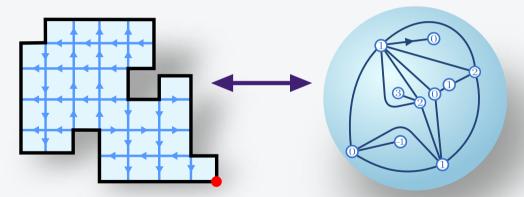
A bijection between rigid and integer-labeled quadrangulations

Timothy Budd

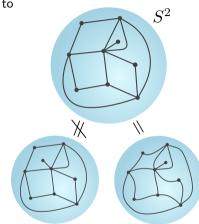


Discrete geometry by planar maps

▶ Planar map is a connected graph embedded in S² viewed up to continuous deformation.

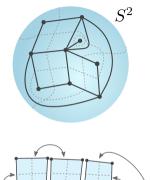
Discrete geometry by planar maps

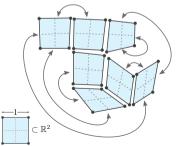
▶ Planar map is a connected graph embedded in S² viewed up to continuous deformation.



- ightharpoonup Planar map is a connected graph embedded in S^2 viewed up to continuous deformation.
- ▶ Quadrangulation: all faces of degree 4.

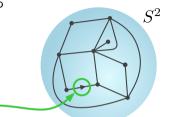
- ightharpoonup Planar map is a connected graph embedded in S^2 viewed up to continuous deformation.
- Quadrangulation: all faces of degree 4.
- ightharpoonup Equivalently, quadrangulation is a gluing of squares into a topological S^2 .



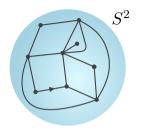


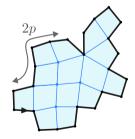
▶ Planar map is a connected graph embedded in S^2 viewed up to continuous deformation.

- Quadrangulation: all faces of degree 4.
- ▶ Equivalently, quadrangulation is a gluing of squares into a topological S^2 .
- ▶ Rooting (distinguishing an oriented edge) kills all internal symmetries ⇒ good for counting!



- ▶ Planar map is a connected graph embedded in S^2 viewed up to continuous deformation.
- Quadrangulation: all faces of degree 4.
- Equivalently, quadrangulation is a gluing of squares into a topological S^2 .
- ▶ Rooting (distinguishing an oriented edge) kills all internal symmetries ⇒ good for counting!
- Quadrangulation of disk of perimeter 2p.

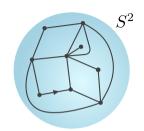


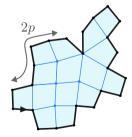


- Planar map is a connected graph embedded in S^2 viewed up to continuous deformation.
- Quadrangulation: all faces of degree 4.
- Equivalently, quadrangulation is a gluing of squares into a topological S^2 .
- ▶ Rooting (distinguishing an oriented edge) kills all internal symmetries ⇒ good for counting!
- Quadrangulation of disk of perimeter 2p.

Many map enumeration methods:

- Recursive methods and generating functions [Tutte, '60s] [Brown, Bender, Canfield, Goulden, Jackson, Ambiørn, Bousquet-Mélou, . . .]
- ► Matrix models ['t Hooft, Brézin, Itzykson, Parisi, Zuber, Kazakov, Kostov, Ginsparg, Zinn-Justin, . . .]
- ► Probabilistic methods [Le Gall, Miermont, Curien, Bettinelli, Sheffield, Miller, Gwynne, Budzinski, . . .]
- ▶ Bijective method [Cori, Vauqelin, Schaeffer, Bouttier, Di Francesco, Guitter, Fusy, Chapuy, Bernardi, Miermont, . . .]

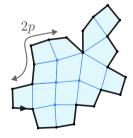




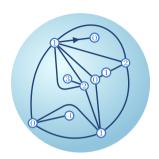
- Planar map is a connected graph embedded in S^2 viewed up to continuous deformation.
- Quadrangulation: all faces of degree 4.
- Equivalently, quadrangulation is a gluing of squares into a topological S^2 .
- ▶ Rooting (distinguishing an oriented edge) kills all internal symmetries ⇒ good for counting!
- Quadrangulation of disk of perimeter 2p.

Many map enumeration methods:

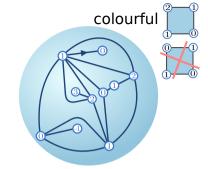
- Recursive methods and generating functions [Tutte, '60s] [Brown, Bender, Canfield, Goulden, Jackson, Ambiørn, Bousquet-Mélou, . . .]
- ► Matrix models ['t Hooft, Brézin, Itzykson, Parisi, Zuber, Kazakov, Kostov, Ginsparg, Zinn-Justin, . . .]
- Probabilistic methods [Le Gall, Miermont, Curien, Bettinelli, Sheffield, Miller, Gwynne, Budzinski, . . .]
- Bijective method [Cori, Vauqelin, Schaeffer, Bouttier, Di Francesco, Guitter, Fusy, Chapuy, Bernardi, Miermont, . . .]



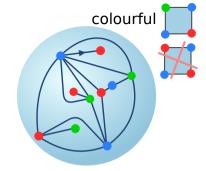
▶ Colourful \mathbb{Z} -labeled quadrangulation with n faces



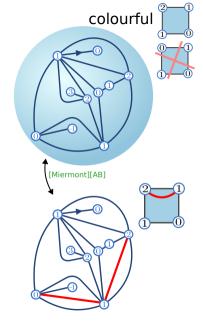
ightharpoonup Colourful \mathbb{Z} -labeled quadrangulation with n faces



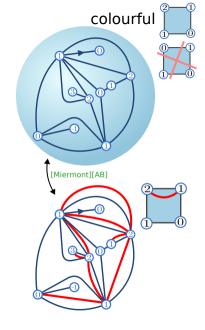
- ▶ Colourful \mathbb{Z} -labeled quadrangulation with n faces
 - ightharpoonup or colourful 3-coloured quadrangulations with n faces,



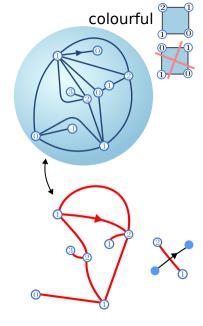
- ▶ Colourful \mathbb{Z} -labeled quadrangulation with n faces
 - ightharpoonup or colourful 3-coloured quadrangulations with n faces,
 - ▶ or \mathbb{Z} -labeled planar map with n edges,



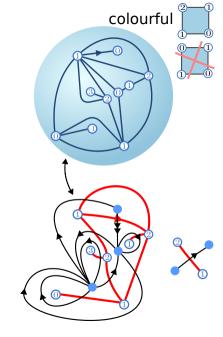
- ▶ Colourful \mathbb{Z} -labeled quadrangulation with n faces
 - ightharpoonup or colourful 3-coloured quadrangulations with n faces,
 - ▶ or \mathbb{Z} -labeled planar map with n edges,



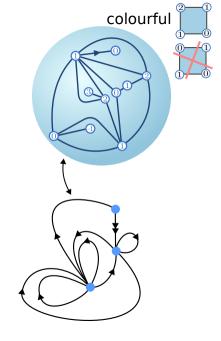
- ▶ Colourful \mathbb{Z} -labeled quadrangulation with n faces
 - ightharpoonup or colourful 3-coloured quadrangulations with n faces,
 - ightharpoonup or \mathbb{Z} -labeled planar map with n edges,



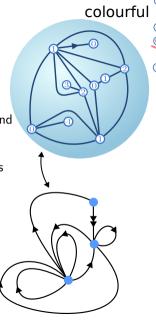
- ▶ Colourful \mathbb{Z} -labeled quadrangulation with n faces
 - ightharpoonup or colourful 3-coloured quadrangulations with n faces,
 - ightharpoonup or \mathbb{Z} -labeled planar map with n edges,
 - ightharpoonup or planar Eulerian orientations with n edges.



