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Percolation on Z2

Fix p ∈ [0, 1]; keep each edge based on an independent coin toss with P[Heads] = p and
P[Tails] = 1− p ⇒ random subgraph of Z2 (Broadbent-Hammersley, 1957).

p < 1/2

Sub-critical

p = 1/2

Critical

p > 1/2

Super-critical

▶ Goal: understand the resulting random graph when taking a scaling limit

▶ Sub-critical: clusters are small, no interesting behavior

▶ Super-critical: unique infinite cluster, macroscopic geometry is Euclidean

▶ Critical: non-trivial limiting geometry, fractal behavior
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CLE6 gasket. Scaling limit of critical percolation (Smirnov for ∆-lattice).
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Intrinsic metric in critical percolation

Goal I: understand the limit of the intrinsic metric in 2D critical percolation

4 / 23



Intrinsic metric in critical percolation

Goal I: understand the limit of the intrinsic metric in 2D critical percolation

4 / 23



Intrinsic metric in critical percolation

Goal I: understand the limit of the intrinsic metric in 2D critical percolation

4 / 23



Intrinsic metric in critical percolation

Goal I: understand the limit of the intrinsic metric in 2D critical percolation

4 / 23



Intrinsic metric in critical percolation

Goal I: understand the limit of the intrinsic metric in 2D critical percolation

4 / 23



Related work

Many works study chemical distance metric in related settings.

▶ Supercritical percolation

▶ behaves like the Euclidean metric (Gärtner-Molchanov, Antal-Pisztora,
Garet-Marchand)

▶ 2D Critical percolation

▶ Problem 3.3 of Schramm’s 2006 ICM
contribution: shortest left-right open crossing of
an n × n box is nα – what is α?

▶ Damron-Hanson-Sosoe: exponent for shortest
crossing is < 4/3

▶ Pose-Schrenk-Araujo-Hermann: numerical
work suggesting geodesics are SLEκ with
κ ∼= 1.04

▶ High dimensional critical percolation

▶ Blanc-Renaudie-Broutin-Nachmias: scaling limit of critical percolation on
the hypercube

▶ Chatterjee-Chinmay-Hanson-Sosoe: forthcoming work on Zd
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Simple random walk on critical percolation

Goal II: understand the scaling limit of simple random walk on 2D critical percolation

Ant in the Labyrinth problem, de Gennes 1976
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Related work

Many works study random walk scaling limits in related settings.

▶ Supercritical percolation: convergence to Brownian motion (Barlow,
Berger-Biskup, Mathieu-Piatnitski)

▶ 2D Critical percolation:

▶ Kesten: subdiffusivity of random walk w.r.t. Euclidean metric
▶ Ghanguly-Lee: subdiffusivity of random walk w.r.t. chemical distance metric

▶ Uniform spanning tree (Barlow-Croydon-Kumagai)

▶ High dimensional percolation (d > 6):

▶ Ben Arous-Cabezas-Fribergh: scaling limit results for simplified models
▶ Kozma-Nachmias: Alexander-Orbach conjecture (spectral dimension is 4/3),

i.e.

ds := −2× lim
n→∞

log p2n(0, 0)

log n
=

4

3
, i.e., p2n(0, 0) = n−2/3+o(1)

where pn(x , y) is the n-step transition kernel for random walk on the IIC
(0-containing critical percolation cluster conditioned to be infinite) for d ≥ 11.
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Idealized fractals

Sierpinski gasket

▶ Barlow-Perkins (1988): Brownian motion on the Sierpinski gasket

▶ Barlow-Bass (1989), Kusuoka-Zhou (1992): Brownian motion on the Sierpinski carpet

▶ Barlow-Bass-Kumagai-Teplyaev (2010): equivalence of Sierpinski carpet Brownian motions

▶ Important framework: Kigami’s theory of resistance metrics
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Idealized fractals

Pentaflake Hexaflake

▶ Barlow-Perkins (1988): Brownian motion on the Sierpinski gasket

▶ Barlow-Bass (1989), Kusuoka-Zhou (1992): Brownian motion on the Sierpinski carpet
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Intrinsic metric and random walk in critical percolation

▶ Goal: understand the limit of the intrinsic
metric and random walk in 2D critical
percolation

▶ Step 1: work directly in the continuum on
CLE6 and construct its intrinsic metric and
its canonical Brownian motion.

