for simple triangulations



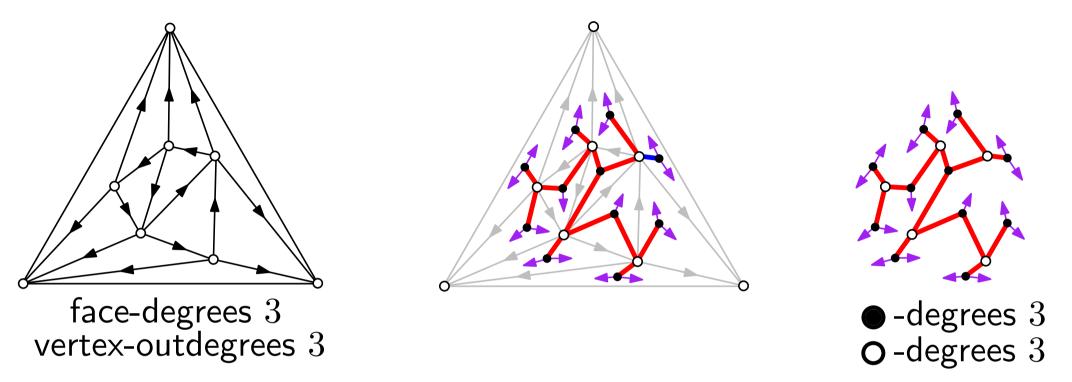
face-degrees 3 vertex-outdegrees 3





degrees 3degrees 3

Bijection for simple triangulations



recover [F, Poulalhon, Schaeffer'08] different bijection in [Poulalhon, Schaeffer'03]

give bijective proofs for # rooted simple triangulations with n + 3 vertices = $\frac{2}{n(n+1)} \binom{4n+1}{n-1}$ [Tutte'62]

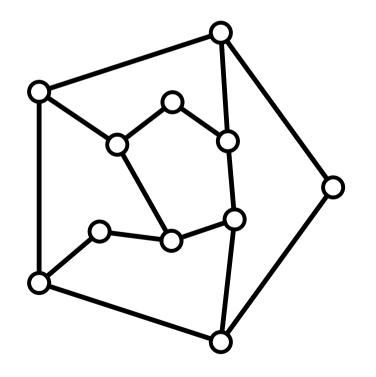
Sink-orientations for *d*-angulations of girth *d*

Fact: A *d*-angulation satisfies

$$\frac{\#\text{inner edges}}{\#\text{inner vertices}} = \frac{d}{d-2}$$

Natural candidate for outdegree function:

 $\alpha: v \mapsto \frac{d}{d-2}$ for each internal vertex v...

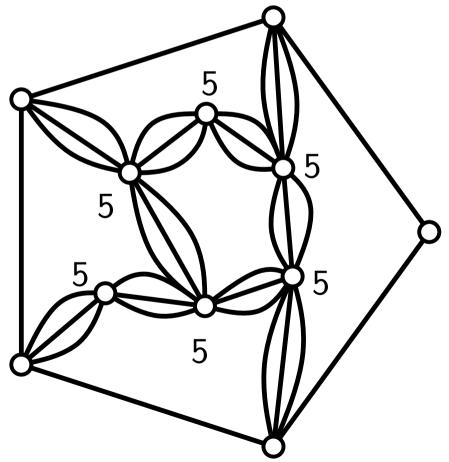


Sink-orientations for *d***-angulations of girth** *d*

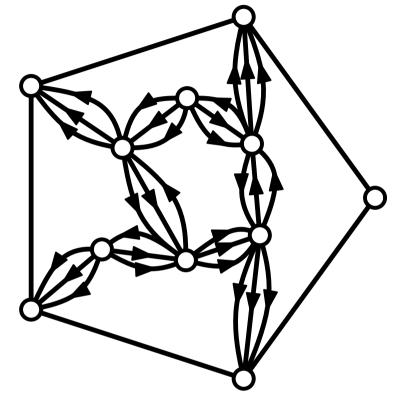
Fact: A *d*-angulation satisfies $\frac{\#\text{inner edges}}{\#\text{inner vertices}} = \frac{d}{d-2}$

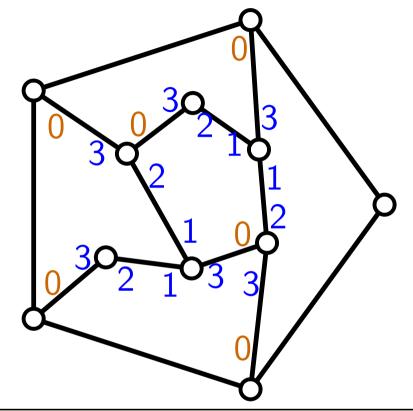
Idea: look for an orientation of (d-2)G with outdegree function $\alpha: v \mapsto d$ for each internal vertex v.

call d/(d-2)-orientation such an orientation



Sink-orientations for *d***-angulations of girth** *d* [Bernardi-F'10]: Let *G* be a *d*-angulation. Then *G* admits a d/(d-2)- orientation if and only if *G* has girth *d*.

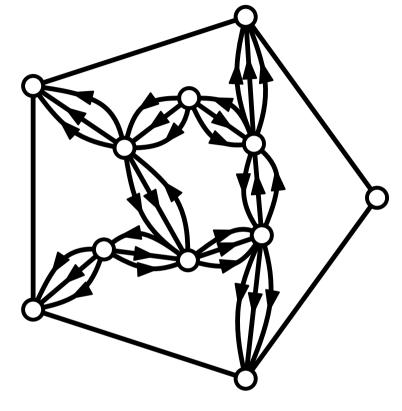


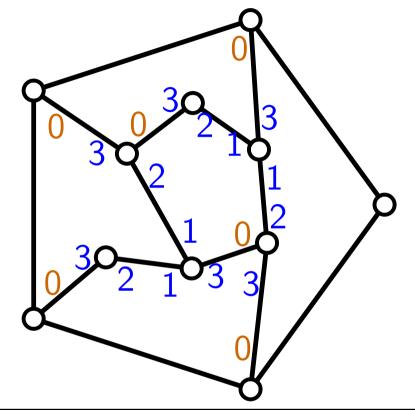


flow-formulation inner edges: total flow = d-2 inner vertices: total outflow = d

d = 5

Sink-orientations for *d***-angulations of girth** *d* [Bernardi-F'10]: Let *G* be a *d*-angulation. Then *G* admits a d/(d-2)- orientation if and only if *G* has girth *d*.

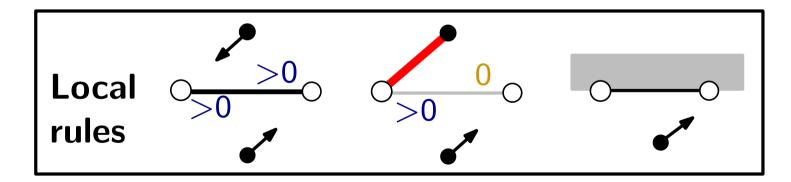




flow-formulation inner edges: total flow = d-2 inner vertices: total outflow = d

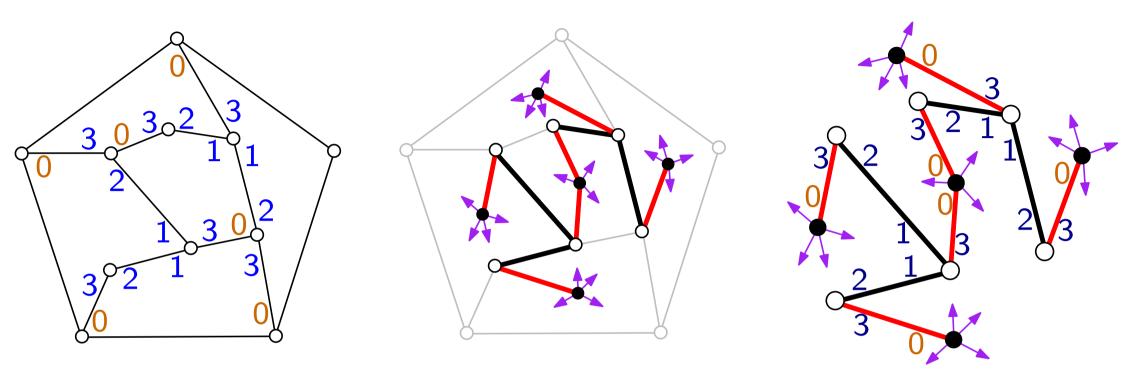
Proof: General existence criterion (cf Hall's marriage theorem) & every map G = (V, E) of girth $\geq d$ satisfies $(d-2)|E| \leq d|V| - 2d$

d = 5



degrees of inner faces
 total flows at inner vertices
 total flows at inner edges
 total weights at edges

