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The Cori-Vauquelin-Schaeffer bijection

Everybody knows the Cori-Vauquelin ’81 and Schaeffer ’98
bijection, and its extension by Bouttier-Di Francesco-Guitter ’04.
It is often presented as a mapping from well-labeled plane trees to
pointed plane quadrangulations, because it is the one that has a
nice counterpart in the continuum.

Link the consecutive corners
of a well-labeled tree to their
successors: the next available
corner of lesser label.
This yields a pointed
quadrangulation (q, v∗), rooted
if the tree was also rooted
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The inverse construction
The inverse mapping, starting from a pointed (rooted)
quadrangulation (q, v∗), consists essentially in determining a
“geodesic spanning tree” by considering the geodesic orientation
away from v∗, and drawing dual edges according to the following
rule:

`

We interpret each vertex v 6= v∗ as a
British roundabout with label given by
dq(v , v∗) (possibly shifted by
dq(root, v∗))
We construct a plane tree whose
branches correspond to the cars that
must yield.
In this interpretation, we see that
internal vertices of the tree are
vertices from which emanate multiple
geodesic paths to v∗.
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Passing to the limit in a random context
Let (Tn, `n) be a uniformly random well-labelled rooted plane tree with
n edges. We describe this tree through its contour and label process:

Cn(i) = height of the i-th visited corner in contour order

Ln(i) = label of that same corner

Then (Chassaing-Schaeffer ’04)(
Cn(2nt)√

2n
,

Ln(2nt)
(8n/9)1/4

)
converges in distribution to (e,Z ), a
standard Brownian motion excursion and
a (conditionally) centered Gaussian
process with

Cov(Zs,Zt |e) = inf
[s∧t ,s∨t]

e .
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The continuum CVS mapping
More formally, we define two “tree distance functions” associated with
e and Z by

de(s, t) = es + et − 2 inf
[s∧t ,s∨t]

e

and

dZ (s, t) = Zs + Zt − 2 max

(
inf

[s∧t ,s∨t]
Z , inf

[s∨t ,1]∪[0,s∧t]
Z
)

as well as the two quotient metric spaces Te = ([0,1]/{de = 0}) and
TZ = ([0,1]/{dZ = 0}), the continuum analogues of the tree Tn and
the geodesic tree constructed by the CVS mapping.

s t

a∗

a
b

inf [a,b] Z
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The continuum CVS mapping

The Brownian sphere distance is then defined by

D(s, t) = inf

{
k∑

i=1

dZ (si , ti)

}

where the infimum is taken over all k ≥ 1 and si , ti ,1 ≤ i ≤ k such
that s1 = s, tk = t and de(ti , si+1) = 0 for 1 ≤ i ≤ k − 1.
The Brownian sphere itself is defined by the quotient

X = ([0,1]/{D = 0},D) , with projection p : [0,1]→ X

and it can be further decorated by
I the marked points x0 = p(0) and x1 = p(s∗) where s∗ = argmin Z
I the probability measure µ = p∗Leb[0,1].
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The inverse mapping?

Can one “invert” this construction and recover (e,Z ) from
(X , x0, x1, µ)? In a sense, this is a folklore result due to
a theorem by Le Gall (’10) stating that the set

Cut(X , x1) = {x ∈ X : there exists >1 geodesics from x to x1}

is the image of

Skel(Te) : {a ∈ Te : Te \ {a} is disconnected}

by a homeomorphism θ : Skel(Te)→ Cut(X , x1), and
the easily checked fact that for a ∈ Te,

Za = D(θ(a), x1)− D(x0, x1) .
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The inverse mapping?
It remains to perform some steps:
order this embedded tree, and
recover its metric and its leaves.
Denoting by [[x , y ]] the path in
Cut(X , x1) between x and y , we can
use the fact that (Zz , z ∈ [[x , y ]])
forms a path of a Brownian motion,
defined up to parametrization since
de(θ−1(x), θ−1(y)) is unknown.
If (Bt )t≥0 is a standard Brownian
motion and f : [0,1]→ R+ is
continuous and increasing, then f is a
function of (Bf (t))0≤t≤1, e.g.
f (1) = limε↓0 ε

2Nε where Nε is the
number of successive intersections of
(Bf (t)) with εZ.

x1

Cut(S, x1)

x0

Problem: can this informal
reconstruction be performed
as a measurable function of
X?
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The continuum CVS mapping made formal
More formally, let S be the set of pairs h = (f ,g) of continuous
functions [0,1]→ R with value 0 at 0 and 1. We associate with them:

the real trees Tf , Tg as was done for e and Z ,
the quotient pseudo-distance Dh = dg/{df = 0} as was done for
D, and the projection ph : [0,1]→ Xh = [0,1]/{Dh = 0},
the measure µh = (ph)∗Leb[0,1],

the marked points x0
h = ph(argmin f ) and x1

h = ph(argmin g).

Proposition (The formal CVS mapping)

The mapping ψ : h 7→ X2•
h = [Xh,Dh, µh, x0

h , x
1
h ] is a Borel mapping from

S the Gromov-Hausdorff-Prokhorov space mM2• of isometry classes
of compact metric measure spaces with two marked points.