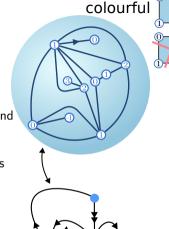
- ▶ Colourful \mathbb{Z} -labeled quadrangulation with n faces
 - ightharpoonup or colourful 3-coloured quadrangulations with n faces,
 - ightharpoonup or \mathbb{Z} -labeled planar map with n edges,
 - ightharpoonup or planar Eulerian orientations with n edges.



- ▶ Colourful \mathbb{Z} -labeled quadrangulation with n faces
 - ightharpoonup or colourful 3-coloured quadrangulations with n faces,
 - ightharpoonup or \mathbb{Z} -labeled planar map with n edges,
 - ightharpoonup or planar Eulerian orientations with n edges.
- ► History of enumeration:
 - '00 Special case of ABAB matrix model [Kazakov, Zinn-Justin, '99] and 6-vertex model [Zinn-Justin, '00][Kostov, '00]
 - '16 Bounds [Bonichon, Bousquet-Mélou, Dorbec, Pennarun, '16]
 - '17 System of functional equations and conjectural asymptotics [Elvey Price, Guttman, '17]



- ▶ Colourful \mathbb{Z} -labeled quadrangulation with n faces
 - ightharpoonup or colourful 3-coloured quadrangulations with n faces,
 - ightharpoonup or \mathbb{Z} -labeled planar map with n edges,
 - ightharpoonup or planar Eulerian orientations with n edges.
- ► History of enumeration:
 - '00 Special case of ABAB matrix model [Kazakov, Zinn-Justin, '99] and 6-vertex model [Zinn-Justin, '00][Kostov, '00]
 - '16 Bounds [Bonichon, Bousquet-Mélou, Dorbec, Pennarun, '16]
 - '17 System of functional equations and conjectural asymptotics [Elvey Price, Guttman, '17]
 - '18 Generating function [Bousquet-Mélou, Elvey Price, '18]



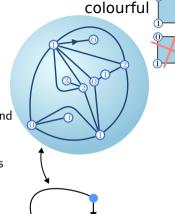
Theorem (Bousquet-Mélou, Elvey Price, '18)

Generating function is $G(t) = \frac{1}{4t^2}(t - 2t^2 - R(t))$ where $\sum_{k>0} \frac{1}{k+1} {2k \choose k}^2 R(t)^{k+1} = t$.

- ▶ Colourful \mathbb{Z} -labeled quadrangulation with n faces
 - or colourful 3-coloured quadrangulations with n faces,
 - \triangleright or \mathbb{Z} -labeled planar map with n edges,
 - or planar Eulerian orientations with n edges.
- ► History of enumeration:
 - '00 Special case of ABAB matrix model [Kazakov, Zinn-Justin, '99] and 6-vertex model [Zinn-Justin, '00][Kostov, '00]
 - '16 Bounds [Bonichon, Bousquet-Mélou, Dorbec, Pennarun, '16]
 - '17 System of functional equations and conjectural asymptotics [Elvey Price, Guttman, '17]
 - '18 Generating function [Bousquet-Mélou, Elvey Price, '18]
 - '20 Solution 6-vertex model [Elvey Price, Zinn-Justin, '20]
 - '25 Refined enumeration with control on # local maxima
 [Bousquet-Mélou, Elvey Price, '25]

Theorem (Bousquet-Mélou, Elvey Price, '18)

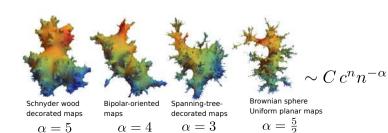
Generating function is $G(t) = \frac{1}{4t^2}(t - 2t^2 - R(t))$ where $\sum_{k>0} \frac{1}{k+1} {2k \choose k}^2 R(t)^{k+1} = t$.



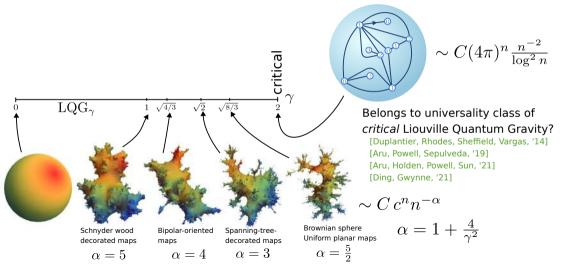
[Bousquet-Mélou, Elvey Price, '18]

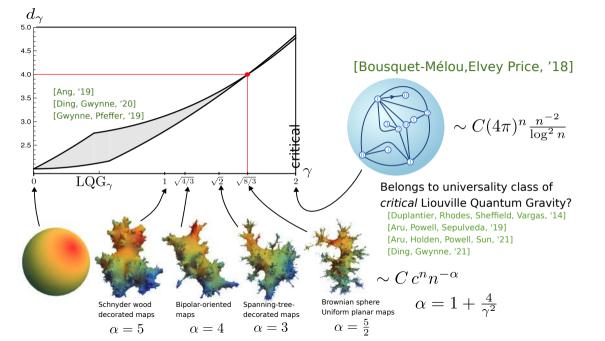
	$\sim C(4\pi)^n \frac{n^{-2}}{\log^2 n}$
--	--

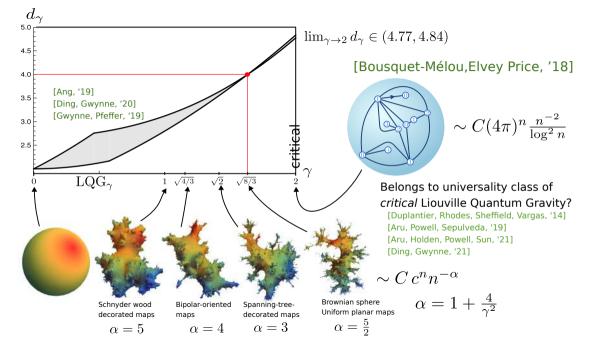
[Bousquet-Mélou, Elvey Price, '18]



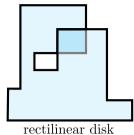
[Bousquet-Mélou, Elvey Price, '18]



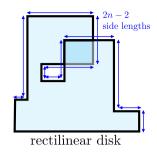




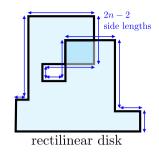
Rectilinear disk: flat metric on disk with orthogonal piecewise-linear boundary.



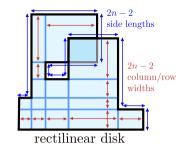
- Rectilinear disk: flat metric on disk with orthogonal piecewise-linear boundary.
- ► The space of rectilinear disks is equipped with Lebesgue measure on independent side lengths.



