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Def. A connected planar (multi)graph, given with a proper embedding 
in the plane, taken up to continuous deformation.

Components:
  - vertices
  - edges
  - faces

Planar maps
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Def. A connected planar (multi)graph, given with a proper embedding 
in the plane, taken up to continuous deformation.

Components:
  - vertices
  - edges
  - faces

Rooted map: a distinguished corner in the outer face

Planar maps

3 5 3

root corner
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Def. A connected planar (multi)graph, given with a proper embedding 
in the plane, taken up to continuous deformation.

Components:
  - vertices
  - edges
  - faces

Rooted map: a distinguished corner in the outer face

Planar maps

3 5 3

root cornerroot edge

root face
(outer degree 6)

root vertex
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Planar maps

Def. A connected planar (multi)graph, given with a proper embedding 
in the plane, taken up to continuous deformation.

Components:
  - vertices
  - edges
  - faces

Rooted map: a distinguished corner in the outer face

Triangulation: all faces have  degree 3 
Near-triangulation: all finite faces have  degree 3 
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Duality

Exchange faces and vertices

M
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Duality
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Duality

Exchange faces and vertices

Triangulation Cubic map
Near-triangulation Near-cubic map

M M*
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Vertex colourings of maps

Definition. Vertices are coloured in q colours

q=4

Proper colouring: neighbour vertices get different colours.
Potts model: a generalisation 

monochromatic
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Generating functions

• For a class of maps 𝒞, equipped with some size (edge number…),

• Multivariate versions, with more variables.

• The series C is algebraic of degree k if

for some irreducible polynomial P of degree k in its first variable.



I. An old result,
a conjecture,
a new result
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Properly 3-coloured triangulations

An old result   [Tutte 63]
The generating function T3 of properly 3-coloured triangulations 
(counted by vertices) is algebraic of degree 2:
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Properly 3-coloured cubic maps

A conjecture   [Salvy~09, Bernardi-mbm 11]
The generating function C1 of properly 3-coloured near-cubic maps 
of root degree 1 (counted by faces) is algebraic of degree 11.
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Properly 3-coloured cubic maps

A conjecture   [Salvy~09, Bernardi-mbm 11]
The generating function C1 of properly 3-coloured near-cubic maps 
of root degree 1 (counted by faces) is algebraic of degree 11.
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Properly 3-coloured cubic maps

A new result   [mbm-Notarantonio 25]
The generating function C1 of properly 3-coloured cubic maps of 
root degree 1 (counted by faces) is algebraic of degree 11.
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Properly 3-coloured cubic maps

A new result   [mbm-Notarantonio 25]
The generating function C1 of properly 3-coloured cubic maps of 
root degree 1 (counted by faces) is algebraic of degree 11.
Its derivative satisfies:



25

Properly 3-coloured cubic maps

A new result   [mbm-Notarantonio 25]
The generating function C1 of properly 3-coloured cubic maps of 
root degree 1 (counted by faces) is algebraic of degree 11.
Its derivative satisfies:

Moreover: the same holds for the GF that counts all 3-coloured 
near-cubic maps with a weight ν per monochromatic edge: 

the 3-state Potts model on cubic maps
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The q-state Potts model on planar maps

Definition. Let q be positive integer, M a map. The partition function 
of the (q-state) Potts model on M (or: Potts polynomial of M) is

where m(c) is the number of monochromatic edges in the colouring c.
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The q-state Potts model on planar maps

Definition. Let q be positive integer, M a map. The partition function 
of the (q-state) Potts model on M (or: Potts polynomial of M) is

where m(c) is the number of monochromatic edges in the colouring c.

Example.
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The q-state Potts model on planar maps

Definition. Let q be positive integer, M a map. The partition function 
of the (q-state) Potts model on M (or: Potts polynomial of M) is

where m(c) is the number of monochromatic edges in the colouring c.

Example.

Properties
 polynomial in q and ν 
 duality: for 
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The Potts GF of near-triangulations
The Potts GF of (planar) near-triangulations is

where the sum runs over all near-triangulations M and drf(M) is the 
degree of the root face. 
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Equivalently,

where c is a q-colouring of the vertices of M.

The Potts GF of near-triangulations
The Potts GF of (planar) near-triangulations is

where the sum runs over all near-triangulations M and drf(M) is the 
degree of the root face. 
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Equivalently,

where c is a q-colouring of the vertices of M.

The Potts GF of near-triangulations
The Potts GF of (planar) near-triangulations is

where the sum runs over all near-triangulations M and drf(M) is the 
degree of the root face. 

First coefficients:
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The Potts GF of (planar) near-cubic maps is

where the sum runs over all near-cubic maps M and drv(M) is the 
degree of the root vertex.

