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1-catalytic equations

P (F (u), f1, f2, . . . , fk, u, t) = 0

Recall from Mireille’s talk that a 1-catalytic equation is an equation of the form

where P is a polynomial with coefficients in some field F
and we seek the unknown formal power series F (u) ≡ F (t, u) ∈ F[[t, u]] and fi ≡ fi(t) ∈ F[[t]].
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where P is a polynomial with coefficients in some field F
and we seek the unknown formal power series F (u) ≡ F (t, u) ∈ F[[t, u]] and fi ≡ fi(t) ∈ F[[t]].

More generally 1-catalytic equations are ubiquitous in map enumeration, and closely
related to the loop equations of the early matrix integral literature. They are also
sometimes known as discrete differential equations.
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1-catalytic equations

P (F (u), f1, f2, . . . , fk, u, t) = 0

Recall from Mireille’s talk that a 1-catalytic equation is an equation of the form

where P is a polynomial with coefficients in some field F
and we seek the unknown formal power series F (u) ≡ F (t, u) ∈ F[[t, u]] and fi ≡ fi(t) ∈ F[[t]].

• Families of pattern avoiding permutations (Zeilberger 92, Bona, Bousquet-Mélou, late 90’s)

• Families of Tamari intervals (Chapoton, 2000’s, Bousquet-Mélou-Chapoton 2022)

• Families of Planar (normal) λ-terms (Zeilberger and Giorgietti, 2015)

• Fighting fish and variants (Duchi et al, 2016)

• Fully parked trees (Chen 2021, Contat et al 2023)

• . . .

These equations also surface in various other enumeration problems, for instance for



1-catalytic equations have algebraic solutions

P (F (u), f1, f2, . . . , fk, u, t) = 0

where F0(u) and Q(v, w1, . . . , wk, u) are polynomials with coefficients in F, and

∆kF (u) =
F (u)− f1 − uf2 − . . .− uk−1fk

uk
,

have unique solutions, and it provides a non degenerated system of algebraic equations
that they satisfy.

Recall from Mireille’s talk that a 1-catalytic equation is an equation of the form

where P is a polynomial with coefficients in some field F
and we seek the unknown formal power series F (u) ≡ F (t, u) ∈ F[[t, u]] and fi ≡ fi(t) ∈ F[[t]].

The celebrated Bousquet-Mélou – Jehanne theorem states that 1-catalytic equations of
the form

F (u) = F0(u) + tQ(F (u),∆F (u), . . . ,∆kF (u), u, t)



1-catalytic equations have algebraic solutions

For the earlier Tutte equation

F (u) = 1 + tu2F (u)2 + tuz1F (u) +
∑
i≥2

zi∆
i−2F (u)

BMJ theorem yields a parametrization that can be then rewritten as

F2(t) = S2
1 + S2 − 2S1[v

−2]W − [v−3]W

with

W =
∑
i≥1

zi(v + S1 + S2/v)
i−1, S1 = t[u0]W, and S2 = t+ t[v−1]W.



1-catalytic equations have algebraic solutions

For the earlier Tutte equation

F (u) = 1 + tu2F (u)2 + tuz1F (u) +
∑
i≥2

zi∆
i−2F (u)

BMJ theorem yields a parametrization that can be then rewritten as

F2(t) = S2
1 + S2 − 2S1[v

−2]W − [v−3]W

with

W =
∑
i≥1

zi(v + S1 + S2/v)
i−1, S1 = t[u0]W, and S2 = t+ t[v−1]W.

With zi = 0 for all i > m.



1-catalytic equations have algebraic solutions

For the earlier Tutte equation

F (u) = 1 + tu2F (u)2 + tuz1F (u) +
∑
i≥2

zi∆
i−2F (u)

BMJ theorem yields a parametrization that can be then rewritten as

F2(t) = S2
1 + S2 − 2S1[v

−2]W − [v−3]W

with

W =
∑
i≥1

zi(v + S1 + S2/v)
i−1, S1 = t[u0]W, and S2 = t+ t[v−1]W.

With zi = 0 for all i > m.

For instance for triangulations, zi = 0 for all i ̸= 3, and we get:

F2(t) = S2
1 + S2 − 2S1S

2
2

with
S1 = t(S2

1 + 2S2), and S2 = t+ 2t(S1S2).



Context free languages and algebraic specifications/decompositions


F(1) ≡ P(1)(z;F(1), . . . ,F(k))

...