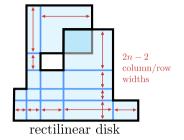
- Rectilinear disk: flat metric on disk with orthogonal piecewise-linear boundary.
- ► The space of rectilinear disks is equipped with Lebesgue measure on independent side lengths.
- A generic rectilinear disk has combinatorial type given by a rigid quadrangulation with 2n corners.

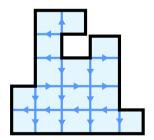


- Rectilinear disk: flat metric on disk with orthogonal piecewise-linear boundary.
- ► The space of rectilinear disks is equipped with Lebesgue measure on independent side lengths.
- ► A generic rectilinear disk has combinatorial type given by a rigid quadrangulation with 2*n* corners.



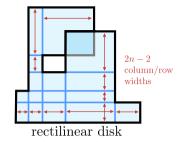
- Rectilinear disk: flat metric on disk with orthogonal piecewise-linear boundary.
- ► The space of rectilinear disks is equipped with Lebesgue measure on independent side lengths.
- ► A generic rectilinear disk has combinatorial type given by a rigid quadrangulation with 2n corners.

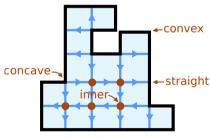




rigid quadrangulation

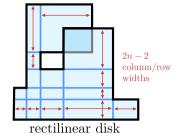
- Rectilinear disk: flat metric on disk with orthogonal piecewise-linear boundary.
- ► The space of rectilinear disks is equipped with Lebesgue measure on independent side lengths.
- ► A generic rectilinear disk has combinatorial type given by a rigid quadrangulation with 2n corners.
 - ▶ Quadrangulation of disk with inner vertices of degree 4, and boundary vertices of angle $\frac{\pi}{2}$ (convex), π (straight), $\frac{3\pi}{2}$ (concave).

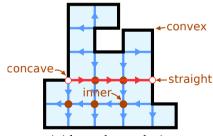




rigid quadrangulation

- Rectilinear disk: flat metric on disk with orthogonal piecewise-linear boundary.
- ► The space of rectilinear disks is equipped with Lebesgue measure on independent side lengths.
- ► A generic rectilinear disk has combinatorial type given by a rigid quadrangulation with 2n corners.
 - ▶ Quadrangulation of disk with inner vertices of degree 4, and boundary vertices of angle $\frac{\pi}{2}$ (convex), π (straight), $\frac{3\pi}{2}$ (concave).
 - Rays start at concave and end at straight vertex.



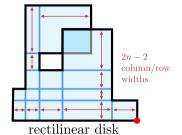


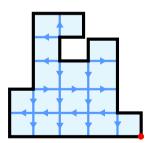
rigid quadrangulation

- Rectilinear disk: flat metric on disk with orthogonal piecewise-linear boundary.
- ► The space of rectilinear disks is equipped with Lebesgue measure on independent side lengths.
- A generic rectilinear disk has combinatorial type given by a rigid quadrangulation with 2n corners.
 - ▶ Quadrangulation of disk with inner vertices of degree 4, and boundary vertices of angle $\frac{\pi}{2}$ (convex), π (straight), $\frac{3\pi}{2}$ (concave).
 - Rays start at concave and end at straight vertex.
 - Rooted on convex vertex.

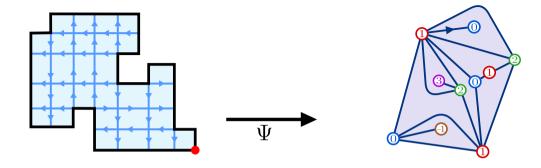
Theorem (TB, '25+)

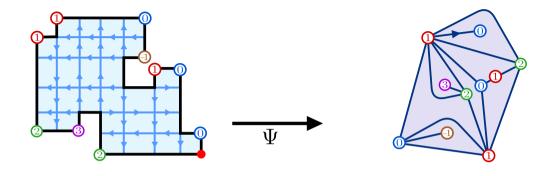
There is a bijection Ψ between rigid quadrangulations with n+1 convex vertices and colourful quadrangulations with n vertices (and root face labeled 0,1,2,1).



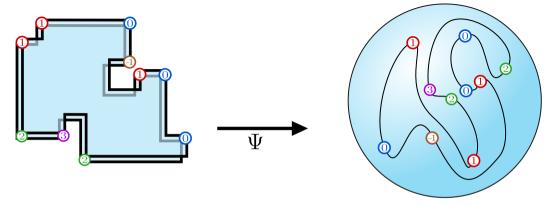


rigid quadrangulation

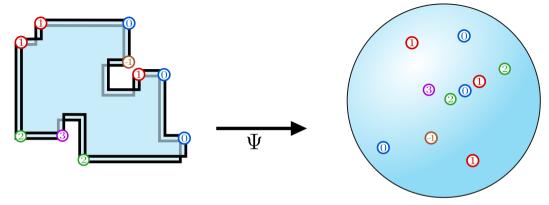




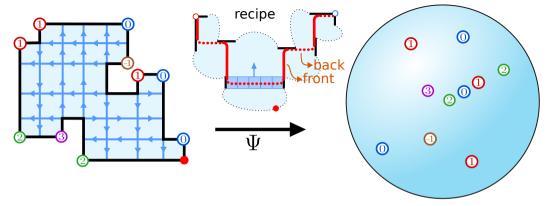
▶ Label convex vertices (except root) by turning number from root (#left - #right).



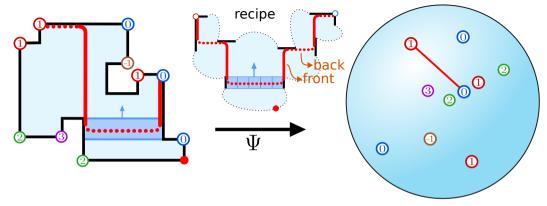
- ▶ Label convex vertices (except root) by turning number from root (#left #right).
- **Double** to make it topological S^2 .



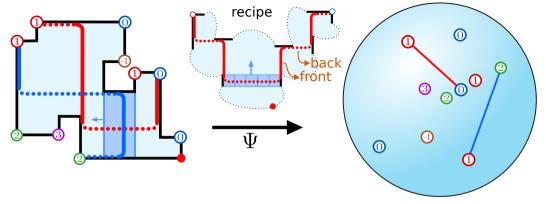
- ▶ Label convex vertices (except root) by turning number from root (#left #right).
- **Double** to make it topological S^2 .



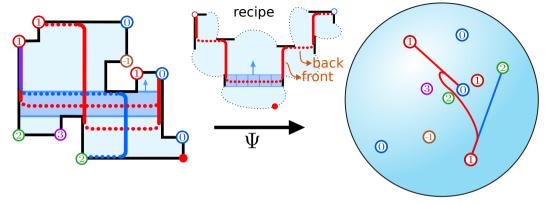
- ▶ Label convex vertices (except root) by turning number from root (#left #right).
- **Double** to make it topological S^2 .
- ▶ Draw edge for each row and column: traveling vertically on front, horizontally on back.



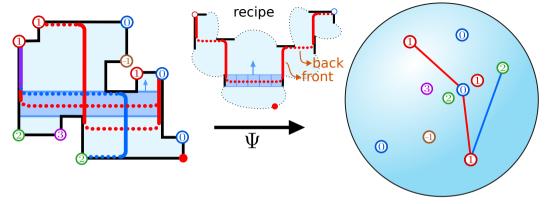
- ▶ Label convex vertices (except root) by turning number from root (#left #right).
- **Double** to make it topological S^2 .
- ▶ Draw edge for each row and column: traveling vertically on front, horizontally on back.



