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BECOME A FAMILY OF THE PAST IN
LEJRE LAND OF LEGENDS

Do you want a different, active and sustainable vacation? And do you dare to try your
hand at life as an Iron Age family, Viking or farmer? Then head to Lejre Land of
Legends for a week's stay in one of Denmark's most beautiful landscapes, at one of
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Book your vacation in the past!




Quantum Quenches from Quantum Fields

Quantum Quench

Quark confinement

What happens to a quantum many body system
after a sudden disturbance 7




Quantum Quenches and Overlaps

Set out quantum system in initial state |¥)
which is not an eigenstate of its Hamiltonian Hy

Study time development of local observable
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u,v

Holu) = Eylu)

Assume Hy Hamiltonian of an integrable system

When and how can (Wy|u) be calculated in closed form?

Of relevance for
e Time development after quantum quench
(post-quench steady state, post-quench entanglement dynamics)

e Correlation functions in AdS/dCFT



Integrable Quenches
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Eigenstates: Hg|u) = Fp|u)
Integrable Quench: (¥j|lu) computable in closed form

Identified types of relevance for AdS/dCFT:

Matrix product states: |¥,) = |MPS) = ZTr o oo ts )1 .. sL)

L
Ex: Heisenberg spin chain  |MPS) = H M @t + | 1) @t)"



Integrable Quenches

Identified types of relevance for AdS/dCFT:

L
2

Valence Bond States: [Wo) = |VBS) = [K)®7, K =) K, o|s152)

51,82

Of possible relevance for AdS/CFT:

Cross cap states: |C) = [c))®"/2, where |c)) = | 1);] )z p; + 151 Dy



The AdS/CFT correspondence

Quantum Field Theory String Theory

——)
Maldacena duality

(> 25.000 cites)

Quantum many
body system



Spin chains connecting field theory and string theory

Field excitations ) String Excitations

N ~

Excitations on spin chain

Interactions between excitations completely determined by symmetries
The spin chain turns out to be integrable, i.e. exactly solvable

Range of spin chain interaction: L+1, with L the loop order in the field theory



Quantum Quenches from Quantum Fields

Performing a Quantum Quench

——

De Leeuw,
Kristjansen &
Zarembo

Defect Quench Initial State



AdS/CFT

Conformal operators <— String states, (AdS/CFT)

| |

Eigenstates of integrable super spin chain: u)

Main examples: 4D QFT (M =4 SYM), 3D QFT (ABJM theory)
Planar limit

AdS/dCFT

Co-dimension d defect <+— Probe brane

|

(Integrable) boundary state |Wq) of spin chain

(WUy|u) is a correlation function



How |MPS) enter the game

Ex: Domain wall set-up in 4D (N =4 SYM)

) (560,5171,5132)

U(N — k) U(N) for z3 — oo

(¢) = 0 (@) # 0

k becomes the bond dimension of the |MPS)



Higgs configuration

. 1 <tz) Ok: N—k
Fleld <¢z> _ Cbgl _ ( kxk x( ) ) ; 1 = 1,2,3, xrg > 0
vacuum: T3\ Ov—ryxk  O(N—k)yx(N—k)
= 6 = i =0

where t;, 1 = 1,2, 3 constitute the generators of a
k-dimensional irreducible repr. of SU(2).

. d? ¢’
Origin: 2 = [Qb;‘l, [Qb;‘la ngl” :

. 2
Classical e.o.m. dxs

(x5 distance from defect)

Assume only x3 dependence and x3 > 0,
A =0 T =0
7 0!



One-point functions and |[MPS)

General scalar conformal operator

Op(z) = ¥ "2Tr(¢p;, ..., )  i1,---»i0 €{1,2,...,6}
= Kigenstate of integrable SO(6) spin chain, |u)

Minahan &

Tr(Piy Giy - - Pir) ~ [SiySin - Sip) Zarembo

Due to the vevs scalar operators can have 1-pt fcts already at tree level

L k k Ch
(Or(z)) = o7 Wi e () M) o

Matrix product state (of bond dimension k > 1) associated with defect

‘MPSk Z tI’ (k) . (k))’Szl o S'L'L>7 de Leeuw, C.K. &

Zarembo 15

(MPSy, [u)
(ulu)?

Object to calculate  Ck (u) =



. . . Ghoshal,
Integrable boundaries in integrable QFT's  zamolodchikoy o3

e No particle production or annihilation
e Pure reflection, possibly change of internal quantum numbers

e Yang-Baxter relations fulfilled (order of reflection does not matter)

Boundary

2 E——)

Wick rotation

\/

Pure reflection Entangled (p,-p) pairs
+BYBE for reflection matrix +KYBE for initial state

Initial state



Integrability test

Mesendery Spn Chan

Ex: Heisenberg spin chain

. 111
(J ™ Vacuum State: All spins down |0)
N LA

Excited states with M excitations: |[{p;}M,)

L conserved charges, Qn, with eigenvalues @),

Qn (1piy) = (=1)" Qn (1-Pi})