Specialization to *d***-angulations of girth** *d*



Bijection *d*-angulations of girth $d \leftrightarrow$ weighted mobiles such that

- each \bullet has degree d
- each \circ has total weight d
- each edge has total weight d 2 (weight> 0 at \circ , weight=0 at \bullet)

 \Rightarrow generating function expressed in terms of algebraic system

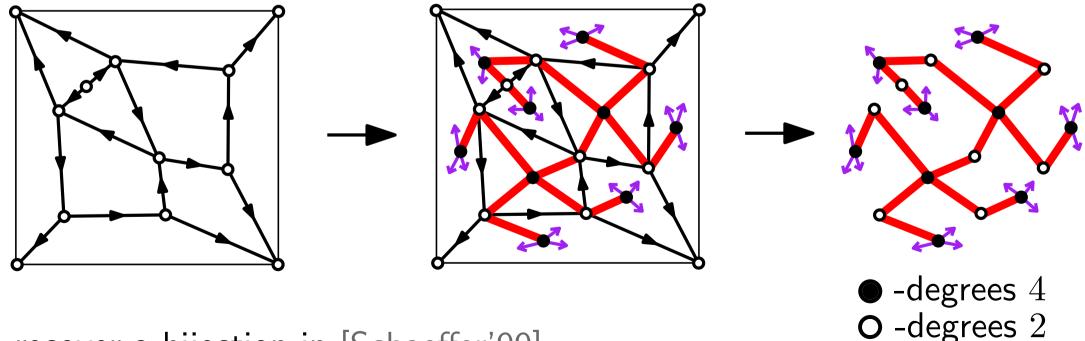
[Albenque, Poulalhon'13]: other bijection with weighted blossoming trees

Simplification in the bipartite case

• For
$$d$$
 even, $d = 2b$, we have $\frac{d}{d-2} = \frac{b}{b-1}$

- Can work with b/(b-1)-orientations:
 - edges have weight b-1
 - vertices have indegree \boldsymbol{b}

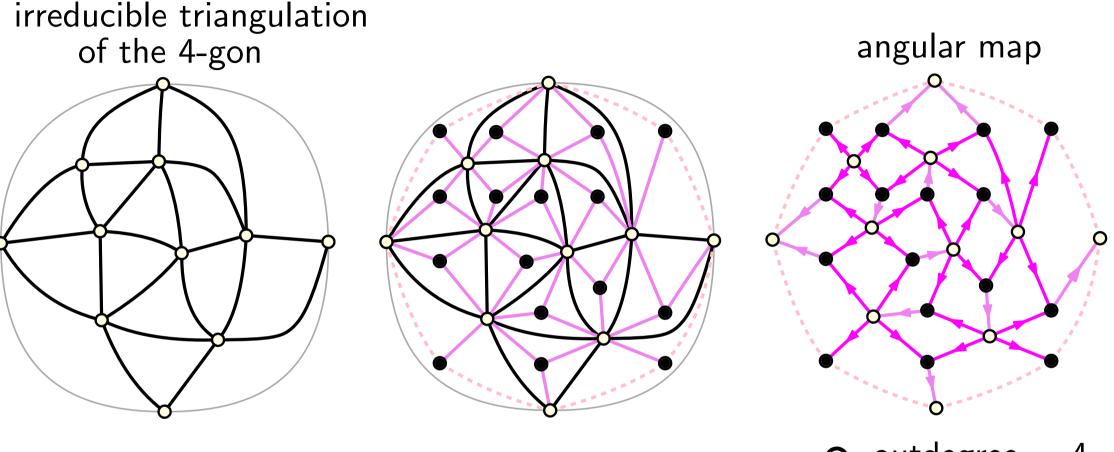
Example: b = 2, simple quadrangulations



recover a bijection in [Schaeffer'99]

Orientations for irreducible *d*-angulations

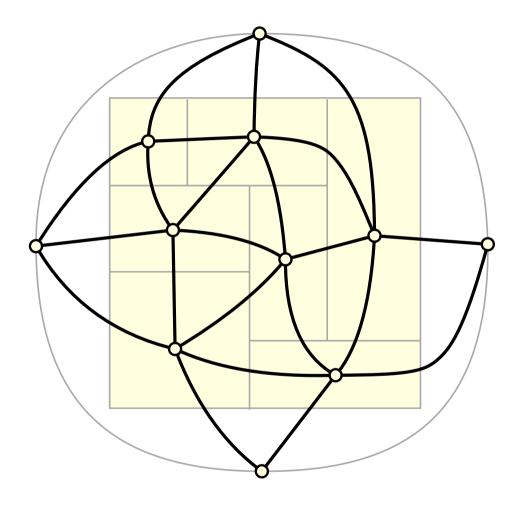
Sink-orientations for irreducible triangulations [F'07]

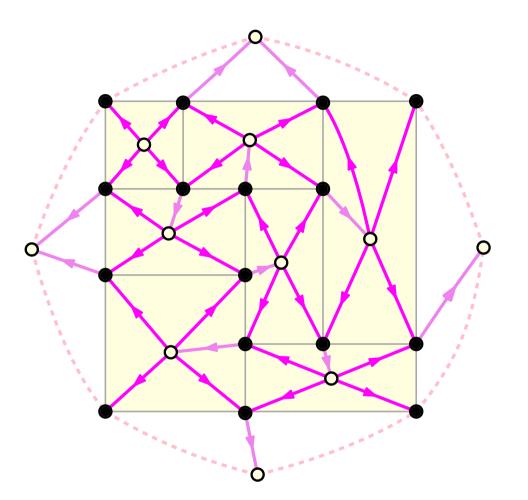


- **O** outdegree = 4
- outdegree = 1

Sink-orientations for irreducible triangulations [F'07]

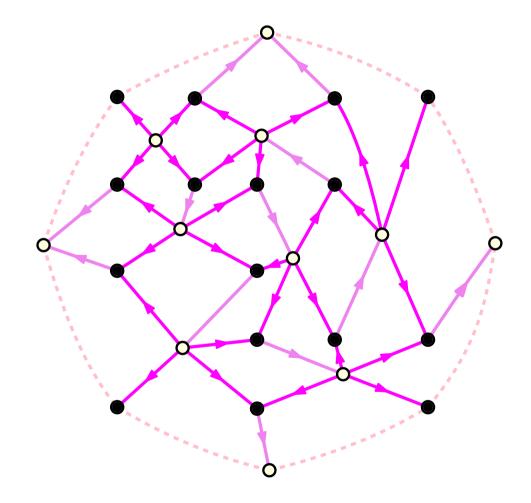
cf duality with rectangulations [He'93]