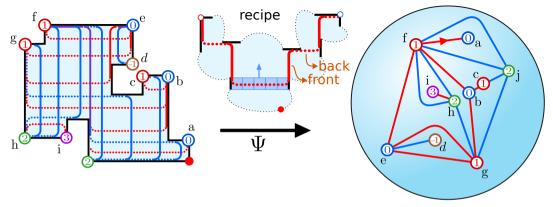
- ▶ Label convex vertices (except root) by turning number from root (#left #right).
- **Double** to make it topological S^2 .
- ▶ Draw edge for each row and column: traveling vertically on front, horizontally on back.



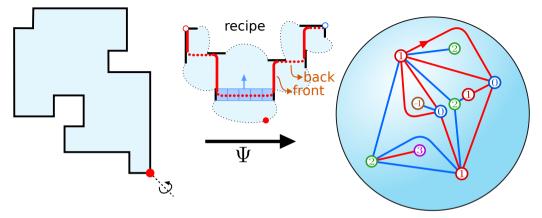
- ▶ Label convex vertices (except root) by turning number from root (#left -#right).
- **Double** to make it topological S^2 .
- ▶ Draw edge for each row and column: traveling vertically on front, horizontally on back.



- ▶ Label convex vertices (except root) by turning number from root (#left #right).
- **Double** to make it topological S^2 .
- ▶ Draw edge for each row and column: traveling vertically on front, horizontally on back.

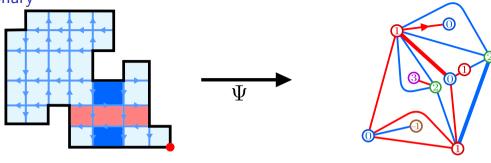


- ▶ Label convex vertices (except root) by turning number from root (#left -#right).
- ightharpoonup Double to make it topological S^2 .
- ▶ Draw edge for each row and column: traveling vertically on front, horizontally on back.
- ► Result is Z-labeled planar map. Quadrangulation? Colourful? Ψ bijective?

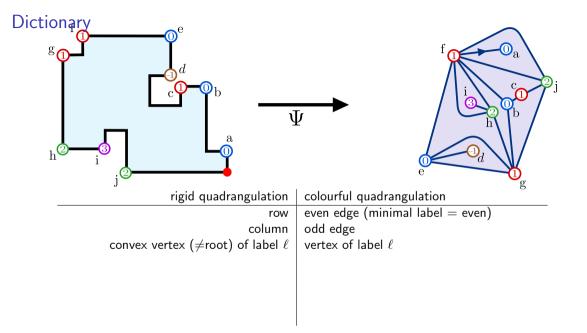


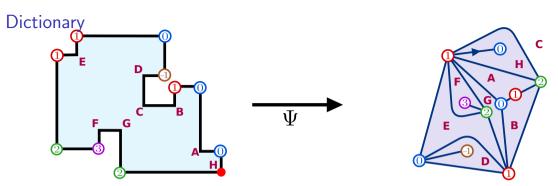
- ▶ Label convex vertices (except root) by turning number from root (#left #right).
- ightharpoonup Double to make it topological S^2 .
- ▶ Draw edge for each row and column: traveling vertically on front, horizontally on back.
- ▶ Result is Z-labeled planar map. Quadrangulation? Colourful? Ψ bijective?
- ▶ Useful symmetry: $\Psi \circ (Reflection in diagonal) = (Label \mapsto 2 Label) \circ \Psi$.

Dictionary rigid quadrangulation colourful quadrangulation

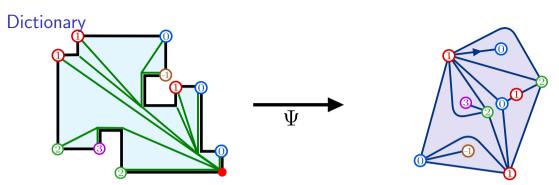


rigid quadrangulation	colourful quadrangulation
row	even edge (minimal label $=$ even)
column	odd edge

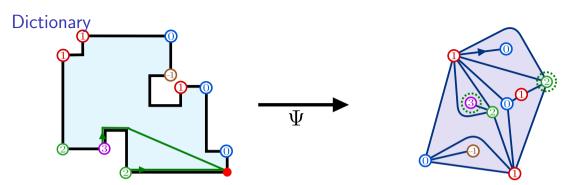




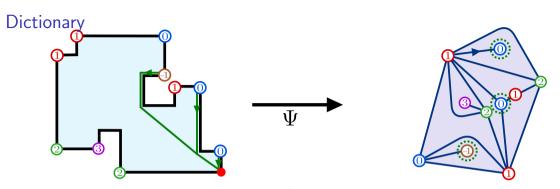
rigid quadrangulation	colourful quadrangulation
row	even edge (minimal label = even)
column	odd edge
convex vertex ($ eq$ root) of label ℓ	vertex of label ℓ
concave vertex or root	



rigid quadrangulation	colourful quadrangulation
row	even edge (minimal label = even)
column	odd edge
convex vertex ($ eq$ root) of label ℓ	vertex of label ℓ
concave vertex or root	face



rigid quadrangulation	colourful quadrangulation
row	even edge (minimal label $=$ even)
column	odd edge
convex vertex ($ eq$ root) of label ℓ	vertex of label ℓ
concave vertex or root	face
\checkmark	local maximum



rigid quadrangulation row column convex vertex (\neq root) of label ℓ concave vertex or root

colourful quadrangulation

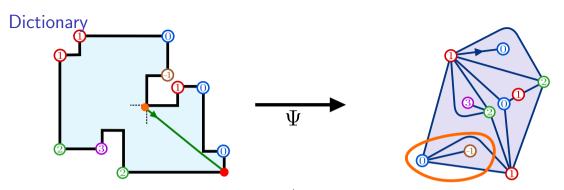
even edge (minimal label = even) odd edge

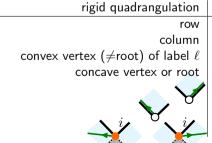
vertex of label ℓ

face

local maximum

local minimum





colourful quadrangulation

even edge (minimal label = even)

odd edge

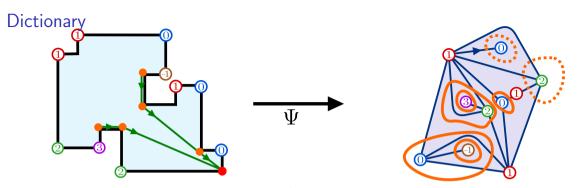
vertex of label ℓ

face

local maximum

local minimum

(i, i-1)-level line



rigid quadrangulation corvex vertex (≠root) of label ℓ concave vertex or root factorial in the concave vertex or root in the

colourful quadrangulation

even edge (minimal label = even)

odd edge

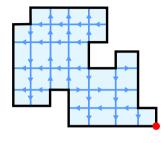
vertex of label ℓ

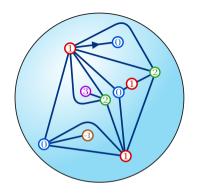
face

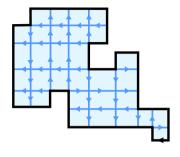
local maximum

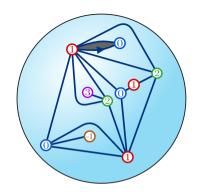
local minimum

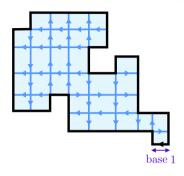
(i,i-1)-level line (not through root face)

