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Exchange faces and vertices

Triangulation Cubic map
Near-triangulation Near-cubic map



Vertex colourings of maps

Definition. Vertices are coloured in g colours

monochromatic o=

Proper colouring: neighbour vertices get different colours.
Potts model: a generalisation



Generating functions

e For a class of maps C, equipped with some size (edge number...),

C .= Z (M),

MeC

e Multivariate versions, with more variables.

* The series C is algebraic of degree k if
P(C,t) =0

for some irreducible polynomial P of degree k in its first variable.



l. An old result,

a conjecture,
a hew result




Properly 3-coloured triangulations

e TN
An old result [Tutte 63]

The generating function T3 of properly 3-coloured triangulations
(counted by vertices) is

18t — 23 + (24t — 12t + 1)T3 + 8T = 0.
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Properly 3-coloured cubic maps

A conjecture [Salvy~09, Bernardi-mbm 1]
The generating function C, of properly 3-coloured near-cubic maps
of root degree | (counted by faces) is :

922337203685477580800000 C1 ' +9007199254740992 (194560000t — 5971077) C,'°©
+ 4294967296 (280335535308800 t% — 25398219177984 t + 446991689475) C17
—1024 (379991218559385600000 t* — 188284129271105978368 t> + 74426563120993402880 t2
—3460024309515976704 t + 60644726921050599) C, 28
—1024 (855256650185747464192t% + 198557240861845880832 t% + 7030700057733103616 t3
—2005025500677518336 t% + 65719379546147724 t — 1261082394855783) C1”~
—64 (13794761675403801133056 t° + 1749420037224685109248 t° — 278771160986127695872 t*
+3443220359730862080 t3 + 294527021649617744 t% — 12400864344288084 t + 586081179814293) C;°
—16 (32829338688610212249600 t7 — 541704013946292273152t° — 549137038895633924096 t°
+41876669882140680192 t% — 936289577498747840 t3
+12987916499676352 t% + 208517314053540 t — 54447680943015) C;°
—32 (124515522497539473408 t¥ + 6242274275823592669184 t% — 898808183791057633280 t7
—5275329284641325056 t° + 6539785066149118976 t° — 361493662811609868 t¢
+9979948894517522 t3 — 432679480767965 t2 + 6248694091833 t + 378858660750) C17
—8 (747093134985236840448 t'° + 5932367633073989222400t°7 — 1529736206124490686464 t°
+132585839072566050816 t7 — 3048630269218258944 t© — 135087570198766176 t°
+5706147748413032 t% — 229584590608200 t> + 23755821897083 t? — 152875558308 t — 27738626328) C;°
+(—3361919107433565782016t'!" — 6012198464670331305984 t'° + 2332964327872863928320 t7
—341248528343609901056 t3 + 24933054438553903104 t7 — 994662704339242816 t°
+33270083406272816 t° — 1608971168541300 t* + 7467003627448 t3
+5037279798640 t? — 194388001728 t + 808501760) C; 7
+t (—840479776858391445504 t'! — 157618519659107057664 t'° + 157170928122096254976 t7
—34691457904249143296 t8% 4 3785139252232855552 t7 — 224694559056638912 t°
+6999136302319904 t° — 197576502742812 t% 4+ 19551640345287 t3
—1347626230088 t? + 40099744688 t — 404250880) C;
—4t? (19698744770118549504 t7 — 8025289374453202944 t% + 1366977099830657024 t7
—120213529404735488 t° + 5234026490678784 t° — 86995002866345 t#
+4680668094111 t> — 691486996440 t2 + 31610476208 t — 404250880) = O.
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Properly 3-coloured cubic maps

e TN
A new result [mbm-Notarantonio 25]

The generating function C, of properly 3-coloured cubic maps of
root degree | (counted by faces) is

lts derivative satisfies:

324t% = 655360C 1" +1245184C1%+866304C7—80 (8192t — 1995) C8—2880 (512t +49) C7
—504 (2944t + 219) CS —24 (36640t + 1383) C3 — (16384t* + 334416t + 3033) C;
—6 (4096t% + 13584t — 153) C3—9 (1536t + 1300t — 33) C—-27 (4t + 1) (32t — 1) Cy.

