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1-catalytic equations

Recall from Mireille’s talk that a I-catalytic equation is an equation of the form

P<F(u)7f17f27'”7fk7u7t) =0

where P is a polynomial with coefficients in some field
and we seek the unknown formal power series F'(u) = F'(t,u) € F[[t,u]] and f; = f;(t) € F|[[t]].
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for the enumeration of rooted planar maps w.r.t. face degree distribution.
More generally 1-catalytic equations are ubiquitous in map enumeration, and closely

related to the loop equations of the early matrix integral literature. They are also
sometimes known as discrete differential equations.



1-catalytic equations

Recall from Mireille’s talk that a I-catalytic equation is an equation of the form

P<F(u)7f17f27'”7fk7u7t) =0

where P is a polynomial with coefficients in some field
and we seek the unknown formal power series F'(u) = F'(t,u) € F[[t,u]] and f; = f;(t) € F|[[t]].

These equations also surface in various other enumeration problems, for instance for

Families of pattern avoiding permutations (Zeilberger 92, Bona, Bousquet-Mélou, late 90’s)
Families of Tamari intervals (Chapoton, 2000's, Bousquet-Mélou-Chapoton 2022)

Families of Planar (normal) A-terms (Zeilberger and Giorgietti, 2015)

Fighting fish and variants (Duchi et al, 2016)

Fully parked trees (Chen 2021, Contat et al 2023)



1-catalytic equations have algebraic solutions

Recall from Mireille’s talk that a I-catalytic equation is an equation of the form
P<F(u)7f17f27' "7fk7u7t) =0

where P is a polynomial with coefficients in some field
and we seek the unknown formal power series F'(u) = F'(t,u) € F[[t,u]] and f; = f;(t) € F|[[t]].

The celebrated Bousquet-Mélou — Jehanne theorem states that 1-catalytic equations of
the form

F(u) = Fy(u) + tQ(F(u), AF(u), ..., A*F(u),u,t)

where Fy(u) and Q(v, w1, ..., wy,u) are polynomials with coefficients in I, and
F — f1 — — . —uk
AFF(u) = (u) — f1 ufgk U fk’
U

have unique solutions, and it provides a non degenerated system of algebraic equations
that they satisfy.



1-catalytic equations have algebraic solutions

For the earlier Tutte equation
F(u) =14 tu’F(u)? + tuz; F(u) + Z 2z A2 ()
1>2
BMJ theorem yields a parametrization that can be then rewritten as
Fo(t) = 82 4 So — 251 [v 2 |W — [v 3 |W
with

W:Zzi(v—l—sl—l—Sg/’U)i_l, S1 =tu’]W, and Sy =t+tlv W
i>1
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1-catalytic equations have algebraic solutions
L—With z; = 0 for all i > m.

For the earlier Tutte equation

F(u) =14 tu’F(u)? + tuz; F(u) + Z 2z A2 ()
i>2

BMJ theorem yields a parametrization that can be then rewritten as
Fo(t) = 82 4 So — 251 [v 2 |W — [v 3 |W
with

W:Zzi(v—l—sl—l—Sg/’U)i_l, S1 =tu’]W, and Sy =t+tlv W
i>1

For instance for triangulations, z; = 0 for all © # 3, and we get:

Fy(t) = 87 + S — 25153

with
S1 =t(S% +2S3), and Sy =t+ 2t(S152).



Context free languages and algebraic specifications/decompositions

Algebraic equations are closely related to well funded context-free specifications:
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Context free languages and algebraic specifications/decompositions

Algebraic equations are closely related to well funded context-free specifications:

( FO = p)(z, ;A FR)
_ with each P(¥) a finite combination
< : of + and X operators
(k) = (k) (. F(1) (k)
a = PENz, F . FW)) eg A=z+ Ax A
The gf translation is an N-algebraic system:
( FO = pA, Q) F() with each P(*) a polynomial with
< : non negative coefficients, and with
, a unique power series solution
k _ k . 1 k
\ F) = pC )(t,F( ),...,F( )) F(l)EF(l)(t):ZFqsl)tn in C[[t]]

n>0
e.g. A(t) =t + A(t)?
Applies in particular to non ambiguous context free grammars.
(Chomsky-Schiitzenberger theorem)
Conversely when the gf of a combinatorial familly A is known to be N-algebraic,
one would like to explain it via a context-free specification of A.