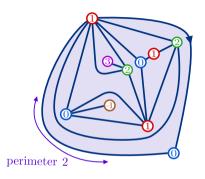








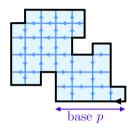


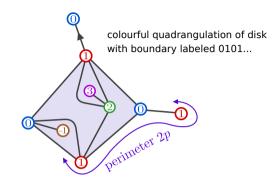


▶ For $n \ge 2$ and $p \ge 1$ there exists a bijection

 $\left\{\begin{array}{c} \text{rigid quadrangulations with} \\ n+2 \text{ convex vertices and base } p \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{colourful quadrangulations of the disk} \\ \text{with } n \text{ vertices and perimeter } 2p \end{array}\right\}$

rigid quadrangulation with base

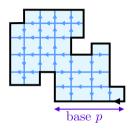


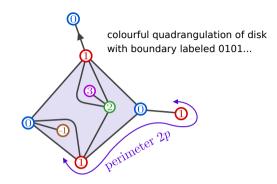


▶ For $n \ge 2$ and $p \ge 1$ there exists a bijection

$$\left\{\begin{array}{c} \text{rigid quadrangulations with} \\ n+2 \text{ convex vertices and base } p \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{colourful quadrangulations of the disk} \\ \text{with } n \text{ vertices and perimeter } 2p \end{array}\right\}$$

rigid quadrangulation with base

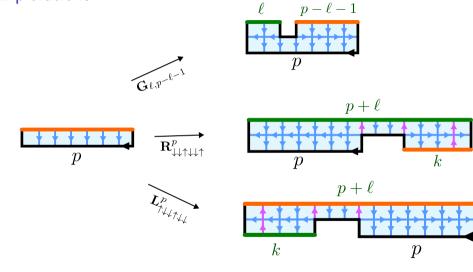


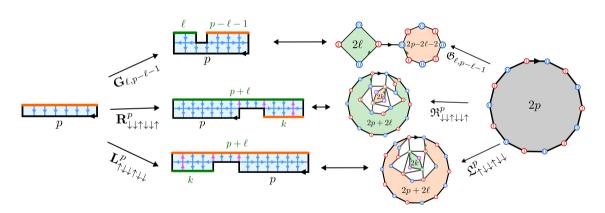


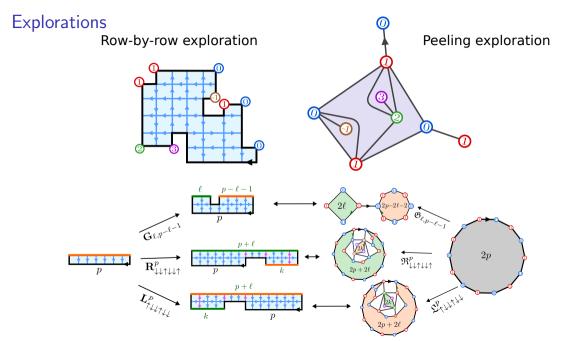
▶ For $n \ge 2$ and $p \ge 1$ there exists a bijection

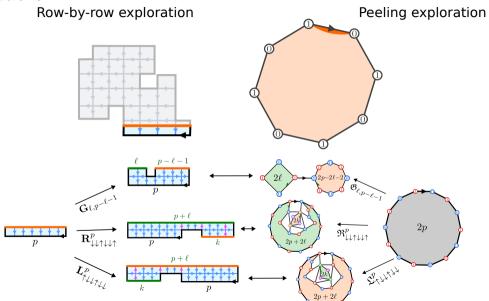
$$\left\{\begin{array}{c} \text{rigid quadrangulations with} \\ n+2 \text{ convex vertices and base } p \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{colourful quadrangulations of the disk} \\ \text{with } n \text{ vertices and perimeter } 2p \end{array}\right\}$$

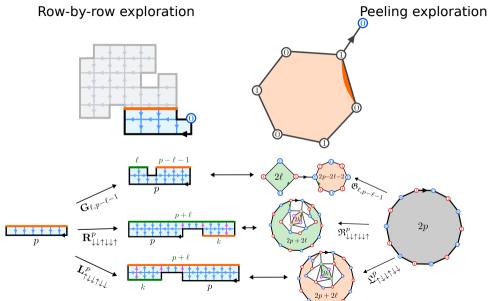
▶ Proof by relating canonical explorations: row-by-row exploration vs peeling exploration.