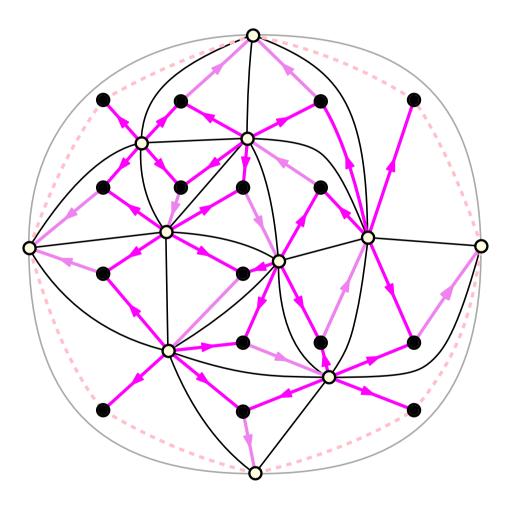


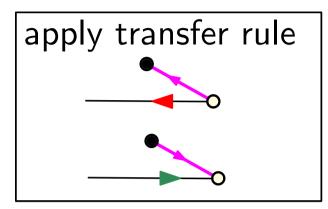
outdegree = 4
outdegree = 1

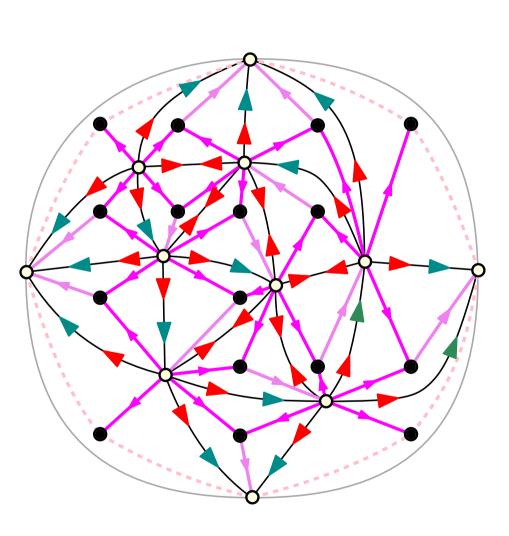
start from minimal angular orientation



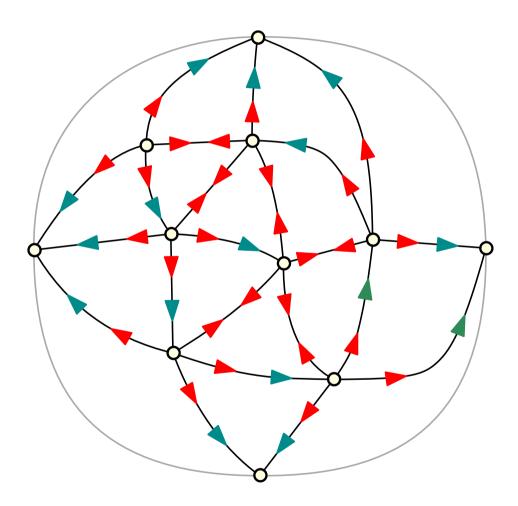
superimpose triangulation

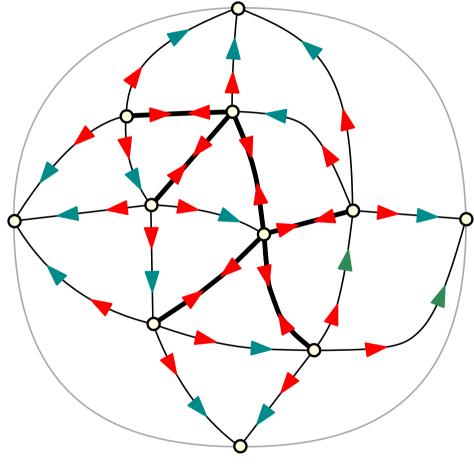






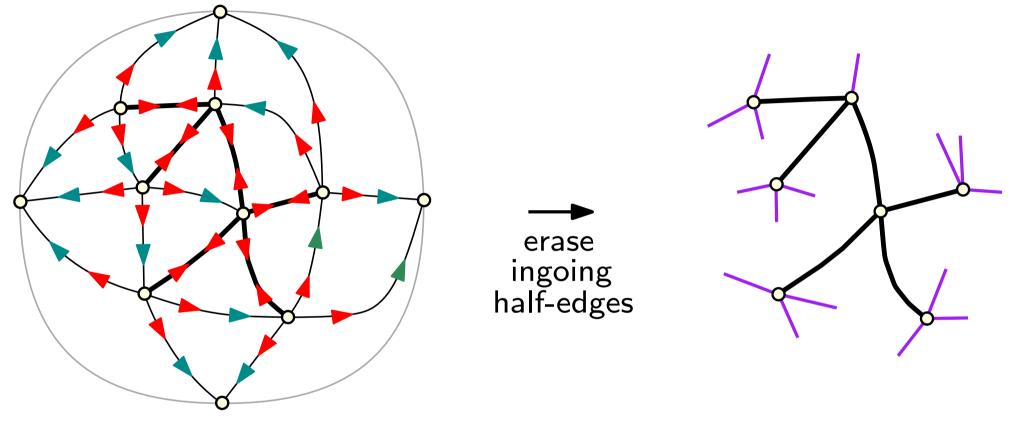
erase angular map





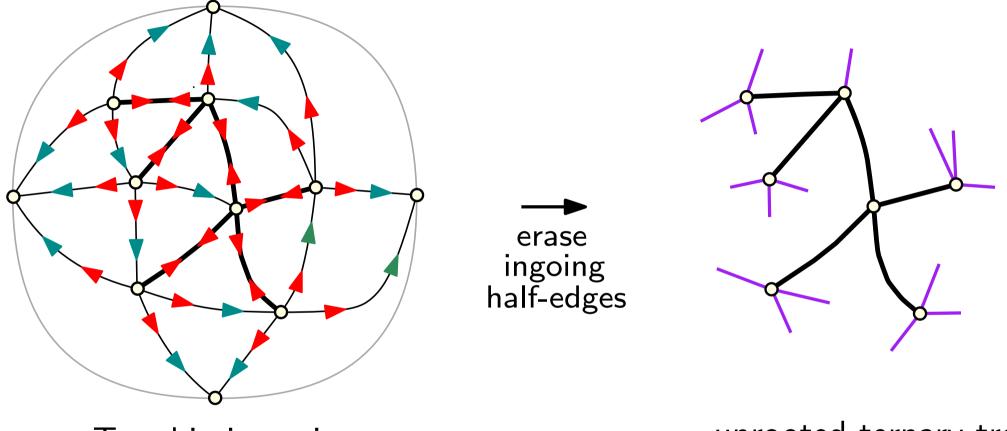
[F'07]