(Schiitzenberger's methodology for algebraic gf)
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Context-free decompositions are naturally associated with multitype simply generated trees:

F2 = z4zxFD x F) x 7O

AC
{ F) = z42xF2 x 72
A C

The derivation trees of a context-free specification are multitype simply generated trees,
I.e. trees specified by the allowed node progeny for each color, with independent subtrees.




Context-free specifications and multitype simply generated trees

Context-free decompositions are naturally associated with multitype simply generated trees:

A C
{ F) = z42xF2 x 72
A C

The derivation trees of a context-free specification are multitype simply generated trees,
I.e. trees specified by the allowed node progeny for each color, with independent subtrees.

F2 = z4zxFD x F) x 7O

Conversely when the gf of a combinatorial familly A is known to be N-algebraic,

one would like to explain it via a context-free specification of A
or via a bijection with trees.



Context-free specification for maps

For the earlier Tutte equation

F(u) =14 tu’F(u)? + tuz; F(u) + Z 2z A2 ()
i>2
BMJ theorem yields a parametrization that can be then rewritten as
Fo(t) = 87 4 So — 251 [v 2 |W — [v 3 |W
with
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i>1

This algebraic parametrization was given two beautiful combinatorial interpretations
by Emmanuel Guitter with Jérémie Bouttier and Philippe Di Francesco

e first in terms of blossoming trees,

[Census of Planar Maps: From the One-Matrix Model Solution to a Combinatorial Proof, Nuclear physics, 2002]

e and then in terms of their celebrated BDFG mobiles.
[Planar maps as labeled mobiles, Electr. J. Comb, 2004]
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i>2
BMJ theorem yields a parametrization that can be then rewritten as
Fo(t) = 87 4 So — 251 [v 2 |W — [v 3 |W
with
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i>1

This algebraic parametrization was given two beautiful combinatorial interpretations
by Emmanuel Guitter with Jérémie Bouttier and Philippe Di Francesco

e first in terms of blossoming trees,

[Census of Planar Maps: From the One-Matrix Model Solution to a Combinatorial Proof, Nuclear physics, 2002]

e and then in terms of their celebrated BDFG mobiles.
[Planar maps as labeled mobiles, Electr. J. Comb, 2004]

Later Emmanuel and Jérémie also gave a direct context-free specification of maps

Planar maps as pizza slices, aka [Planar Maps and continous fractions, Comm. Math. Phys., 2012]
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In summary:

e Maps admit "easy” catalytic specifications
e Catalytic equations have nice algebraic solutions

= combinatorial interpretation problem !

These ideas have been generalized for a huge variety of map families...

and have led to many developments in Combinatorics, Probability or Algorithmics

But Catalytic equations also surface in various other enumeration problems, for instance for

e Families of pattern avoiding permutations (Zeilberger 92, Bona, Bousquet-Mélou, late 90's)
e Families of Tamari intervals (Chapoton, 2000’s, Bousquet-Mélou-Chapoton 2022)

e Families of Planar (normal) A-terms (Zeilberger and Giorgietti, 2015)

e Fighting fish and variants (Duchi et al, 2016)

e Fully parked trees (Chen 2021, Contat et al 2023)

So could we (should we?) carry on this combinatorial interpretation program for all these objects...

What about a systematic approach?