▶ Step 2: show that these objects are the
scaling limit of the corresponding discrete
objects.
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CLE background

▶ The conformal loop ensembles (CLEκ) are a countable collection of non-crossing
loops in a simply connected domain D ⊆ C

▶ Indexed by κ ∈ [8/3, 8]; κ = 8/3 get the empty collection of loops; κ = 8 get a
single space-filling loop.

▶ Locally each loop looks like one of Schramm’s SLEκ curves.

▶ κ ∈ (8/3, 4] loops are simple, do not intersect each other or ∂D
▶ κ ∈ (4, 8) loops are self-intersecting, hit each other and ∂D

▶ Describe the scaling limit of the interfaces in critical lattice models in
two-dimensions:

▶ Ising model (κ = 3), GFF level lines (κ = 4), FK-Ising model (κ = 16/3),
percolation (κ = 6), uniform spanning tree (κ = 8)

▶ Characterized by restriction, conformal invariance (Sheffield-Werner)

▶ Two constructions:

▶ Exploration tree (Sheffield)
▶ Cluster boundaries of a Poisson point process of Brownian loops

(Sheffield-Werner)
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▶ Characterized by restriction, conformal invariance (Sheffield-Werner)

▶ Two constructions:

▶ Exploration tree (Sheffield)
▶ Cluster boundaries of a Poisson point process of Brownian loops

(Sheffield-Werner)
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CLE3 carpet. Scaling limit of the critical Ising model (Smirnov).
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CLE6 gasket. Scaling limit of critical percolation (Smirnov for ∆-lattice).
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Recap

▶ This talk is about constructing the chemical distance metric and canonical
Brownian motion defined in the CLEκ gasket.

▶ Continuous objects which should describe

▶ the scaling limit of the graph distance metric and
▶ simple random walk

on clusters of discrete models which converge to CLEκ for κ ∈ (4, 8), e.g., critical
percolation.
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Approximations
▶ Υ ∼ CLEκ gasket

▶ For a path ω : [0, 1]→ Υ which does
not cross a loop, let Nϵ(ω) be the
Lebesgue measure of the
ϵ-neighborhood of ω

▶ For z ,w ∈ Υ, let

dϵ(z ,w) = inf
ω

Nϵ(ω)

where the infimum is over all paths ω
in Υ from z to w which do not cross
a loop

▶ Goal 1: show that dϵ(·, ·) properly
renormalized is tight; subsequential
limit defines a geodesic metric

▶ Goal 2: show that the limit is unique,
characterized by a list of axioms

▶ Important: choice of domain

Optimizing ω, Nϵ(ω) ∼ ϵ2−α for α ∈ (1, 2) but for ω = ∂D, Nϵ(ω) ∼ ϵ.
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Topology

▶ Consider the space K of 5-tuples (X , d ,D, µ, π) where

▶ (X , d , µ) is a compact metric measure space,
▶ D is another metric on X continuous with respect to d ,
▶ π : X → C is a projection map which is 1-Lipschitz with respect to d

equipped with a natural variant of the Gromov-Hausdorff-Prokhorov topology.

▶ d is the “nice”, “easy to construct”, “ambient” metric and D is the non-trivial
metric we want to construct

▶ In the CLEκ gasket Υ, there are points that correspond to multiple points in its
natural metric space (“prime ends”):

▶ Set X ∗ the set of points in Υ not on a loop of Γ,

d(x , y) = inf{diam(γ) : γ connects x to y in Υ},

X the completion of X ∗ with respect to d

▶ π natural projection map X → C, and

▶ µ is the natural measure on the CLEκ gasket
(M.-Schoug)
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The choice of normalization

▶ Cluster boundaries in a CLEκ look like SLE16/κ curves, take our domain D to be
an “SLE16/κ loop”

▶ D a domain bounded by an SLE16/κ loop, z ∈ ∂D a “typical point”.