Bi-directed edges form spanning tree



Tree-biorientation

unrooted ternary tree

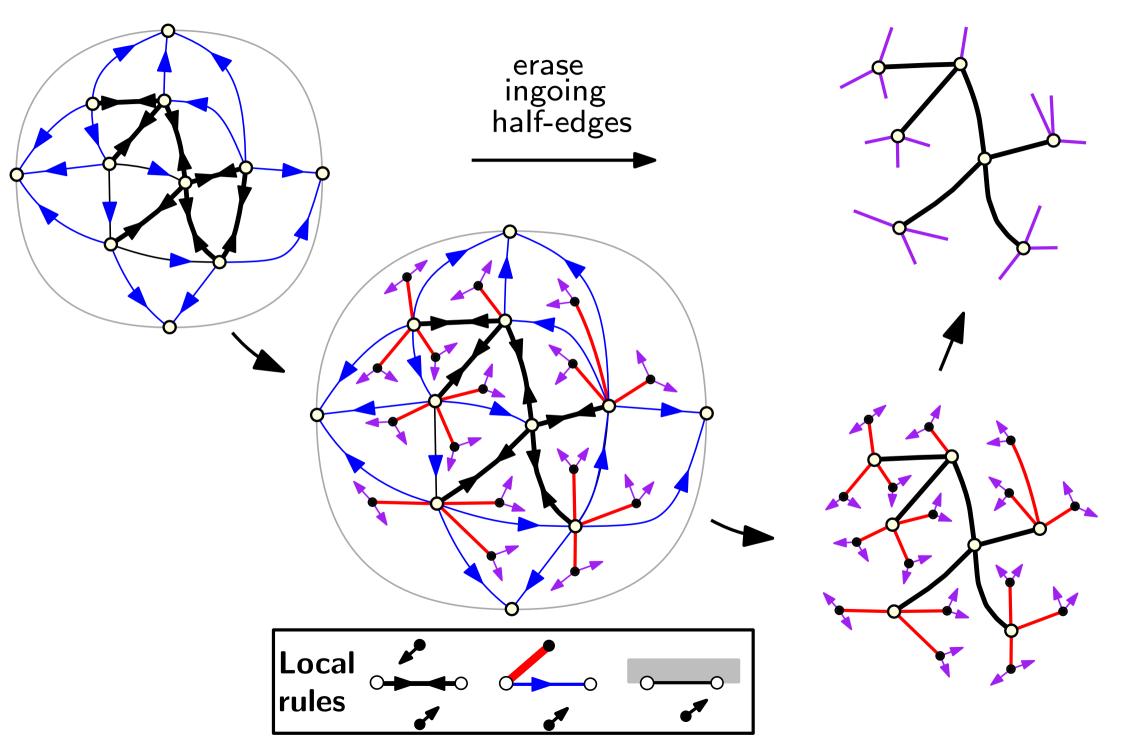


Tree-biorientation

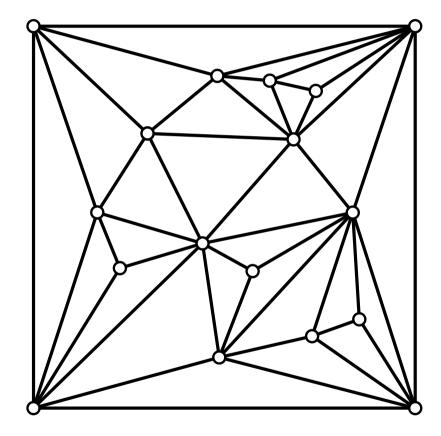
unrooted ternary tree

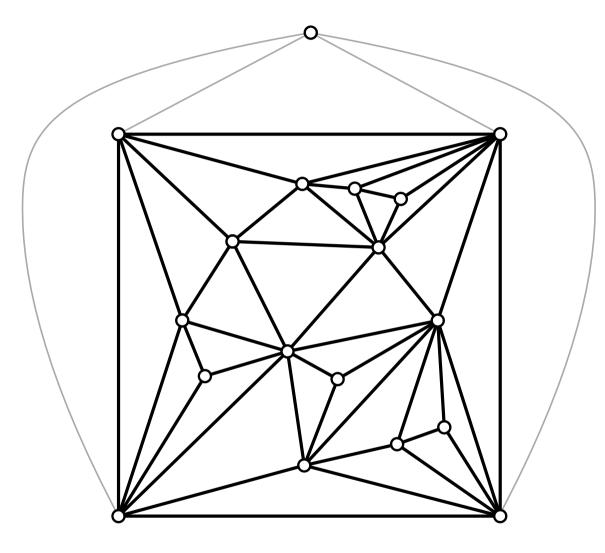
F'07]

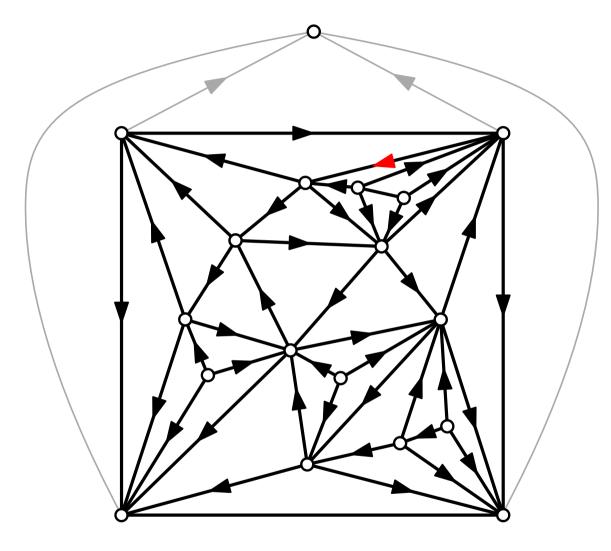
similar bijection for irreducible quadrangulations (of the 6-gon) with unrooted binary trees [F-Poulalhon-Schaeffer'05]

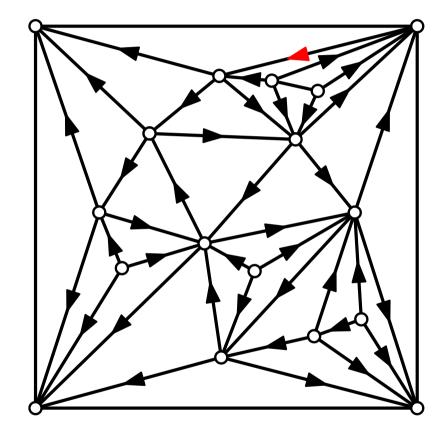


T a simple triangulation of the 4-gon

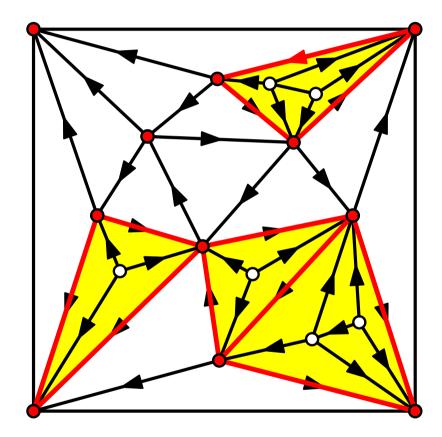






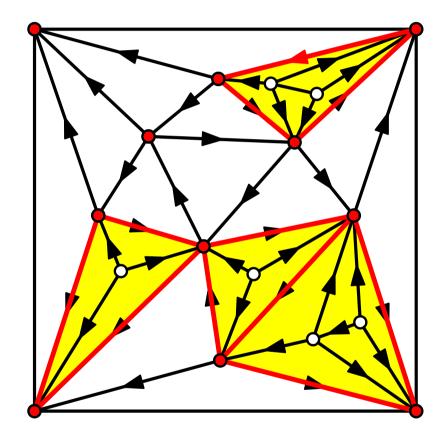


3-orientation of \boldsymbol{T}



3-orientation of \boldsymbol{T}

Vertices that can be reached from the outer 4-gon are those of the irreducible core