BMJ theorem, for order one 1-catalytic equations

Let Q(v,w,u) be a polynomial with Q(0,0,u) # 0

and F'(u) = F(t,u) the unique fps solution of the catalytic equation
1
F(u)=1tQ (F(u), —(F(u) — f),u), where f = f(t) = F(t,0).
u

Let U, V, W and R be the unique fps satisfying the system

(V= t-Q(V,W,U)

R = t-(1+R) Q,(V,W,U)
\ U = t-(1+R) Q,(V,W,U)
W = t-(1+R) Q,(V,W,U)

Then f is given by f=V-UW or tft’:(l_|_R).V

= The particularly simple form of this parametrization calls for a combinatorial lifting.
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Planar \-terms can be presented as trees with

e applications: binary nodes @

e )\-abstractions: unary nodes O

e variables: leaves, represented as arrows & , each matching an ancestor A,

with condition that each A\ is binded to exactly one variable in a planar way...
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The example of planar A\-terms

Planar \-terms can be presented as trees with

e applications: binary nodes @

e )\-abstractions: unary nodes O

e variables: leaves, represented as arrows & , each matching an ancestor A,

with condition that each A\ is binded to exactly one variable in a planar way...

Equivalently, in each subterm there are more variables than abstractions,

or the catalytic parameter, excess(1) = #{variables} — #{abstractions}, is non negative everywhere.

Then a catalytic decomposition is
p— p— >
P===]l= = +

and the catalytic equation for the gf P(u) = > _p tlTlyercess(t) is

P(u) = tu  + tP(u)? +  L(P(u) — P(0))




Decorated trees and non negative trees

non-negative O-tree = necklace tree s.t. o {0 } o ° ©areall matched.
the excess at each pearl is non negative. ) e . ﬁi;ij jjé;}ees
Observe:
slightly stronger condition than excess = #{o} — #{o}

just asking non negative excess on vertices

.‘
0
]
1 ]
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O
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0
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Non negative O-trees and catalytic equations

e, o are all matched.
Let / = { non-negative O-trees }, Q= {(:}} &——10] H{o} > #{e}

in planted subtrees
Q(v,w,u) = Z gsv* D w* ) the vertex type gf, where g, are weights
seQ
and F(u) = F(t,u) = Z gt Tuexees (M) where ¢ = T
TEF

SET s

Proposition. The gf F'(u) of non negative Q-trees satisfies a catalytic equation of order one:

F(u) = 1Q(F(u), L(F(u) - F(0)),u)



Non negative O-trees and catalytic equations

e, o are all matched.
Let / = { non-negative O-trees }, Q= {(:}} &——10] H{o} > #{e}

in planted subtrees
Q(v,w,u) = Z gsv* D w* ) the vertex type gf, where g, are weights
s€Q

and F(u) = F(t,u) = Z gt TIueeess()where ¢, = [, 4s
TeF

Proposition. The gf F'(u) of non negative Q-trees satisfies a catalytic equation of order one:
F(u) = 1Q(F(w), L (F(u) - F(0),u)

Indeed the equation
Fu) =t Y qsF(u)*®) (L(F(u) - F(0))*Vus
s€Q

follows from a decomposition at the root: F = Z s
s€Q

where Ft = F\ f




Non negative O-trees and catalytic equations

e, o are all matched.
Let / = { non-negative O-trees }, Q= {(:}} &——10] H{o} > #{e}

in planted subtrees
Q(v,w,u) = Z gsv* D w* ) the vertex type gf, where g, are weights
s€Q
and F(u) = F(t,u) = Z gt TS where ¢, = [Tic. 4
TEF
Proposition. The gf F'(u) of non negative Q-trees satisfies a catalytic equation of order one:

F(u) = 1Q(F(u), L(F(u) - F(0)),u)

= non-negative O-trees give a generic combinatorial interpretation
for catalytic equations of order one with non negative coefficients.