F(k) ≡ P(k)(z;F(1), . . . ,F(k))

Algebraic equations are closely related to well funded context-free specifications:

with each P(i) a finite combination
of + and × operators

e.g. A ≡ z+A×A



Context free languages and algebraic specifications/decompositions


F(1) ≡ P(1)(z;F(1), . . . ,F(k))

...

F(k) ≡ P(k)(z;F(1), . . . ,F(k))

Algebraic equations are closely related to well funded context-free specifications:

The gf translation is an N-algebraic system:

with each P(i) a finite combination
of + and × operators


F (1) = P (1)(t;F (1), . . . , F (k))

...

F (k) = P (k)(t;F (1), . . . , F (k)) F (1) ≡ F (1)(t) =
∑
n≥0

F
(1)
n tn in C[[t]].

with each P (i) a polynomial with
non negative coefficients, and with
a unique power series solution

e.g. A ≡ z+A×A

e.g. A(t) = t+A(t)2



Context free languages and algebraic specifications/decompositions


F(1) ≡ P(1)(z;F(1), . . . ,F(k))

...

F(k) ≡ P(k)(z;F(1), . . . ,F(k))

Algebraic equations are closely related to well funded context-free specifications:

The gf translation is an N-algebraic system:

with each P(i) a finite combination
of + and × operators


F (1) = P (1)(t;F (1), . . . , F (k))

...

F (k) = P (k)(t;F (1), . . . , F (k)) F (1) ≡ F (1)(t) =
∑
n≥0

F
(1)
n tn in C[[t]].

with each P (i) a polynomial with
non negative coefficients, and with
a unique power series solution

Applies in particular to non ambiguous context free grammars.
(Chomsky-Schützenberger theorem)

e.g. A ≡ z+A×A

e.g. A(t) = t+A(t)2



Context free languages and algebraic specifications/decompositions
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...

F(k) ≡ P(k)(z;F(1), . . . ,F(k))

Algebraic equations are closely related to well funded context-free specifications:

The gf translation is an N-algebraic system:

with each P(i) a finite combination
of + and × operators


F (1) = P (1)(t;F (1), . . . , F (k))

...

F (k) = P (k)(t;F (1), . . . , F (k)) F (1) ≡ F (1)(t) =
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n≥0

F
(1)
n tn in C[[t]].

with each P (i) a polynomial with
non negative coefficients, and with
a unique power series solution

Applies in particular to non ambiguous context free grammars.
(Chomsky-Schützenberger theorem)

Conversely when the gf of a combinatorial familly A is known to be N-algebraic,
one would like to explain it via a context-free specification of A.

(Schützenberger’s methodology for algebraic gf)

e.g. A ≡ z+A×A

e.g. A(t) = t+A(t)2



Context-free specifications and multitype simply generated trees

 F(1) ≡ z+ z×F(2) ×F(2)

F(2) ≡ z+ z×F(1) ×F(1) ×F(1)

Context-free decompositions are naturally associated with multitype simply generated trees:

1 = 1 +
1

2 2

2 = 2 +
2

1 1 1

The derivation trees of a context-free specification are multitype simply generated trees,
i.e. trees specified by the allowed node progeny for each color, with independent subtrees.

⇔
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 F(1) ≡ z+ z×F(2) ×F(2)

F(2) ≡ z+ z×F(1) ×F(1) ×F(1)

Context-free decompositions are naturally associated with multitype simply generated trees:

1 = 1 +
1
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2 = 2 +
2

1 1 1

The derivation trees of a context-free specification are multitype simply generated trees,
i.e. trees specified by the allowed node progeny for each color, with independent subtrees.

⇔

Conversely when the gf of a combinatorial familly A is known to be N-algebraic,
one would like to explain it via a context-free specification of A
or via a bijection with trees.



Context-free specification for maps

For the earlier Tutte equation

F (u) = 1 + tu2F (u)2 + tuz1F (u) +
∑
i≥2
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BMJ theorem yields a parametrization that can be then rewritten as
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by Emmanuel Guitter with Jérémie Bouttier and Philippe Di Francesco

• first in terms of blossoming trees,
[Census of Planar Maps: From the One-Matrix Model Solution to a Combinatorial Proof, Nuclear physics, 2002]

• and then in terms of their celebrated BDFG mobiles.
[Planar maps as labeled mobiles, Electr. J. Comb, 2004]
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with

W =
∑
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i−1, S1 = t[u0]W, and S2 = t+ t[v−1]W.