Piroli, Pozsgay
Integrable initial state: Qomii1|¥) =0, Vm I\3/Jk(17mb20
T (u) T [Wo) = T(u)| Vo)
Parity I Transfer matrix

T explicitly known — Easy to carry out concrete checks



Integrable Quenches in AAS/CFT

String theory probe

Field theory defect

Matrix product state

D1-brane Monopole Diagonal matrices
D3-brane Determinant operator Diagonal matrices
D3-brane (A subset of) Rigid Gukov Witten surface defects | SU(2) representations
D5-brane Domain Wall SU(2) representations
D7-brane Domain Wall SO(5) representations




Elements of the language of integrability

Eigenstates with M excitations described in terms of M momenta

p1,...,pp O rapidities u; = %Coth(pi/Q)

. L
i K : Heisenber
U — % Up — Uj + 1 - &
— 3 | | k J - erk’ k = 17 .M spin chain
Up + 3 j#kuk—uj—z

Can be encoded in [Baxter polynomial |Q(u) = H,f\il(u — U;)

u) = {u;}) = B(w1) ... B(uar)|0)

(ulu) = det G({u;}), |Gaudin determinant

_ Xk

Gy = OU ;
j



Integrable overlaps and pairing

Qan41/P) =0 =
(To|u) # 0 iff roots are paired {u;, —u;};o%

Gaudin matrix has block structure

|4 B| |A+B B| |A+B B | _
detG—‘B A‘_'B—kA A‘_‘ 0 A_B‘—det(A—i—B)-det(A—B)
=detGy -det G_

Quantity entering overlap formulas

det G
SDet G = dzt G+ = Baxter polynomials
2 ozsgay’
‘5> — (| TT> —|_ | \L\L>)®L/2, 02 — <6‘u> — Q<O) SDetG Erocin:/ar?‘m

(ujy)  Q(3)



Integrable Super Spin Chains (of type GL(M|N))

Cartan matrix: M,p, Dynkin labels q¢,, a,b=1,...n

Bethe equations

. L )
U .o ,l'q_a U - — U _I_ ?’Mab
(_1)QCL _ a,j 2 H a,j b,k 2 — e'LXa,j
1qq Moy — )
Ua,j T 5 b Yagj — Ubk — —3*

a=1,...n (# of nodes), j =1,..., K, (# of roots of type a)

Baxter polynomials: Q,(u) = Hﬁl (u—1uqj), a=1,...n

: : OXaj .
Gaudin matrix  Ggjpr = 8?; I ofsize ), Ko x ), K,
bk



Overlaps with |§)-states from TBA

Q(0)
Q(3)
SO(6): |0 =(XX)+|YY)+|ZZ)+ | XX)+|YY) +|Z2Z))®E/2

SU(Q) : |(5> = (‘ TT> -+ ‘ ¢¢>)®L/2, 02 — S det GG Poszgay ‘18

Ql %) Q2 (%) QS (%) de Leeuw, Gombor, C.K
Linardop;)ulos, Poz)sgély.zlg
Gombor ‘21
AdS/CFT
1
PSU(2,2[4):  O------®&—O0——O0——O0——@------0
6 4 1 2 3 5 7
RQ1(0)Q3(0)Q4(0)Q5(0)Q7(0)
C” . . - Sdet G CK,
Q2(0)Q2(3)Qa(3)Q6(0)Qa(3) ~ Zarombo 2



From |§) to |MPSg) by dressing

Example for SU(2) chain

a= k—1

2 @
CMPSk — L
| ) Z a Q ((a _

k-1
a= 2

=~

2)Q (%) Q
)i) Q ((a—3)7) \/ Z

Find a relation a la (systematic recursive strategy)

de Leeuw, Gombor,

C.K,, Linardopoulos,

IMPS;) = TF=D (wye_1)[0) + an THF2 (uye_o)[6) +... "

Gombor, C.K,,
Qian ‘24

L == [ransfer matrix

Take the inner product with eigenstate |u)



. «qe . e sy Gombor &
More general integrability and pairing conditions — >"%

Generalized integrability condition

Factorizable T-matrix: T'(u) = T4 (u)T_(u)
(WoIT T (u) IT = (Wo|T+(u), uncrossed
(Wo II Ty (u) IT = (¥o|T=(u), crossed

Generalized pairing condition
{Uaj} ={—Usa);j}, a=1,...,4 of nodes

o(a) =1d, chiral overlap %_g_g

<o

o(a) #1d, achiral overlap (=



Overlaps with |[MPS) directly

Solve KT-relation Gombor ‘24
SR () (0 5| Thg () = Y (0O |Tor(—u) K77 ()
kafy I{?,’Y

Overlap can be extracted from K (u)
by recursive procedure

Universal form

<MPSdb \u} o

(ufu)?

i s det G
ol CEI NS
k=1 1=1
Q

(Square roots of) Baxter polynomials




What have we learnt 7

e Precise definition of an integrable quench —
Concrete test method

e Overlap formulas in closed form
contains info about post-quench behaviour

e.g. time development of correlation functions, entanglement entropy...