Non negative O-trees and companion Q-trees

non-negative O-tree = necklace tree s.t. o _{ } e, o are all matched.
- [{:} o—] #{e} > #{e}

in planted subtrees

necklaces are in Q
the excess at each pearl is non negative.

companion Q- tree = necklace tree s.t. o~
necklaces are in Q - ' o @ ©® ® areall matched.

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection
between non negative O-trees and balanced companion OQ-trees

REWIRING

- —>

REWIRING




Balanced companion O-trees VS rooted companion O-trees




Balanced companion O-trees VS rooted companion O-trees

C = CDX(E"‘CQ)




Context-free specifications for companion O-trees

Co = ZxQ(Cq,C,,C,) ﬁ-}% Q:{-O,...}
Qv,w,u) = Z IO IO MIC)

seQ



Context-free specifications for companion O-trees

ZxQ(Ch,C,,C,) ﬁ% Q:{-O,...}
Q,w,w) = 3 gsv* @)y ()

s€Q
Zx(1+C,) xQ,(Ch,C,,C,) A = Eg +D—§g Q. = {G,Q‘,' .. }



Context-free specifications for companion O-trees

Cn = ZxQ(Co,C.,Cs) | = _% o
Q(v,w,u) = Z MRLIOMICMIC)

seQ

Co = Zx(14C,) xQL(CH,C,,C,) A% +D—§g Q

Co = ZX (1 ‘|‘Co) X Q,Q(CEhCOaCO) k

I
_|_
QL



Context-free specifications for companion O-trees

7l C L= '}&% -
Qv, w,u) = Z q3v°(8)w'(8)u‘(5)

SEQ

Zx (14 C.) x QL(Ch,Cy,CL) A% +D—§g Q. =

Zx (1+C.) x Qy(Cr,C,,Ch) k%ﬁ;-% Qe
Z x (14C,) x Q,(Cx,C,, Cy) kg%JrD—E% Qe

{QQ}



The combinatorial lifting of BMJ theorem

THEOREM (Duchi-S. 23)
Let F = Z X Q(]—", %(]—"\ f), u) be a catalytic decomposition of order one

where Q(v,w,u) = Z gsv°* D w* )y *%) is the node gf of the associated

s€Q non negative derivation O-trees

then = o = Ch — Cu x C,
fTET c0 = (140, x Q(Ch,C., Cl)

where the companion trees satisfy:

( Co = ZxQ(Ch,C.C,)

< Ce = Zx(14+C,) xQ,(Co,C,,C,)

Cle Zx (14+C,) xQL(Ch,C,,C)
- Ce = Zx((1+C0,) xQ,(Ch,C,,C,)
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Open planar A-term are to plane trees with /

e applications: binary nodes ® 0 ®
e abstractions: unary nodes C ®

e variables: leaves, represented as arrow. e

with condition that in each subterm there are more variables than abstractions.
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Planar A-terms and O ,-trees

Open planar A-term are to plane trees with /

e applications: binary nodes ® 0 ®
e abstractions: unary nodes C ®

e variables: leaves, represented as arrow. e

with condition that in each subterm there are more variables than abstractions.

Mark variables with e and abstractions A with e,

then the set of vertex types is

Q/\:{@’@’@} ) .‘ﬁﬁ

Then non negative O),-trees = i ¥y
open planar )\-terms '

non negative O),-trees with excess 0 =
closed planar \-terms

The closure corresponds to the planar abstraction-variable binding.



Planar A-terms, closure and rewiring

Corollary.
Rewiring yields a size-preserving bijection between marked planar A-terms and
companion trees with context-free specification:




What's next?

Catalytic equations also surface in various other enumeration problems, for instance for
e Families of pattern avoiding permutations (Zeilberger 92, Bona, Bousquet-Mélou, late 90's)
e Families of Tamari intervals (Chapoton, 2000’s, Bousquet-Mélou-Chapoton 2022)
e Families of Planar (normal) A-terms (Zeilberger and Giorgietti, 2015)
e Fighting fish and variants (Duchi et al, 2016)
e Fully parked trees (Chen 2021, Contat et al 2023)

Rewiring gives bijections with trees for these models...