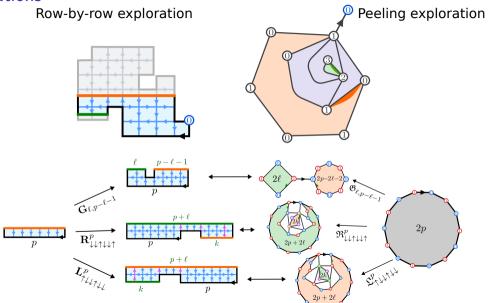


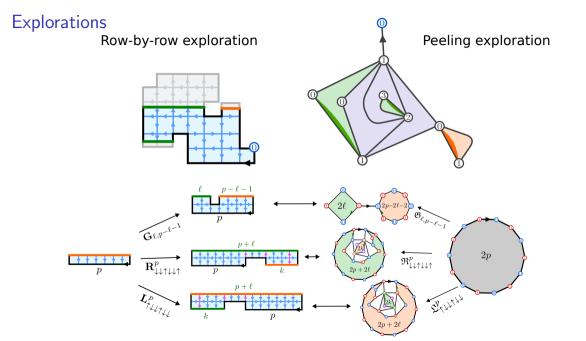


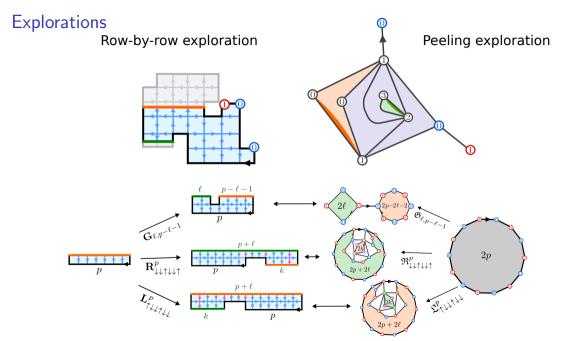




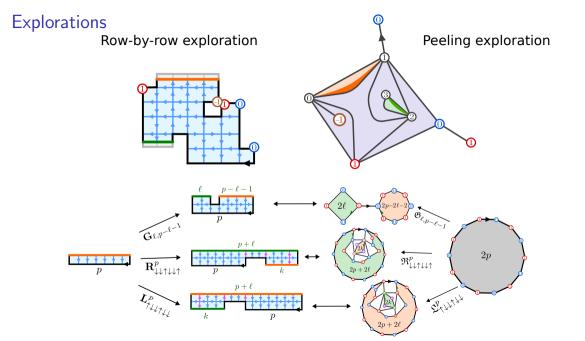




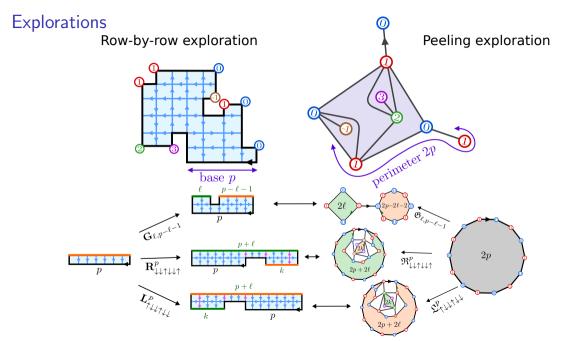


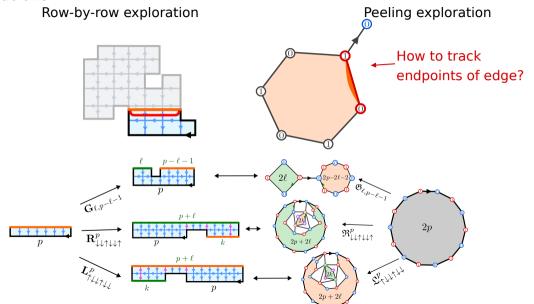


Explorations Row-by-row exploration Peeling exploration $p - \ell - 1$ 2p $\mathfrak{R}^p_{\downarrow\downarrow\uparrow\uparrow\downarrow\downarrow\uparrow}$ $\overline{\mathbf{R}^p_{\downarrow\downarrow\uparrow\uparrow\downarrow\downarrow\uparrow}}$ $p + \ell$ SP TTT

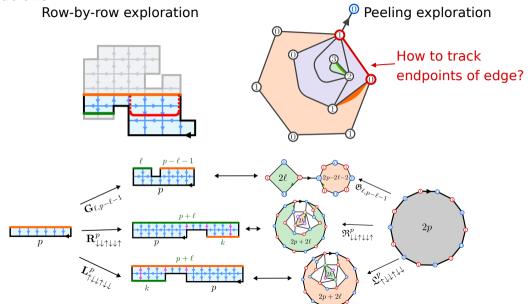


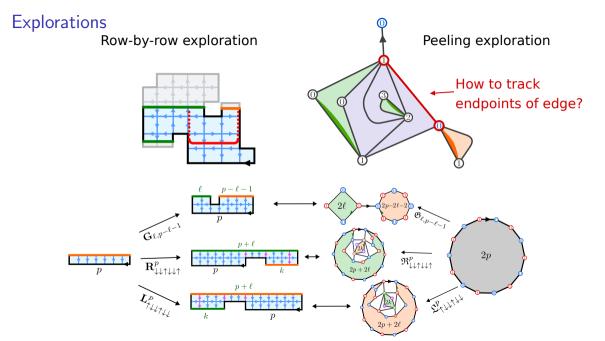
Explorations Row-by-row exploration Peeling exploration $p - \ell - 1$ 2p $\Re^p_{\downarrow\downarrow\uparrow\uparrow\downarrow\downarrow\uparrow}$ $\overline{\mathbf{R}^p_{\downarrow\downarrow\uparrow\uparrow\downarrow\downarrow\uparrow}}$ $p + \ell$ SP TTT

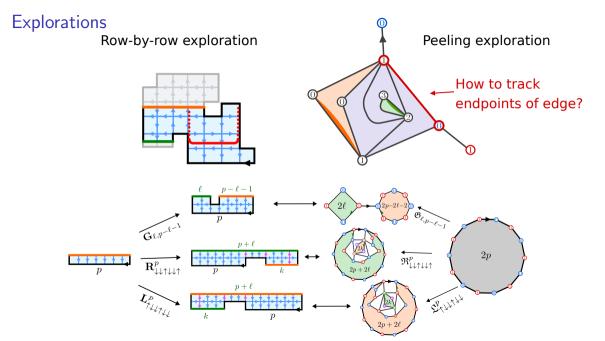


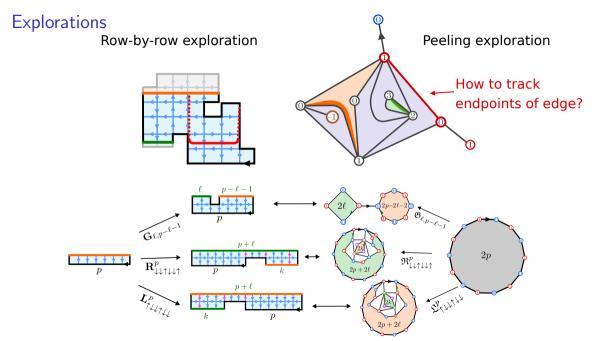


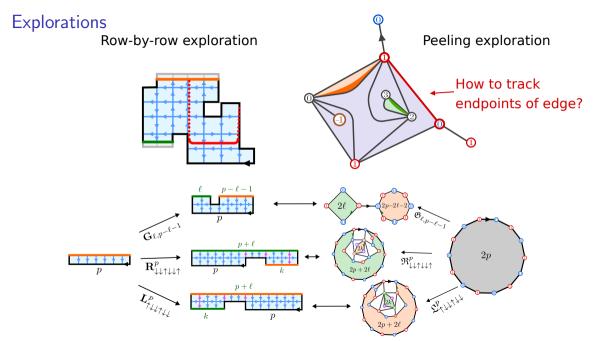
Explorations



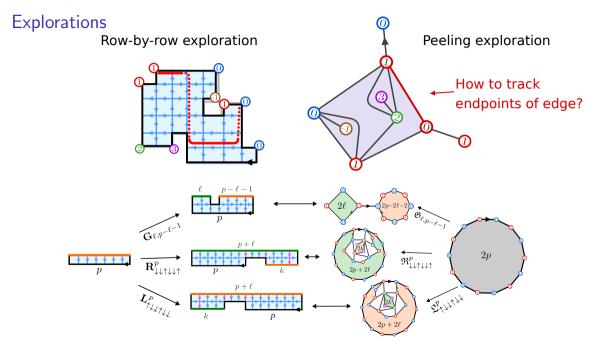




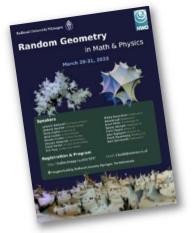




Explorations Row-by-row exploration Peeling exploration How to track endpoints of edge? $p - \ell - 1$ 2p $\mathfrak{R}^p_{\downarrow\downarrow\uparrow\uparrow\downarrow\downarrow\uparrow}$ $\overline{\mathbf{R}^p_{\downarrow\downarrow\uparrow\downarrow\downarrow\uparrow}}$ $p + \ell$ SP TYTY



► Problem proposed by F. Ferrari at workshop *Random Geometry in Math & Physics* in 2023.