▶ In the infinite volume limit near z , ∂D is described by a two-sided whole-plane
SLE16/κ

▶ Work in the infinite volume setting and set

mϵ = median( inf
z∈∂B(0,1)

dϵ(0, z)).
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Intrinsic metric tightness theorem

Theorem (Ambrosio-M.-Yuan)
Fix κ ∈ (4, 8). Suppose that ΓD is a CLEκ in D and let D be the set of points
surrounded by the loop L ∈ ΓD which surrounds 0. Given L, let Γ be a CLEκ in D with
gasket Υ. Then:

▶ The law of the map (z ,w) 7→ m−1
ϵ dϵ(z ,w) is tight in the space K.

▶ Any subsequential limit is a.s. a geodesic metric space on Υ.
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Intrinsic metric uniqueness theorem

Theorem (M.-Yuan)
Fix κ ∈ (4, 8). Suppose that ΓD is a CLEκ in D and let D be the set of points
surrounded by the loop L ∈ ΓD which surrounds 0. Given L, let Γ be a CLEκ in D with
gasket Υ.

▶ There exists at most one metric d on Υ which is local, geodesic, and conformally
covariant.

▶ Every subsequential limit as ϵ→ 0 of m−1
ϵ dϵ(·, ·) satisfies these properties, so the

limit exists.

κ = 6 should describe the scaling limit of the intrinsic metric for 2D critical percolation.
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Resistance metrics
▶ Given a graph G = (V ,E) with edge weights w , the effective resistance is

R(x, y) =

inf

∑
e∈E

w(e)(∇h(e))2 : h : V → R, h(x) = 0, h(y) = 1


−1

∀x, y ∈ V .

▶ Using the edge weights w as conductances defines a random walk X on G

▶ Facts: i) R is a metric on V , ii) R︸︷︷︸
Resistance
metric

←→ w︸︷︷︸
Dirichlet
form

←→ X︸︷︷︸
Random
walk
law

Kigami’s theory of resistance metrics generalizes this to the continuum

▶ A metric R on a set F is called a resistance metric if for every V ⊆ F finite, there
exists a graph G = (V ,E) with edge weights w so that R|V×V is equal to the
resistance metric associated with those weights

▶ Kigami: if R is a resistance metric on F so that

▶ (F ,R) is compact and
▶ µ is a finite Borel measure on F with full support,

then (R, µ) determine a Dirichlet form hence a µ-symmetric Markov process on F .

Works for low-dimensional fractals (e.g., Sierpinski gasket / carpet) but not, say, for Rd

with d ≥ 2.
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Resistance metric existence and uniqueness

Ambrosio-M.-Yuan: for a natural family of graph approximations Υϵ to Υ with
associated effective resistance Rϵ,

▶ The law of the map (z ,w) 7→ m−1
ϵ Rϵ(z ,w) is tight in the space K

▶ Any subsequential limit is a resistance metric on Υ hence defines a Markov process
on Υ symmetric w.r.t. the CLEκ gasket measure.

M.-Yuan

▶ There exists at most one resistance metric R on Υ which induces a Dirichlet form
on Υ which is local and scale covariant.

▶ Every subsequential limit as ϵ→ 0 of m−1
ϵ Rϵ satisfies these properties, so the limit

exists.