This algebraic parametrization was given two beautiful combinatorial interpretations
by Emmanuel Guitter with Jérémie Bouttier and Philippe Di Francesco

• first in terms of blossoming trees,
[Census of Planar Maps: From the One-Matrix Model Solution to a Combinatorial Proof, Nuclear physics, 2002]

• and then in terms of their celebrated BDFG mobiles.
[Planar maps as labeled mobiles, Electr. J. Comb, 2004]

Later Emmanuel and Jérémie also gave a direct context-free specification of maps
Planar maps as pizza slices, aka [Planar Maps and continous fractions, Comm. Math. Phys., 2012]
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These ideas have been generalized for a huge variety of map families...

and have led to many developments in Combinatorics, Probability or Algorithmics

In summary:

• Maps admit ”easy” catalytic specifications

• Catalytic equations have nice algebraic solutions

⇒ combinatorial interpretation problem !
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Catalytic specifications as a source of bijective problems

These ideas have been generalized for a huge variety of map families...

and have led to many developments in Combinatorics, Probability or Algorithmics

• Families of pattern avoiding permutations (Zeilberger 92, Bona, Bousquet-Mélou, late 90’s)

• Families of Tamari intervals (Chapoton, 2000’s, Bousquet-Mélou-Chapoton 2022)

• Families of Planar (normal) λ-terms (Zeilberger and Giorgietti, 2015)

• Fighting fish and variants (Duchi et al, 2016)

• Fully parked trees (Chen 2021, Contat et al 2023)

• . . .

Catalytic equations also surface in various other enumeration problems, for instance forBut

So could we (should we?) carry on this combinatorial interpretation program for all these objects...

What about a systematic approach?

In summary:

• Maps admit ”easy” catalytic specifications

• Catalytic equations have nice algebraic solutions

⇒ combinatorial interpretation problem !



BMJ theorem, for order one 1-catalytic equations

F (u) = tQ

(
F (u),

1

u
(F (u)− f), u

)
, where f ≡ f(t) = F (t, 0).

Let U , V , W and R be the unique fps satisfying the system
V = t ·Q(V,W,U)
R = t · (1 +R) ·Q′

v(V,W,U)
U = t · (1 +R) ·Q′

w(V,W,U)
W = t · (1 +R) ·Q′

u(V,W,U)

Let Q(v, w, u) be a polynomial with Q(0, 0, u) ̸= 0

and F (u) ≡ F (t, u) the unique fps solution of the catalytic equation

tf ′
t = (1 +R) · VThen f is given by f = V − UW or

⇒ The particularly simple form of this parametrization calls for a combinatorial lifting.



The example of planar λ-terms

λ

Planar λ-terms can be presented as trees with

• applications: binary nodes

• λ-abstractions: unary nodes

• variables: leaves, represented as arrows , each matching an ancestor λ,

1

λ
λ

λ

λ

with condition that each λ is binded to exactly one variable in a planar way...
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The example of planar λ-terms

λ

Planar λ-terms can be presented as trees with

• applications: binary nodes

• λ-abstractions: unary nodes

• variables: leaves, represented as arrows , each matching an ancestor λ,

P (u) = tu + tP (u)2 + t
u (P (u)− P (0))

1

λ
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λ

and the catalytic equation for the gf P (u) =
∑

τ∈P t|τ |uexcess(τ) is

λ

Equivalently, in each subterm there are more variables than abstractions,
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Decorated trees and non negative trees

excess = #{•} −#{•}

non-negative Q-tree = necklace tree s.t.

the excess at each pearl is non negative.

slightly stronger condition than
just asking non negative excess on vertices

Observe:

#{•} ≥ #{•}
in planted subtrees

•, • are all matched.•, • are all matched.
Q =

{
, . . .

}

0

1

1

2

0

2 3 2
1

1

2

1

121

2

0

2

0

1

0

0

0

1

1

2

0

0

1

2
2



Non negative Q-trees and catalytic equations

Let F = { non-negative Q-trees },

Q(v, w, u) =
∑
s∈Q

qsv
•(s)w•(s)u•(s) the vertex type gf, where qs are weights

and F (u) ≡ F (t, u) =
∑
τ∈F

qτ t
|τ |uexcess(τ) , where qτ =

∏
s∈τ qs

Proposition. The gf F (u) of non negative Q-trees satisfies a catalytic equation of order one:

F (u) = tQ
(
F (u), 1

u (F (u)− F (0)), u
)

#{•} ≥ #{•}
in planted subtrees

•, • are all matched.•, • are all matched.
Q =

{
, . . .