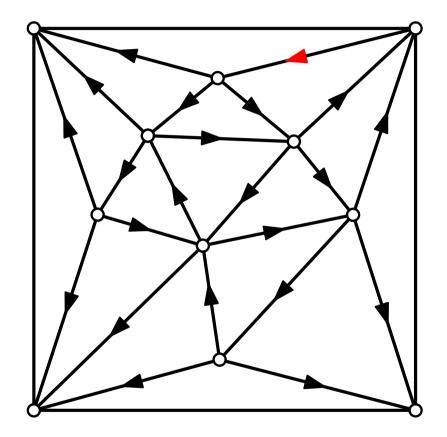


3-orientation of \boldsymbol{T}

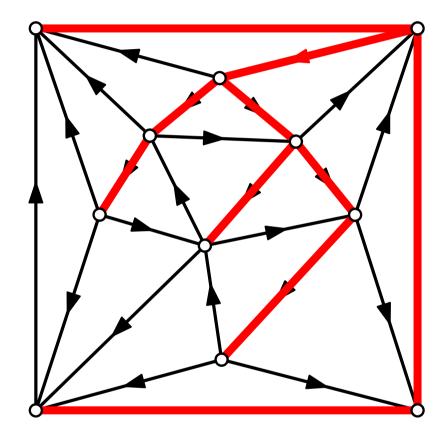
Vertices that can be reached from the outer 4-gon are those of the irreducible core

 \Rightarrow T is irreducible iff 3-orientation is **co-accessible**

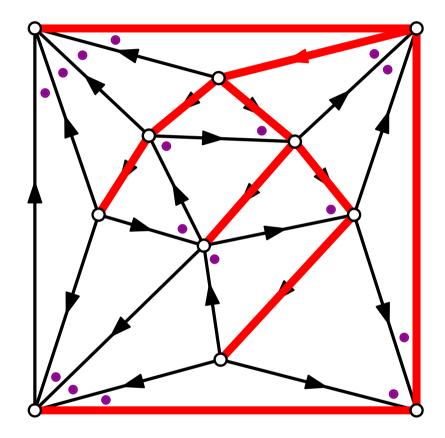
T an irreducible triangulation of the 4-gon endowed with a 3-orientation



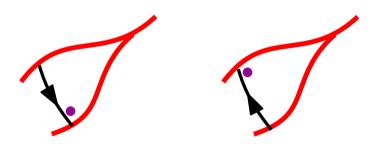
T an irreducible triangulation of the 4-gon endowed with a 3-orientation Fix a **co-accessibility** spanning tree



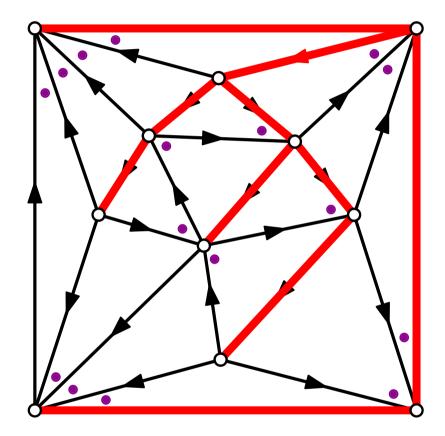
T an irreducible triangulation of the 4-gon endowed with a 3-orientation Fix a **co-accessibility** spanning tree



mark a corner for each external edge



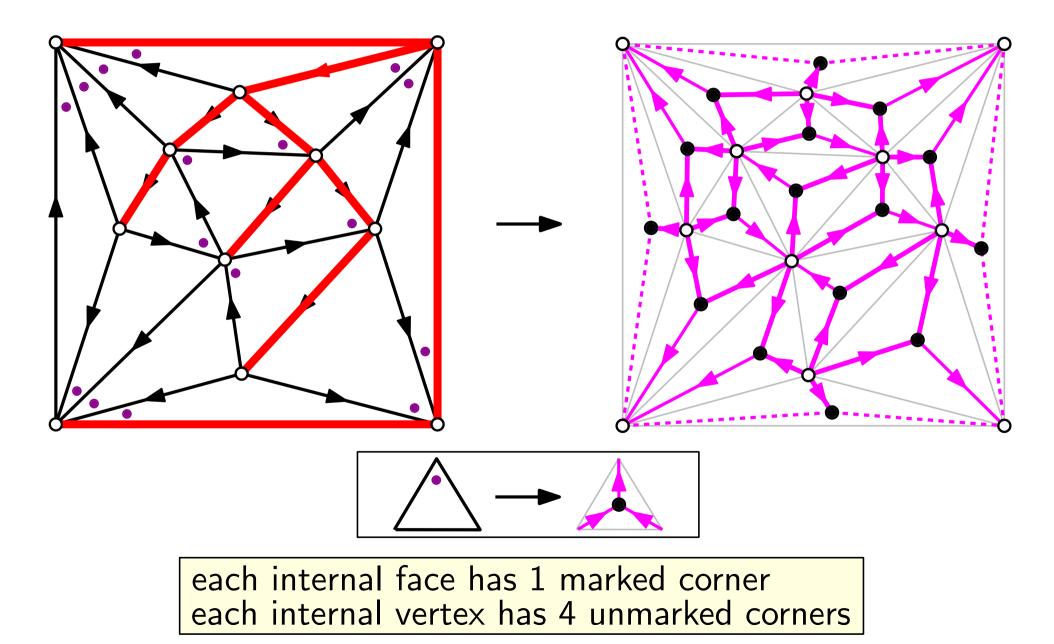
T an irreducible triangulation of the 4-gon endowed with a 3-orientation Fix a **co-accessibility** spanning tree



mark a corner for each external edge

each internal face has 1 marked corner each internal vertex has 4 unmarked corners

T an irreducible triangulation of the 4-gon endowed with a 3-orientation Fix a **co-accessibility** spanning tree