Consequence: existence and uniqueness of the canonical CLEκ Brownian motion; κ = 6

should describe the scaling limit of simple random walk on 2D critical percolation

clusters.
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Consequence: existence and uniqueness of the canonical CLEκ Brownian motion; κ = 6

should describe the scaling limit of simple random walk on 2D critical percolation
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Critical percolation scaling limits

For critical percolation on the ∆-lattice, we have:

▶ Smirnov: the interfaces converge to CLE6

▶ Garban-Pete-Schramm: the cluster measure

converges to a continuum measure on CLE6

Croydon: given a sequence of metric measure spaces
(Xn,Rn, µn) where Rn is a resistance metric on Xn, the
Gromov-Hausdorff-Prokhorov convergence (Xn,Rn, µn) →
(X ,R, µ) implies weak convergence of the associated processes
(provided all spaces are compact).

Theorem (Dankovic-Markering-M.-Yuan)
For critical percolation on the ∆-lattice,

▶ the intrinsic metric converges to the CLE6 intrinsic metric and

▶ simple random walk converges to the CLE6 Brownian motion

jointly with the convergence of the interfaces to CLE6 and the cluster measure to the
CLE6 gasket measure.
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Further questions
▶ Can we say anything about the shortest path exponent in 2D critical percolation?

▶ Problem 3.3 of Schramm’s 2006 ICM contribution: shortest path exponent (it
is < 4/3 by Damron-Hanson-Sosoe)

▶ Alexander-Orbach conjecture: spectral dimension of the IIC is 4/3, i.e.

ds := −2× lim
n→∞

log p2n(0, 0)

log n
=

4

3
, i.e., p2n(0, 0) = n−2/3+o(1)

where pn(x , y) is the n-step transition kernel for random walk on the IIC
(0-containing critical percolation cluster conditioned to be infinite).

▶ Proved by Kozma-Nachmias for d ≥ 11; expected to be true for d > 6
(missing ingredient: construction of the IIC for 6 < d < 11)

▶ Expected to be false for 2 ≤ d ≤ 5, but numerical simulations show it is
remarkably close to being true:

d = 5→ ds = 1.34± 0.02, d = 4→ ds = 1.30± 0.04,

d = 3→ ds = 1.32± 0.01, d = 2→ ds = 1.318± 0.001

(Source: D. Ben-Avraham and S. Havlin. Diffusion and reactions in fractals and

disordered systems. Cambridge University Press, Cambridge, 2000.)
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Happy Birthday, Emmanuel!
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Proof Strategy

Recall: D domain whose boundary is an SLE16/κ loop, Γ ∼ CLEκ in D,

dϵ(z ,w) = inf
ω

Nϵ(ω), Nϵ(ω) = Leb(ϵ neighborhood of ω)

where the infimum is over all paths ω in Υ from z to w and

mϵ = median( inf
z∈∂B(0,1)

dϵ(0, z)).

Tightness theorem: tightness of m−1
ϵ dϵ(·, ·); subsequential limits are geodesic metrics

Proof has three main steps:

I. Prove tightness of m−1
ϵ dϵ(·, ·) restricted to the boundary

II. Extend tightness of m−1
ϵ dϵ(·, ·) to the interior

III. Show that the subsequential limits are positive definite and geodesic

Tricky because the metric depends heavily on the boundary conditions.
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Tightness on the boundary

η(0) = 0

z

D

▶ Work in the infinite volume setup;

mϵ = median(infz∈∂B(0,1) dϵ(0, z)).

▶ Want P[infz∈∂B(0,1) dϵ(0, z)) ≥ xmϵ]→ 0 superpolynomially as x →∞
▶ As the geodesic from η(0) = 0 to ∂B(0, 1) passes through pairs of intersecting

loops, it traverses ≳ δ−ddouble bubbles of diameter ≍ δ where ddouble is the double
point dimension of SLEκ

▶ A priori bound: bubbles are approximately independent, so the probability that the
dϵ(·, ·) distance across any of them is at least mϵ is O(δddouble).

▶ Bootstrap the bubble estimate to get that the probability that the dϵ(·, ·) distance
across any of them is at least mϵ is O(δp) for all p > 0.
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