}



Non negative Q-trees and catalytic equations

Let F = { non-negative Q-trees },

≥ 0

Q(v, w, u) =
∑
s∈Q

qsv
•(s)w•(s)u•(s) the vertex type gf, where qs are weights

and F (u) ≡ F (t, u) =
∑
τ∈F

qτ t
|τ |uexcess(τ) , where qτ =

∏
s∈τ qs

F ≡
∑
s∈Q

qs·

F

F+

F+

where F+ = F \ f

Proposition. The gf F (u) of non negative Q-trees satisfies a catalytic equation of order one:

Indeed the equation

F (u) = t
∑
s∈Q

qsF (u)•(s)
(
1
u
(F (u)− F (0))

)•(s)
u•(s)

F (u) = tQ
(
F (u), 1

u (F (u)− F (0)), u
)

follows from a decomposition at the root:

...

...

#{•} ≥ #{•}
in planted subtrees

•, • are all matched.•, • are all matched.
Q =

{
, . . .

}

s

≥ 1

≥ 0

≥ 0

≥ 0

≥ 1



Non negative Q-trees and catalytic equations

Let F = { non-negative Q-trees },

Q(v, w, u) =
∑
s∈Q

qsv
•(s)w•(s)u•(s) the vertex type gf, where qs are weights

and F (u) ≡ F (t, u) =
∑
τ∈F

qτ t
|τ |uexcess(τ) , where qτ =

∏
s∈τ qs

⇒ non-negative Q-trees give a generic combinatorial interpretation
for catalytic equations of order one with non negative coefficients.

Proposition. The gf F (u) of non negative Q-trees satisfies a catalytic equation of order one:

F (u) = tQ
(
F (u), 1

u (F (u)− F (0)), u
)

#{•} ≥ #{•}
in planted subtrees

•, • are all matched.•, • are all matched.
Q =

{
, . . .

}



Non negative Q-trees and companion Q-trees

necklaces are in Q
non-negative Q-tree = necklace tree s.t.

•, •, • are all matched.
companion Q- tree = necklace tree s.t.

•, • are all matched.

#{•} ≥ #{•}
in planted subtrees

THEOREM (Duchi-S. 23). Rewiring is a vertex type preserving bijection
between non negative Q-trees and balanced companion Q-trees

0 1
0

0

1

1

11

1 1

1

0

0

1
1

the excess at each pearl is non negative.

necklaces are in Q

REWIRING

Q =

{
, . . .

}
Q =

{
, . . .

}

REWIRING



Balanced companion Q-trees VS rooted companion Q-trees

≡ \

BC□ ≡ C□ − C• × C•



Balanced companion Q-trees VS rooted companion Q-trees

≡ \

BC□ ≡ C□ − C• × C•

≡

≡C◦ C□ × (ε+ C•)



Context-free specifications for companion Q-trees

≡ Q =
{

, . . .
}

C□ = Z ×Q(C□, C•, C•)

Q(v, w, u) =
∑
s∈Q

qsv
•(s)w•(s)u•(s)



Context-free specifications for companion Q-trees
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{
, . . .
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,
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Context-free specifications for companion Q-trees

+

+

+

≡

≡

≡

≡ Q =
{

, . . .
}

Q′
• =

{
, . . .

}
,

Q′
• =

{
,

Q′
• =

{
, . . .

}
,

,

C□ = Z ×Q(C□, C•, C•)

C• = Z × (1 + C•)×Q′
•(C□, C•, C•)

C• = Z × (1 + C•)×Q′
•(C□, C•, C•)

Q(v, w, u) =
∑
s∈Q

qsv
•(s)w•(s)u•(s)

C• = Z × (1 + C•)×Q′
•(C□, C•, C•)



The combinatorial lifting of BMJ theorem


C□ = Z ×Q(C□, C•, C•)
C• = Z × (1 + C•)×Q′

•(C□, C•, C•)
C• = Z × (1 + C•)×Q′

•(C□, C•, C•)
C• = Z × (1 + C•)×Q′

•(C□, C•, C•)

Let F ≡ Z × Q
(
F , 1

u (F \ f), u
)
be a catalytic decomposition of order one

where Q(v, w, u) =
∑
s∈Q

qsv
•(s)w•(s)u•(s) is the node gf of the associated

then

THEOREM (Duchi-S. 23)

f ′
t ≡ C◦ = (1 + C•)×Q(C□, C•, C•)

f ≡ C = C□ − C• × C•

non negative derivation Q-trees

where the companion trees satisfy:

rewiring

rewiring



Planar λ-terms and Qλ-trees

λ

Open planar λ-term are to plane trees with
• applications: binary nodes
• abstractions: unary nodes

• variables: leaves, represented as arrow.