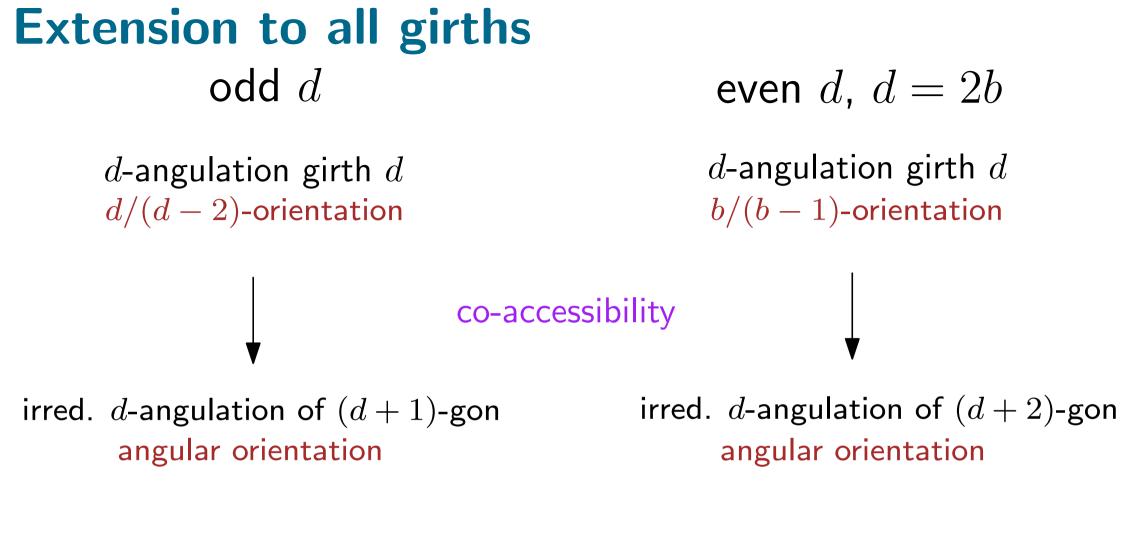


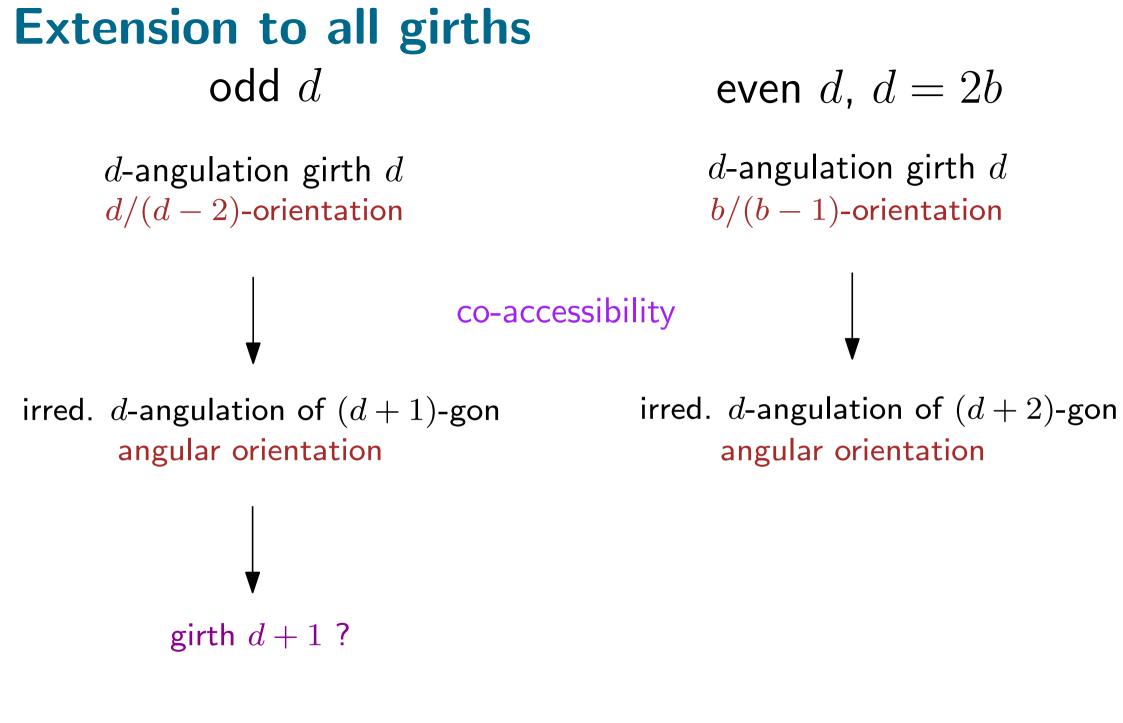
Extension to all girths odd d

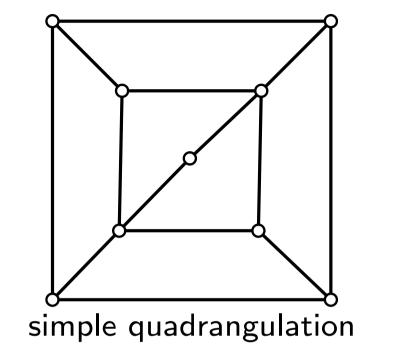
d-angulation girth dd/(d-2)-orientation

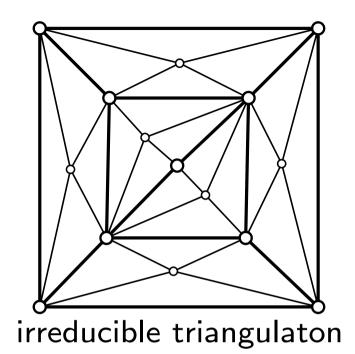
co-accessibility

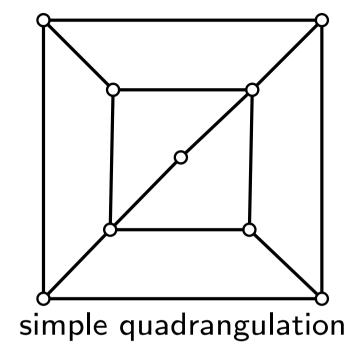
irred. d-angulation of (d + 1)-gon angular orientation