The Potts GF of near-cubic maps
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Duality

Near-triangulations Near-cubic maps

Potts model
equiv.equiv.
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Duality

Near-triangulations Near-cubic maps

Potts model

Proper colourings

ν = 0

Near-triangulations

equiv.equiv.
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Duality

Near-triangulations Near-cubic maps

Potts model
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Near-triangulations Near-cubic maps

Potts model

Proper colourings
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Duality

Near-triangulations Near-cubic maps

Potts model

Proper colourings

ν = 0 ν* = 0ν = 1-q

Near-triangulations Near-cubic maps

equiv.equiv.

not equiv.old new
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A new result (3 colours)       [mbm-Notarantonio 25]
Proposition. For any  i≥ 1, the 3-Potts generating function Ti of 
near-triangulations of outer degree i is algebraic of degree 11.
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A new result (3 colours)       [mbm-Notarantonio 25]
Proposition. For any  i≥ 1, the 3-Potts generating function Ti of 
near-triangulations of outer degree i is algebraic of degree 11.

Minimal polynomial of the derivative of T1 (degree 2 in t):
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A new result (3 colours)       [mbm-Notarantonio 25]
Proposition. For any  i≥ 1, the 3-Potts generating function Ti of 
near-triangulations of outer degree i is algebraic of degree 11.

Minimal polynomial of the derivative of T1 (degree 2 in t):

Full series T(y):
degree 55



II. Proper 3-colourings:
triangulations vs. cubic maps
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What do these two results have in common?

The GF of properly 3-coloured 
triangulations is algebraic of 

degree 2

The GF of properly 3-coloured 
cubic maps is algebraic of 

degree 11
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How do these two results differ?

The GF of properly 3-coloured 
triangulations is algebraic of 

degree 2

The GF of properly 3-coloured 
cubic maps is algebraic of 

degree 11

P(t,T3)=0      Genus 0 Q(t, C1)=0      Genus 1

Well-understood combinatorics
 Bijection with bipartite maps

delete
one colour
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How do these two results differ?

The GF of properly 3-coloured 
triangulations is algebraic of 

degree 2

The GF of properly 3-coloured 
cubic maps is algebraic of 

degree 11

P(t,T3)=0      Genus 0 Q(t, C1)=0      Genus 1 

Well-understood combinatorics
 Bijection with bipartite maps
 Bijections with trees 

⇒ combinatorial explanation 
of algebraicity

[Schaeffer 98,
Bouttier-Di Francesco-Guitter 02]
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How do these two results differ?

The GF of properly 3-coloured 
triangulations is algebraic of 

degree 2

The GF of properly 3-coloured 
cubic maps is algebraic of 

degree 11

P(t,T3)=0      Genus 0 Q(t, C1)=0      Genus 1 

Well-understood combinatorics
 Bijection with bipartite maps
 Bijections with trees 

⇒ combinatorial explanation 
of algebraicity

Combinatorial 
explanation?

Every map has O(1) colourings A random map has αn colourings

1-catalytic 2-catalytic

[Schaeffer 98,
Bouttier-Di Francesco-Guitter 02]



III. Equations, 
equations, equations
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 ⇔ Bipartite maps counted by edges (t): series B
Tutte’s approach: delete the root edge

Properly 3-coloured triangulations are 1-catalytic



58

 ⇔ Bipartite maps counted by edges (t): series B
Tutte’s approach: delete the root edge

Properly 3-coloured triangulations are 1-catalytic



59

 ⇔ Bipartite maps counted by edges (t): series B
Tutte’s approach: delete the root edge

Properly 3-coloured triangulations are 1-catalytic



60

 ⇔ Bipartite maps counted by edges (t): series B
Tutte’s approach: delete the root edge

↪ Record a new, “catalytic” statistic: half the degree of the root 
face (new variable y) 

Properly 3-coloured triangulations are 1-catalytic
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 ⇔ Bipartite maps counted by edges (t): series B
Tutte’s approach: delete the root edge

↪ Record a new, “catalytic” statistic: half the degree of the root 
face (new variable y) 

Properly 3-coloured triangulations are 1-catalytic

An equation in one catalytic variable, y
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Properly 3-coloured cubic maps are 2-catalytic
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… as the 3-state Potts model on cubic maps (ν)
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Properly 3-coloured cubic maps are 2-catalytic
… as the 3-state Potts model on cubic maps (ν)
… or the q-state Potts model on cubic maps (q, ν)
… or dualy the q-state Potts model on triangulations
… or the q-state Potts model on general planar maps