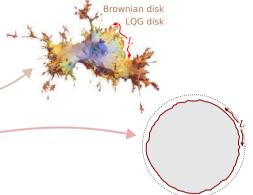


- Problem proposed by F. Ferrari at workshop Random Geometry in Math & Physics in 2023.
- ► Two-dimensional quantum gravity on the disk:

$$Z_{
m EQG}(\Lambda,L) = \int_{\{
m all\ metrics\ with\ bdry\ length\ L\}} {
m d} g\, e^{-\Lambda\, {
m Area}},
onumber \ Z_{QJT}(L,\Lambda) = \int_{\{
m const.\ curvature\ metrics\}}$$

- ▶ Problem proposed by F. Ferrari at workshop Random Geometry in Math & Physics in 2023.
- Two-dimensional quantum gravity on the disk:

$$Z_{
m EQG}(\Lambda,L) = \int_{\{
m all\ metrics\ with\ bdry\ length\ L\}} {
m d} g\,e^{-\Lambda\,{\sf Area}},$$
 $Z_{
m QJT}(L,\Lambda) = \int_{\{
m const.\ curvature\ metrics\}} {
m d} g\,e^{-\Lambda\,{\sf Area}}$ [Jackiw, Teitelboim, '80s]

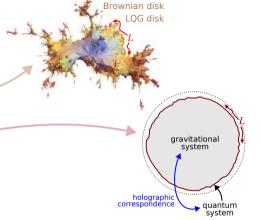


- ► Problem proposed by F. Ferrari at workshop *Random Geometry in Math & Physics* in 2023.
- ► Two-dimensional quantum gravity on the disk:

$$Z_{
m EQG}(\Lambda,L) = \int_{\{
m all\ metrics\ with\ bdry\ length\ L\}} {
m d} g \, e^{-\Lambda\, {
m Area}}, \ Z_{QJT}(L,\Lambda) = \int_{\{
m const.\ curvature\ metrics\}} {
m d} g \, e^{-\Lambda\, {
m Area}}$$
 [lackiw, Teitelboim, '80s]

Activity in Quantum JT gravity due to holographic correspondence.

[Kitaev, Maldacena, Maxfield, Mertens, Polchinski, Saad, Shenker, Stanford, Turiaci, Verlinde, Witten, Yang,]

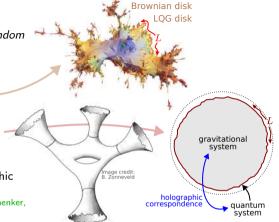


- Problem proposed by F. Ferrari at workshop Random Geometry in Math & Physics in 2023.
- ► Two-dimensional quantum gravity on the disk:

$$Z_{
m EQG}(\Lambda,L) = \int_{\{
m all\ metrics\ with\ bdry\ length\ L\}} {\it Z_{QJT}(L,\Lambda)} = \int_{\{
m const.\ curvature\ metrics\}} {\it dg\ e^{-\Lambda\, Area}}$$
 [Jackiw, Teitelboim, '80s]

Activity in Quantum JT gravity due to holographic correspondence.

[Kitaev, Maldacena, Maxfield, Mertens, Polchinski, Saad, Shenker, Stanford, Turiaci, Verlinde, Witten, Yang,]



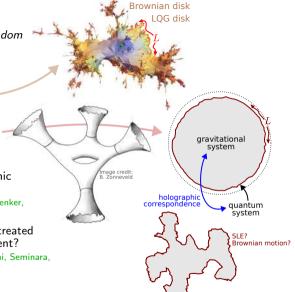
- Problem proposed by F. Ferrari at workshop Random Geometry in Math & Physics in 2023.
- ► Two-dimensional quantum gravity on the disk:

$$Z_{
m EQG}(\Lambda,L) = \int_{\{
m all\ metrics\ with\ bdry\ length\ L\}} {
m d} g\,e^{-\Lambda\,{
m Area}},$$
 $Z_{QJT}(L,\Lambda) = \int_{\{
m const.\ curvature\ metrics\}} {
m d} g\,e^{-\Lambda\,{
m Area}}$ [Jackiw, Teitelboim, '80s]

Activity in Quantum JT gravity due to holographic correspondence.

[Kitaev, Maldacena, Maxfield, Mertens, Polchinski, Saad, Shenker, Stanford, Turiaci, Verlinde, Witten, Yang,]

 But predominantly boundaries are asymptotic / treated perturbatively. Is there a finite boundary equivalent?
 [Stanford, Yang, Turiaci, Verlinde, Griguolo, Panerai, Papalini, Seminara,
 ...]



- ► Problem proposed by F. Ferrari at workshop *Random Geometry in Math & Physics* in 2023.
- ► Two-dimensional quantum gravity on the disk:

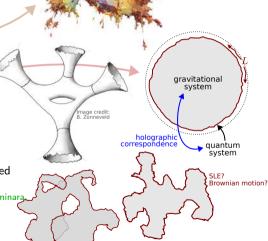
$$Z_{
m EQG}(\Lambda,L) = \int_{\{
m all\ metries\ with\ bdry\ length\ L\}} {
m d} g \, e^{-\Lambda\, {
m Area}}, \ Z_{QTT}(L,\Lambda) = \int_{\{
m const.\ curvature\ metries\}} {
m d} g \, e^{-\Lambda\, {
m Area}}$$
 [Jackiw, Teitelboim, '80s]

Activity in Quantum JT gravity due to holographic correspondence.

[Kitaev, Maldacena, Maxfield, Mertens, Polchinski, Saad, Shenker, Stanford, Turiaci, Verlinde, Witten, Yang,]

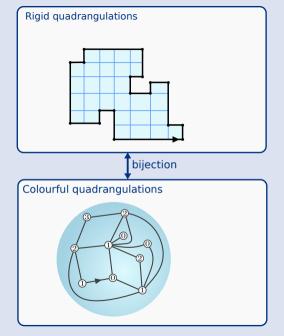
- But predominantly boundaries are asymptotic / treated perturbatively. Is there a finite boundary equivalent? [Stanford, Yang, Turiaci, Verlinde, Griguolo, Panerai, Papalini, Seminara...]
- Ferrari: should allow disks to self-overlap. [Ferrari, '24]

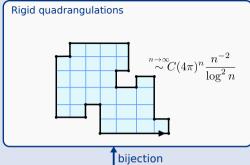
Is there a tractable model of uniform random discrete flat disks?