In particular, the Brownian sphere is obtained by composing ψ with the
random variable (e,Z ).
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The continuum CVS mapping made formal
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The Lusin-Suslin theorem
Theorem (Lusin-Suslin)
Let X ,Y be standard Borel spaces and A ∈ B(X ). Let f : X → Y be a
Borel measurable mapping such that f |A is injective. Then f (A) is Borel
and f induces a Borel isomorphism between A and f (A).

Informally, this theorem implies that if a mapping can be inverted
“abstractly”, then it can also be “concretely”.
Problem: ψ is not injective! Indeed, ψ(Rh) = ψ(h) where
Rh = (f (1− ·),g(1− ·)).
This is, however, essentially the only obstruction to injectivity. Let
εh = sgn(1− 2 argmin g), and define, for h ∈ S,

ψ(h) = (X2•
h , εh) .

Finally, let PSnake be the law of (e,Z ) on S, and P2•
Sphere be the law of

X2•
(e,Z ).
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The inverse mapping, made formal

Theorem (Continuum CVS bijection)

There exists a Borel mapping φ : mM2• × {−1,1} → S such that
P2•

Sphere(dX2•)-a.s.,

ψ ◦ φ(X2•, ε) = (X2•, ε) ε ∈ {−1,1} ,

PSnake(dh)-a.s.,
φ ◦ ψ(h) = h .

The proof consists in showing that ψ is injective on a Borel set A
of full PSnake-measure, by a careful description of the
reconstruction procedure sketched above, and then applying the
Lusin-Suslin theorem.
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The role of ε

Proposition
Under PSnake(dh), the random variables ψ(h) and εh are
independent, with εh uniform in {−1,1}.
Moreover, it holds that, P2•

Sphere-a.s., φ(X2•,−ε) = Rφ(X2•, ε).

In particular, ε indeed allows to discriminate between h and Rh.
Interestingly, this orientation of the snake process also
corresponds to an orientation of the Brownian sphere. Hence, in a
sense, the mapping φ allows to make sense of the intuitive fact
that conditionally given the Brownian sphere, its orientation is
chosen uniformly at random among the two possible orientations.
A non-trivial part of this statement is that one can indeed do so in
a measurable way.
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Orienting the Brownian sphere

We let Ch = Cut(Xh, x1
h ), Γh be the set

of points inside some geodesic to x1
h ,

and X̃h the complement of Ch ∪ Γh.
For x ∈ X̃h, there is a unique oriented
Jordan curve γ(x) going from x0

h to x
in Ch, and then from x to x1

h in Γh.
Choosing an orientation amounts to
choosing which of the two Jordan
domains lies to the left of γ(x), and
this is independent of x . We let Dx be
this domain.
We fix this choice as follows: take
x = x1

h and let Dx1
h

be the domain of
smallest µh-mass if εh = 1, and the
domain of largest µh-mass if εh = −1.

x1h Cut(Xh, x
1
h)

Γh
x0h

X̃h

x

Dx
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The role of the marked points

As is well-known, the points x1
h (the distinguished point) and x0

h
(the root) play very different roles in the CVS bijection.
However, given Xh = [Xh,Dh, µh], these two points are two
independent samples from µh.

Corollary (Resampling the marked points)

Let X = [X ,d , µ] have law PSphere. Conditionally given X, let x0, x1 be
two independent random points in X with law µ, and set

X2• = [X ,d , µ, x0, x1],
W± = φ(X2•,±1).

Then, almost surely, R(W+) = W− and ψ(W+) = ψ(W−) = X2•.
Moreover, if σ ∈ {+,−} is itself random, independent of X2•, and
uniformly distributed, then Wσ has law PSnake.
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The role of the measure

The measure µh is used to recover the time paramatrization of h:
for x ∈ X̃h, the point x is explored at time µh(Dx ), where Dx is the
Jordan domain discussed above.
However, a result by Le Gall (’22) shows that PSnake(dX)-a.s., µ is
a constant multiple of the Hausdorff measure of (X ,d , µ) with
gauge function r4 log log(1/r), and hence µ is determined by the
metric structure.
Hence, again by the Lusin-Suslin theorem, there is a Borel
mappingM→ mM, whereM is the Gromov-Hausdorff space,
that sends the law of [X ,d ] to that of [X ,d , µ].
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Conclusion

The Lusin-Suslin theorem is a theoretical tool, which heuristically
says that a measurable map that can be inverted abstractly can
also be inverted concretely.
We described in this context a continuum analogue of the CVS
bijection, or BDG with “small faces”. There should also be

I a related “continuum Chapuy-Marcus-Schaeffer bijection” in the
context of Brownian surfaces (Bettinelli-M. ’22)

I a “continuum BDG bijection” in the context of stable maps with
exponent α recently considered in Curien-M.-Riera ’25. A question
would be whether a single measurable map works for all α at once.

The Lusin-Suslin theorem might have interesting things to say on
the side of LQG as well.
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