Why? Computing the Potts polynomial requires deletion and 
contraction of the root-edge e:
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Properly 3-coloured cubic maps are 2-catalytic
… as the 3-state Potts model on cubic maps (ν)
… or the q-state Potts model on cubic maps (q, ν)
… or dualy the q-state Potts model on triangulations
… or the q-state Potts model on general planar maps

deletion

contraction

Why? Computing the Potts polynomial requires deletion and 
contraction of the root-edge e:
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Properly 3-coloured cubic maps are 2-catalytic
… as the 3-state Potts model on cubic maps (ν)
… or the q-state Potts model on cubic maps (q, ν)
… or dualy the q-state Potts model on triangulations
… or the q-state Potts model on general planar maps

deletion

contraction

↪ Record the degree of the root face (y) and the degree of the root 
vertex (x)

Why? Computing the Potts polynomial requires deletion and 
contraction of the root-edge e:
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The q-state Potts model on triangulations

[Bernardi-mbm 11]

Proposition. Let Q(x,y)=Q(q, ν, t; x,y) be the only formal series in t 
satisfying

with
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The q-state Potts model on triangulations

[Bernardi-mbm 11]

Proposition. Let Q(x,y)=Q(q, ν, t; x,y) be the only formal series in t 
satisfying

with

Then Q(0,y)=T(y) is the q-Potts GF of near-triangulations. 
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Proposition. Let Q(x,y)=Q(q, ν, t; x,y) be the only formal series in t 
satisfying

Then Q(0,y) :=T(y) is the q-Potts GF of near-triangulations. 

The q-state Potts model on triangulations

[Bernardi-mbm 11]
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Proposition. Let Q(x,y)=Q(q, ν, t; x,y) be the only formal series in t 
satisfying

Then Q(0,y) :=T(y) is the q-Potts GF of near-triangulations. 

The q-state Potts model on triangulations

Proposition. When q ≠ 0,4 is of the form 4cos(kπ/m)2, the series 
Q(0,y)=T(y) also satisfies an equation in one catalytic variable (y).

Includes q=2 (Ising), q=3.

[Bernardi-mbm 11]
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3-Potts on near-triangulations is (also) 1-catalytic

[Bernardi-mbm 11]

Proposition. Take q=3. There exists an explicit polynomial such that

where

is the contribution of near-triangulations with root-face of degree i.
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3-Potts on near-triangulations is (also) 1-catalytic

[Bernardi-mbm 11]No combinatorial
explanation

Proposition. Take q=3. There exists an explicit polynomial such that

where

is the contribution of near-triangulations with root-face of degree i.
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Theorem [Popescu 86]
If a system of polynomial equations of the form

with coefficients in some field 𝔽 has a unique solution S1(t;y), …, 
Sj(t;y), A1(t), …, Ak(t) in formal power series, then all these series 
are algebraic over 𝔽(t,y).

One-catalytic implies algebraic !
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Theorem [Popescu 86]
If a system of polynomial equations of the form

with coefficients in some field 𝔽 has a unique solution S1(t;y), …, 
Sj(t;y), A1(t), …, Ak(t) in formal power series, then all these series 
are algebraic over 𝔽(t,y).

Proposition [mbm-Jehanne 06]
Same result for a single equation of a “proper” type…
                                                               + effective procedure.

One-catalytic implies algebraic !
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Theorem [Popescu 86]
If a system of polynomial equations of the form

with coefficients in some field 𝔽 has a unique solution S1(t;y), …, 
Sj(t;y), A1(t), …, Ak(t) in formal power series, then all these series 
are algebraic over 𝔽(t,y).

Proposition [mbm-Jehanne 06]
Same result for a single equation of a “proper” type…
                                                               + effective procedure.

• Extension to systems [Notarantonio-Yurkevich 23(a)]

One-catalytic implies algebraic !
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3-Potts on near-triangulations is (also) 1-catalytic
Proposition. Let q=3. There exists an explicit polynomial such that

where

Corollary. The 3-Potts GF of near-triangulations T(y) is algebraic.
[Bernardi-mbm 11]
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3-Potts on near-triangulations is (also) 1-catalytic
Proposition. Let q=3. There exists an explicit polynomial such that

where

Corollary. The 3-Potts GF of near-triangulations T(y) is algebraic.

Effective solution? Minimal polynomial of T1 ?
[Bernardi-mbm 11]
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3-Potts on near-triangulations is (also) 1-catalytic
Proposition. Let q=3. There exists an explicit polynomial such that

where

Corollary. The 3-Potts GF of near-triangulations T(y) is algebraic.

Effective solution? Minimal polynomial of T1 ?
[Bernardi-mbm 11]

Better algorithms than [mbm-Jehanne 06]: Bostan, Chyzak, 
Notarantonio, Safey el Din (2022-) … but (1) was stil l too big.
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3-Potts on near-triangulations is (also) 1-catalytic
Proposition. Let q=3. There exists an explicit polynomial such that

where

Corollary. The 3-Potts GF of near-triangulations T(y) is algebraic.