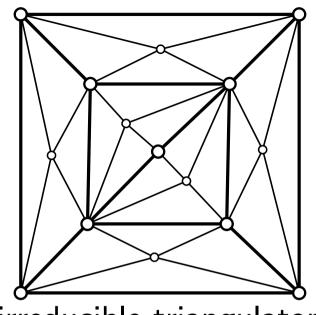




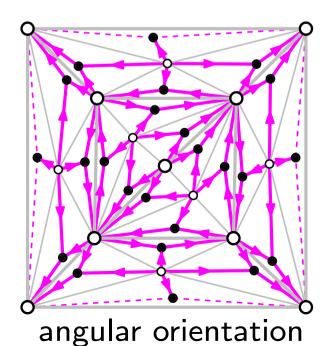


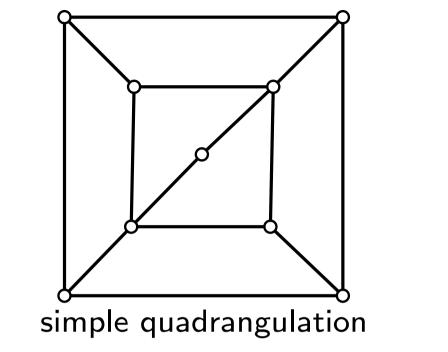


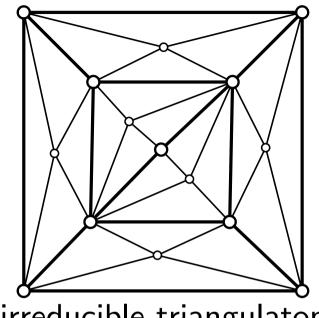




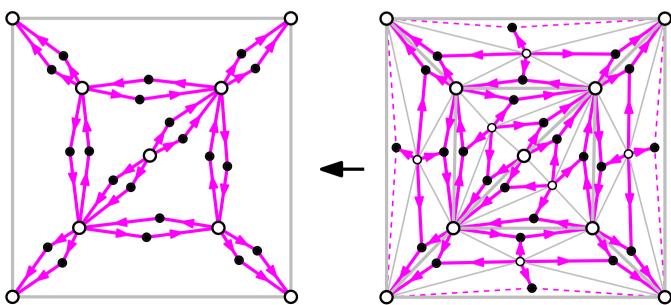
irreducible triangulaton



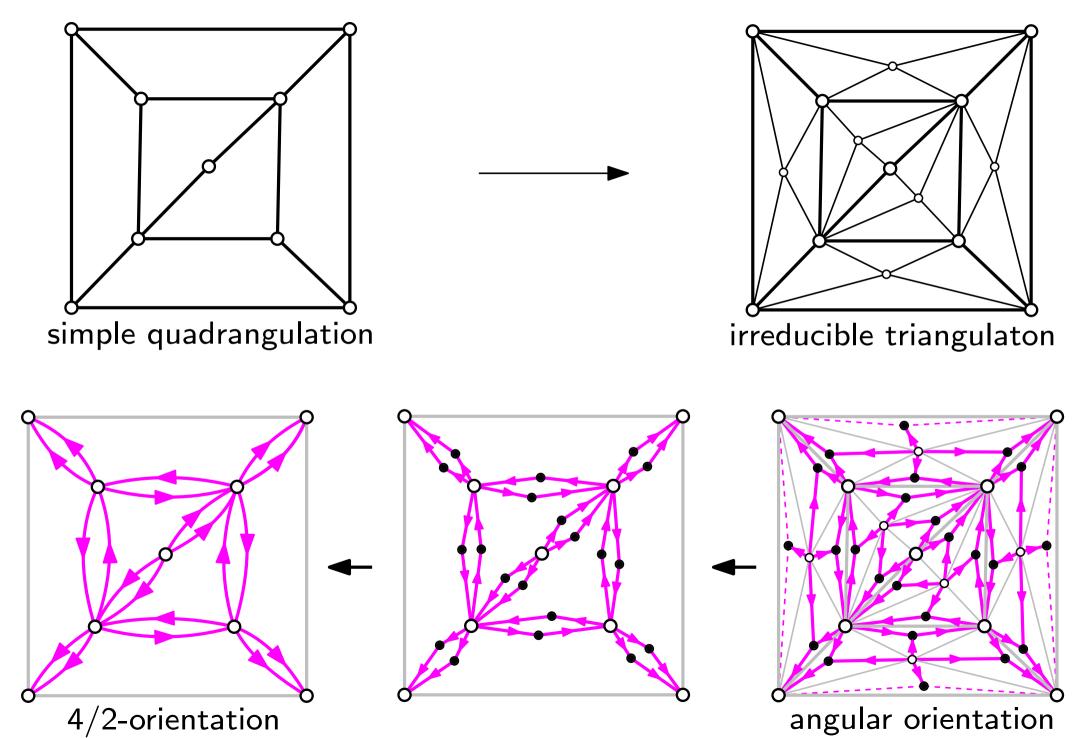


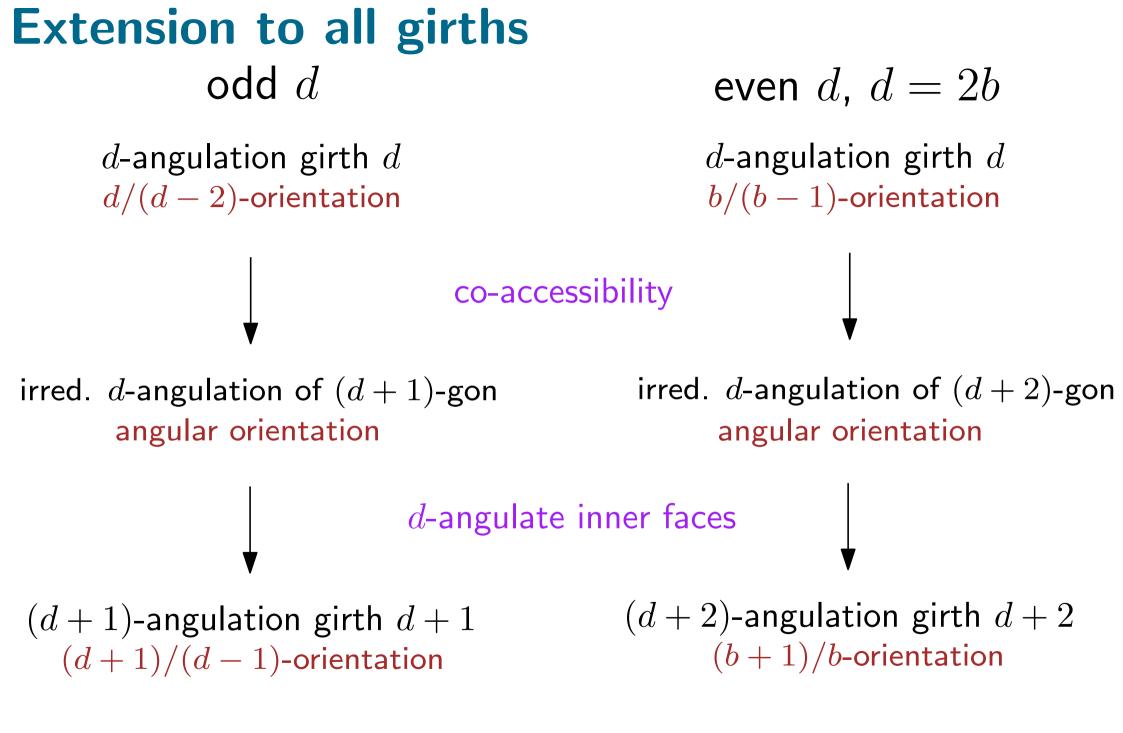


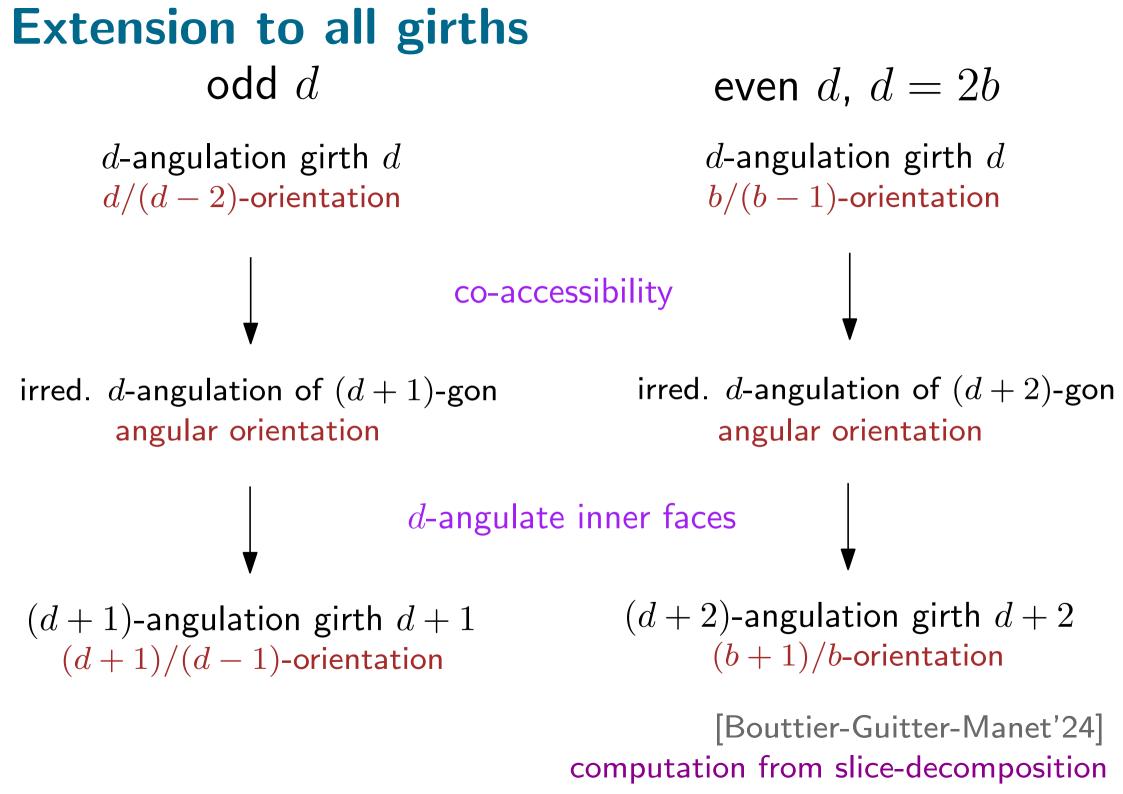
irreducible triangulaton



angular orientation



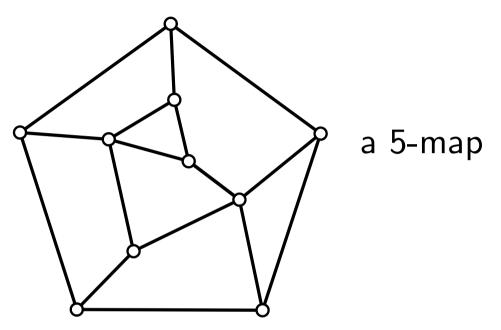




d-maps

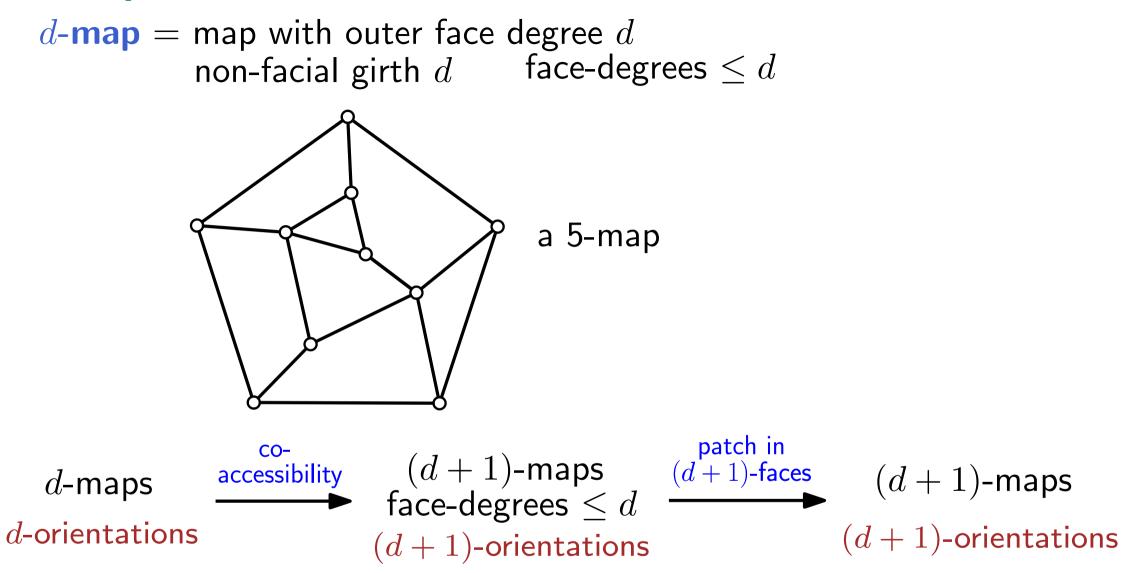
[Bernardi-F-Liang'23]