= but what are the pizza slices for these structures ?

Bijections allow to tackle new parameters...

= so what is the equivalent of distances in maps for these structures ?



What's next? Higher order 1-catalytic equations

For order 1 we started from
F(u) = tQ (F(w), L(F(u) - f),u
)

and the N-algebraic system

where f = f(t) = F(t,0).

(1+R)-Q,(V,W,U)
1+ R)-Q.,(V,W,U)
(1+R) Q,(V,W,U)

),
.
R
U
W

I
t .
\ t-

For order k we need to deal with
P(F(u)7f17f27-°'7fk7uat) =0 or P(u) — Q(F(u),AF(u),AkF(u),u,t)



What's next? Higher order 1-catalytic equations

For order 1 we started from
F(u) = tQ (F(u), L(F(w) — f),u
)

and the N-algebraic system

where f = f(t) = F(t,0).

),
1% t-Q(V,W,U)

R t-(1+R)-Q,(V,W,U)
U t-(1+R)-Q.,(V,W,U)
W t-(1+R)-Qy,(V,W,U)

\
For order k we need to deal with

P(F(u), f1, fos- - fusu,0) =0 or P(u) = Q(F(u), AF(u),... A F(u), u,1)

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns:
the analogs u1,...,ug of the series u, the F'(u1),..., F(ug) by F and the f1,..., fi.
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F(u) = tQ (F(u), L(F(w) — f),u
)

and the N-algebraic system

where f = f(t) = F(t,0).
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1% t-
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However this system is not immediately N-algebraic

in fact the series u; do not have non negative coefficients in general...



What's next? Higher order 1-catalytic equations

For order 1 we started from

P(u) = tQ (F(u), 2(F(u) — f),u),  where f = f(t) = F(£,0).
and the N-algebraic system (V= t-Q(V,W,U)
R = t-(1+R) Q,(V,W,U)
Y U = t-(1+R)-QL(V,W.U)
W = - (1+R) Q(V,WU)

For order k we need to deal with
P(F(u), f1, far-- s frsu,t) =0 or P(u) = Q(F(u), AF(u),... AFF(u), u, 1)

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns:
the analogs u1,...,ug of the series u, the F'(u1),..., F(ug) by F and the f1,..., fi.

However this system is not immediately N-algebraic

in fact the series u; do not have non negative coefficients in general...

This is making things harder: | think Emmanuel will indeed agree that

bijections are easier to find if one has a nice and complicated formula to interpret!
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What's next? Higher order 1-catalytic equations

P (F(u), f1,f2,---, fr,u,t) =0 or P(u) = Q(F(u), AF(u),... AFF(u),u,t)
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P (F(u), f1,f2,---, fr,u,t) =0 or P(u) = Q(F(u), AF(u),... AFF(u),u,t)

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns:

the analogs u1,...,uy of the series u, the F(u1),..., F(ug) by F and the fi,..., fi.

So here is the plan...
The linear case: essentially the kernel method for 1d walks with arbitray up and down steps

— the kernel method works systematically for finite sets of steps (Bousquet-Mélou, around 2000)

— the corresponding generalized Dyck path admit a context-free specification (Duchon 1998)

New observation: Rewriting the equations satisfied by the kernel roots u; in terms of the
elementary symmetric functions in the 'finite’ and 'infinite’ root separately directy yields

Duchon’s N-algebraic equations.
—> gives a combinatorial specifications for walks with algebraic series of up-steps.

The non linear case: the resulting heuristic is to rewrite the BMJ systems in terms of the elementary
functions in the u; instead, and to avoid the F'(u;), use the discriminant form of the sytem.

in progress: apply the combinatorial specification of the linear case along a branch
and sort out the ugly details to see what comes out !



Thank you,

happy anniversary,

and long life to combinatorial physics !