Effective solution? Minimal polynomial of T1 ?
[Bernardi-mbm 11]

Better algorithms than [mbm-Jehanne 06]: Bostan, Chyzak, 
Notarantonio, Safey el Din (2022-) … but (1) was stil l too big.

   Now a solution…
What happened?



IV. Some tools
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Consider the 1-catalytic equation

Theorem: Let Δ(a1, a2, a3, a4, t, y) be the discriminant of 
Pol(s, a1, a2, a3, a4, t, y) in its first variable.
Then, as a polynomial in y,   Δ(A1, A2, A3, A4, t, y) has 4 double roots 
Y1, Y2, Y3, Y4.

General approach to 1-catalytic equations  [mbm-AJ]
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Theorem: Let Δ(a1, a2, a3, a4, t, y) be the discriminant of 
Pol(s, a1, a2, a3, a4, t, y) in its first variable.
Then, as a polynomial in y,   Δ(A1, A2, A3, A4, t, y) has 4 double roots 
Y1, Y2, Y3, Y4.
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General approach to 1-catalytic equations  [mbm-AJ]
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26 in y, total degree 10 in the Ti’s. 
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General approach to 1-catalytic equations  [mbm-AJ]

3-Potts on near-triangulations:  Δ(T1, T3, T5, T7, t, y) has degree 26 
in y, total degree 10 in the Ti’s (and 4/7/10 double roots in y). 
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General approach to 1-catalytic equations  [mbm-AJ]

3-Potts on near-triangulations:  Δ(T1, T3, T5, T7, t, y) has degree 26 
in y, total degree 10 in the Ti’s (and 4/7/10 double roots in y). 

Theorem [Bernardi-mbm 15]   There exist two polynomials 
D+(T1, T3, T5, T7, t, u) and  D-(T1, T3, T5, T7, t, u), of degree 5 and 6 
in u respectively, degree 2 in the Ti’s, that have each 2 double roots 
in u (U1, U2 and U3, U4). 
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in y, total degree 10 in the Ti’s (and 4/7/10 double roots in y). 

Theorem [Bernardi-mbm 15]   There exist two polynomials 
D+(T1, T3, T5, T7, t, u) and  D-(T1, T3, T5, T7, t, u), of degree 5 and 6 
in u respectively, degree 2 in the Ti’s, that have each 2 double roots 
in u (U1, U2 and U3, U4). 

A much smaller polynomial system!
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General approach to 1-catalytic equations  [mbm-AJ]

3-Potts on near-triangulations:  Δ(T1, T3, T5, T7, t, y) has degree 26 
in y, total degree 10 in the Ti’s (and 4/7/10 double roots in y). 

Theorem [Bernardi-mbm 15]   There exist two polynomials 
D+(T1, T3, T5, T7, t, u) and  D-(T1, T3, T5, T7, t, u), of degree 5 and 6 
in u respectively, degree 2 in the Ti’s, that have each 2 double roots 
in u (U1, U2 and U3, U4). 

A much smaller polynomial system!

Elimination via resultants ⇒ each Ti  has degree 11
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Two tools

• A much smaller system !

• Handle U1, U2 and U3, U4 via their symmetric functions
They turn out to have degree 11 while each Ui has degree 22.

• Use explicit elliptic parametrisations for curves of genus 1
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Two tools

• A much smaller system !

• Handle U1, U2 and U3, U4 via their symmetric functions
They turn out to have degree 11 while each Ui has degree 22.

• Use explicit elliptic parametrisations for curves of genus 1

Solution for 3-Potts 
on near-triangulations
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The case of general planar maps 

Proposition. The 3-Potts generating function M1(ν,t) of general planar 
maps is algebraic of degree 22, with an explicit minimal polynomial.

[mbm-Notarantonio 25]

Genus 4... 

 Same starting point with D+, D_
 Alternative solution technique

ν



V. Asymptotics
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Asymptotics for 3-Potts on near-triangulations
Proposition. Fix ν > 0. The 3-Potts GF T1 of near-triangulations of 
outer degree 1 has radius of convergence ρν where

for explicit polynomials Δ1 and Δ2 of degrees 5 and 9 in ρ.
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Asymptotics for 3-Potts on near-triangulations

Roots of
the discriminant

Proposition. Fix ν > 0. The 3-Potts GF T1 of near-triangulations of 
outer degree 1 has radius of convergence ρν where

for explicit polynomials Δ1 and Δ2 of degrees 5 and 9 in ρ.
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Asymptotics for 3-Potts on near-triangulations

As t approaches ρ,

with

Proposition. Fix ν > 0. The 3-Potts GF T1 of near-triangulations of 
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Merci !