$\begin{array}{l} d\text{-map} = \text{map with outer face degree } d \\ \text{non-facial girth } d & \text{face-degrees} \leq d \end{array}$



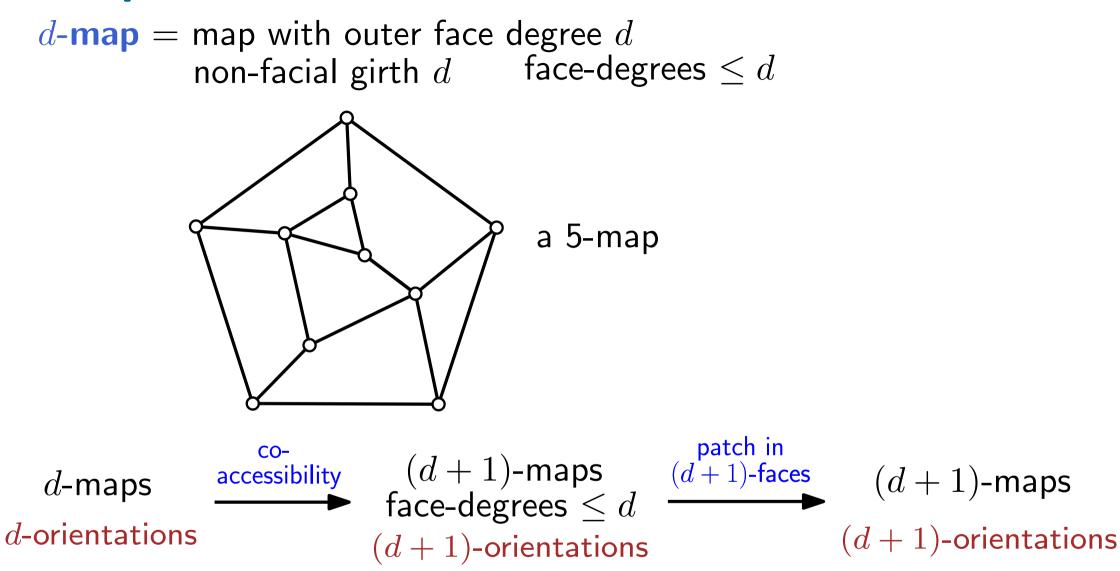
d-maps

[Bernardi-F-Liang'23]



d-maps

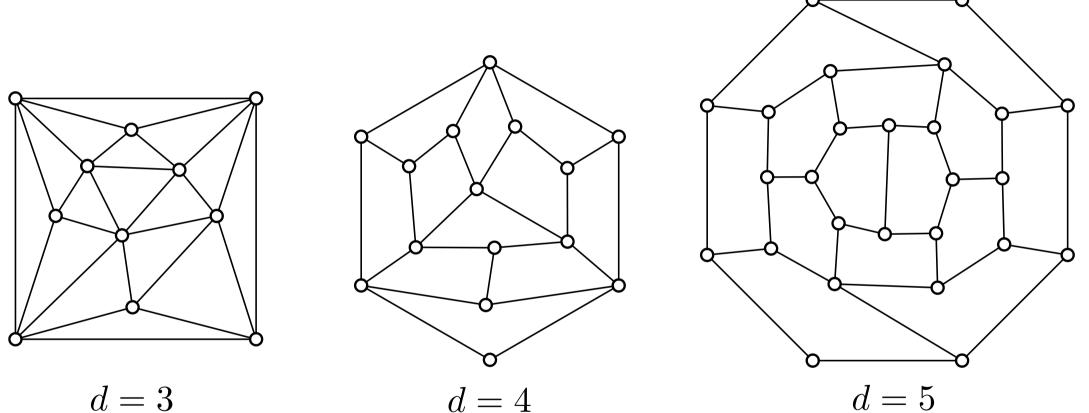
[Bernardi-F-Liang'23]



alternative incarnations of *d*-orientations as *d*-woods, *d*-corner labelings,...

Example with strong irreducibility

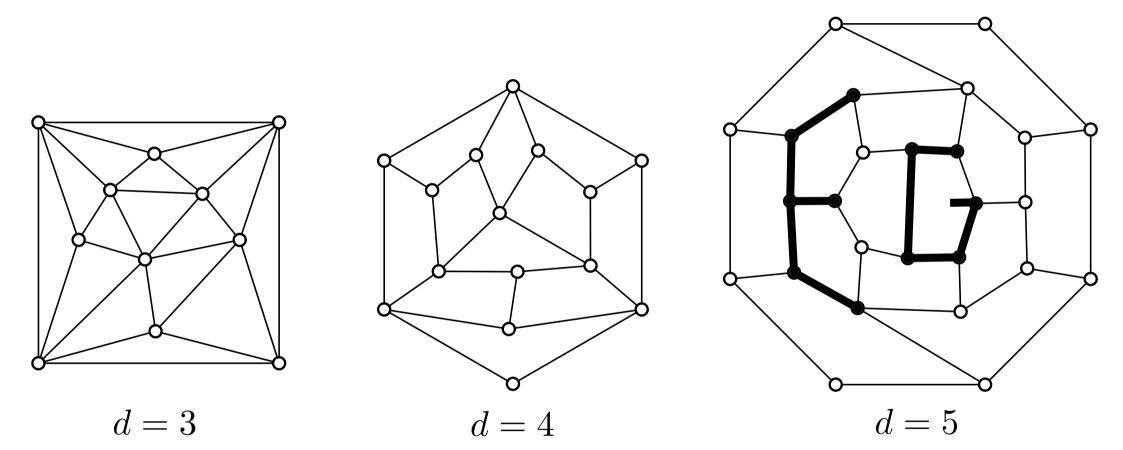
(none for $d \ge 6$) d-angulation of the 2d-2-gon, nf-girth=2d-2



d = 3

Example with strong irreducibility

d-angulation of the 2d - 2-gon, nf-girth= 2d - 2 (none for $d \ge 6$)



Thank you