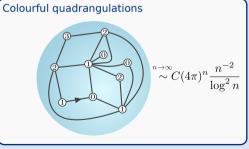


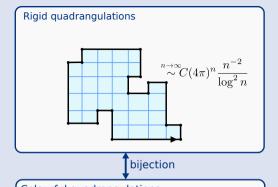
Brownian disk

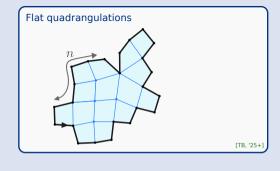
LOG disk

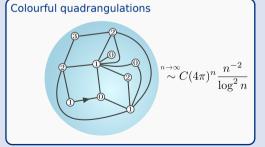


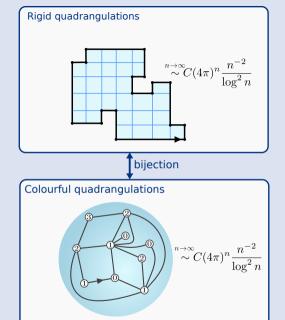


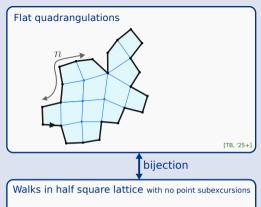


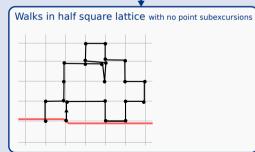


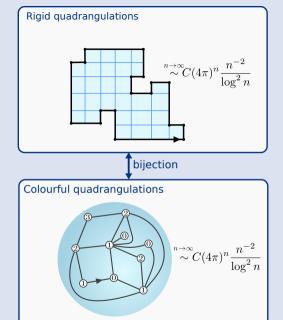


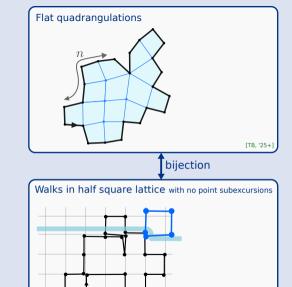


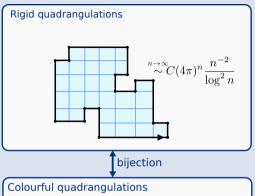


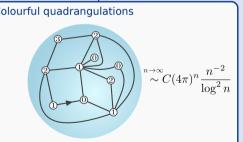


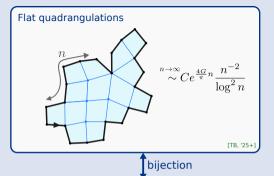


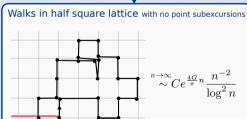


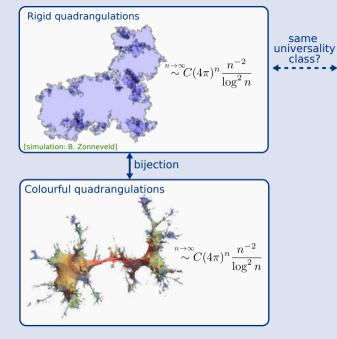


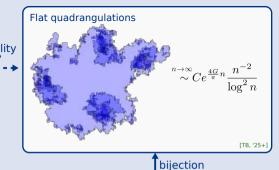


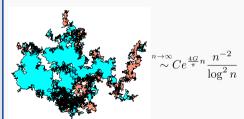


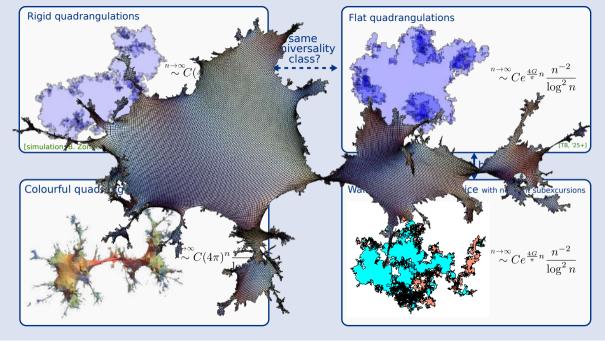


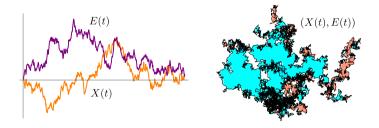




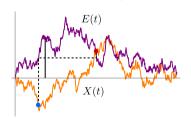


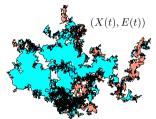




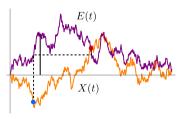


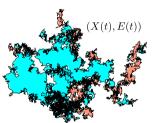
and
$$Y(t) \coloneqq \int_0^{E(t)} \operatorname{sign} \left[X \left(\min\{s \ge t : E(s) = y \} \right) - X \left(\max\{s \le t : E(s) = y \} \right) \right] \mathrm{d}y.$$

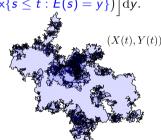




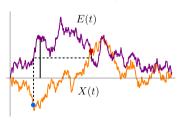
and
$$Y(t) := \int_0^{E(t)} \operatorname{sign} \left[X \left(\min\{s \ge t : E(s) = y \} \right) - X \left(\max\{s \le t : E(s) = y \} \right) \right] dy$$
.

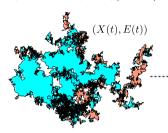


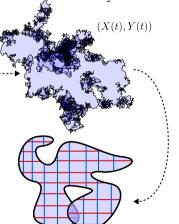




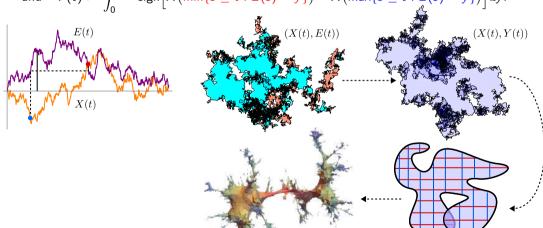
Bijection suggests a construction of the limit: let $\left\{\begin{array}{l} (X(t))_{t\in[0,1]} \text{ a Brownian bridge} \\ (E(t))_{t\in[0,1]} \text{ a Brownian excursion} \end{array}\right.$ and $Y(t) \coloneqq \int_0^{E(t)} \mathrm{sign} \Big[X \Big(\min\{s \geq t : E(s) = y\} \Big) - X \Big(\max\{s \leq t : E(s) = y\} \Big) \Big] \mathrm{d}y.$







and
$$Y(t) := \int_0^{E(t)} \operatorname{sign} \left[X \left(\min\{s \ge t : E(s) = y \} \right) - X \left(\max\{s \le t : E(s) = y \} \right) \right] dy.$$



Bijection suggests a construction of the limit: let $\begin{cases} (X(t))_{t \in [0,1]} \text{ a Brownian bridge} \\ (E(t))_{t \in [0,1]} \text{ a Brownian excursion} \end{cases}$

Bijection suggests a construction of the limit: let
$$\left\{\begin{array}{l} (E(t))_{t\in[0,1]} \text{ a Brownian excursion} \\ (E(t))_{t\in[0,1]} \text{ a Brownian excursion} \end{array}\right\}$$
 and $Y(t) \coloneqq \int_0^{E(t)} \text{sign} \left[X\left(\min\{s\geq t: E(s)=y\}\right) - X\left(\max\{s\leq t: E(s)=y\}\right)\right] \mathrm{d}y.$

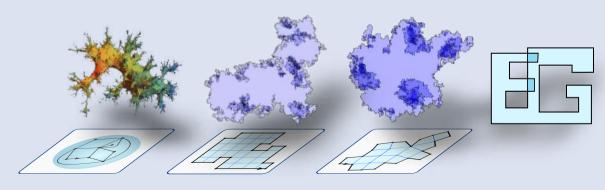
Compatible with critical mating of trees? [Duplantier, Miller, Sheffield, '14] [Aru, Holden, Powell, Sun, '21]

[Lehmkuehler, '23]

 $LQG_2 + GFF$

Perspectives: questions

- ▶ Are there other bijections of this type between flat disks and Z-labeled maps?
- ▶ Is there a bijection between rigid quadrangulations and half-plane excursions?
- ▶ What is the law of the conformal map to the uniform disk?
- ► Can the bijection be understood as a discrete version of mating of trees for critical LQG?



Perspectives: questions

- ▶ Are there other bijections of this type between flat disks and Z-labeled maps?
- ▶ Is there a bijection between rigid quadrangulations and half-plane excursions?
- ▶ What is the law of the conformal map to the uniform disk?
- ► Can the bijection be understood as a discrete version of mating of trees for critical LQG?