λ
λ

λ

λwith condition that in each subterm there are more variables than abstractions.



Planar λ-terms and Qλ-trees
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λ

1

Open planar λ-term are to plane trees with
• applications: binary nodes
• abstractions: unary nodes

• variables: leaves, represented as arrow.

1

2

1

2

1

λ
λ

λ

10

1

1

10

1

λwith condition that in each subterm there are more variables than abstractions.
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λwith condition that in each subterm there are more variables than abstractions.

Mark variables with • and abstractions λ with •,
then the set of vertex types is

Qλ =
{

, ,
}

Then non negative Qλ-trees =
open planar λ-terms

The closure corresponds to the planar abstraction-variable binding.

non negative Qλ-trees with excess 0 =
closed planar λ-terms



Planar λ-terms, closure and rewiring

Corollary.
Rewiring yields a size-preserving bijection between marked planar λ-terms and
companion trees with context-free specification:

+ +C□ = ++

+ + +C• = C□ = 2t2

1−2tC□
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What’s next?

Rewiring gives bijections with trees for these models...

• Families of pattern avoiding permutations (Zeilberger 92, Bona, Bousquet-Mélou, late 90’s)

• Families of Tamari intervals (Chapoton, 2000’s, Bousquet-Mélou-Chapoton 2022)

• Families of Planar (normal) λ-terms (Zeilberger and Giorgietti, 2015)

• Fighting fish and variants (Duchi et al, 2016)

• Fully parked trees (Chen 2021, Contat et al 2023)

• . . .

Catalytic equations also surface in various other enumeration problems, for instance for

⇒ but what are the pizza slices for these structures ?

⇒ so what is the equivalent of distances in maps for these structures ?

Bijections allow to tackle new parameters...



What’s next? Higher order 1-catalytic equations

P (F (u), f1, f2, . . . , fk, u, t) = 0

F (u) = tQ
(
F (u), 1

u
(F (u)− f), u

)
, where f ≡ f(t) = F (t, 0).

For order 1 we started from


V = t ·Q(V,W,U)
R = t · (1 +R) ·Q′

v(V,W,U)
U = t · (1 +R) ·Q′

w(V,W,U)
W = t · (1 +R) ·Q′

u(V,W,U)

and the N-algebraic system

For order k we need to deal with

or P (u) = Q(F (u),∆F (u), . . .∆kF (u), u, t)
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What’s next? Higher order 1-catalytic equations

However this system is not immediately N-algebraic

This is making things harder: I think Emmanuel will indeed agree that

in fact the series ui do not have non negative coefficients in general...

bijections are easier to find if one has a nice and complicated formula to interpret!

P (F (u), f1, f2, . . . , fk, u, t) = 0

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns:
the analogs u1, . . . , uk of the series u, the F (u1), . . . , F (uk) by F and the f1, . . . , fk.
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(
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, where f ≡ f(t) = F (t, 0).
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What’s next? Higher order 1-catalytic equations

So here is the plan...

The linear case: essentially the kernel method for 1d walks with arbitray up and down steps

→ the corresponding generalized Dyck path admit a context-free specification (Duchon 1998)

→ the kernel method works systematically for finite sets of steps (Bousquet-Mélou, around 2000)
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What’s next? Higher order 1-catalytic equations

So here is the plan...

The linear case: essentially the kernel method for 1d walks with arbitray up and down steps

→ the corresponding generalized Dyck path admit a context-free specification (Duchon 1998)

→ the kernel method works systematically for finite sets of steps (Bousquet-Mélou, around 2000)

New observation: Rewriting the equations satisfied by the kernel roots ui in terms of the
elementary symmetric functions in the ’finite’ and ’infinite’ root separately directy yields
Duchon’s N-algebraic equations.

The non linear case: the resulting heuristic is to rewrite the BMJ systems in terms of the elementary
functions in the ui instead, and to avoid the F (ui), use the discriminant form of the sytem.

⇒ gives a combinatorial specifications for walks with algebraic series of up-steps.

P (F (u), f1, f2, . . . , fk, u, t) = 0

BMJ Theorem for order k equations lead to a system of 3k equations for 3k unknowns:
the analogs u1, . . . , uk of the series u, the F (u1), . . . , F (uk) by F and the f1, . . . , fk.

or P (u) = Q(F (u),∆F (u), . . .∆kF (u), u, t)

in progress: apply the combinatorial specification of the linear case along a branch
and sort out the ugly details to see what comes out !



Thank you,

and long life to combinatorial physics !

happy anniversary,