Moreover: the same holds for the GF that counts all 3-coloured
near-cubic maps with a weight v per monochromatic edge:



The g-state Potts model on planar maps

Definition. Let g be positive integer, M a map. The partition function
of the (g-state) Potts model on M (or: Potts polynomial of M) is

Pmlig,v) = Z vmie)
c:V(M)—{1,...,q)

where m(c) is the number of monochromatic edges in the colouring c.
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The g-state Potts model on planar maps

Definition. Let g be positive integer, M a map. The partition function
of the (g-state) Potts model on M (or: Potts polynomial of M) is

Pmlig,v) = Z vmie)
c:V(M)—{1,...,q)

where m(c) is the number of monochromatic edges in the colouring c.

Example. Pm(q,v) :=qv+q(q—1).
A A
oo oo
Properties

+ polynomial in g and v
o duality: for q = (v —=1)(v* = 1),

(v = DFM=TPy (g, v) = (v = 1M =TPy (q,v7).



The Potts GF of near-triangulations

The Potts GF of (planar) near-triangulations is

T(y)=T(q,v,t;y) ZPM q, vt Mydrt M)

where the sum runs over all near-trlangulahons Mand drf (M) is the
degree of the root face.
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The Potts GF of (planar) near-triangulations is

T(y)=T(q,v,t;y) ZPM q, vt Mydrt M)

where the sum runs over all near-trlangulahons Mand drf (M) is the
degree of the root face.
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where c is a g-colouring of the vertices of M.

Equivalently,

First coefficients:

P - === -
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The Potts GF of near-cubic maps

The Potts GF of (planar) near-cubic maps is

Cly) = C(q, v, t;y) ZPM q, v)tHMydrv (M

where the sum runs over all near—cubnc maps M and drv(M) is the
degree of the root vertex.
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Near-triangulations <« » Near-cubic maps
T(q,v,55y) == =1 c(g,vty)
V=0 V'=0
v v
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Near-triangulations <« 4 » Near-cubic maps

T(q,v,t;y) q=v-1K" =T C(q,v*, t;y)

Near-triangulations Near-cubic maps



Near-triangulations <« L » Near-cubic maps
T(q,v,t;y) q==NH"=1) Clq, V', t;y)
v=0 \)* =0
v v
Near-triangulations < » Near-cubic maps
old Not equiv. new
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Proposition. For any i= ], the 3-Potts generating function T; of
near-triangulations of outer degree i is algebraic of degree 1.

Minimal polynomial of the derivative of T) (degree 2 in 1):

2764807, '~ — 27648v® (31v +24) T{® + 1152v° (1021v? + 1678y + 541) T}
— 18v* (46080v>t + 51935v? + 138243v% + 92253v + 17089) T?
+72v? (192073 (17v + 7) t + 6545v* + 25755v> + 26863v* + 10253v + 1144) T/

—4v? (1008v> (727v* + 586V + 127) t + 38596v° + 219355v* + 322318v> + 190022v* + 43274v + 2915) T¢
+4v (216v3 (2433v3 + 2879v* + 1255V + 153) t + 8027v° + 67626v° + 134820v* + 109109v> + 38007v*

+5103v + 188) T7+(41472v8 (v — 1) t% — 1273 (78871v* 4 122456v> + 80010v* + 19688V + 1375) t
—3876v" —53138v® — 145202v° — 151460v* — 71656v> — 14332v* — 958v — 18) T7/ +(—13824v> (5v + 1) (v — 1) t*
+8v% (5v + 1) (6823v* + 11843v> + 9045v* + 2429v + 100) t + 208v” + 6088v® + 24600v° + 31836v* + 19256v>

+5040v2 + 440v +12) T; + (1 728v* (v —1) (5v + 1)7t2 = 12v (3v + 1) (1358v° + 2771v* + 2504v> + 868>
+58v + 1)t — 312v° — 2401v> — 3747v* — 2821v> — 899v? — 78v — 2) T{+v (—96v2 (v—1)(5v+ 1) t?

+4 (v +1) (1229v° 4 2390v* + 2114v> + 697vZ +49v + 1) t + (104v* +189v> +177v* +67v +3)) T
+2v2 (v = 1) (5v + 1) £2=2v2 (v +2) (104v* + 1893 +177v% + 67v +3) t = 0.
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Proposition. For any i= ], the 3-Potts generating function T; of
near-triangulations of outer degree i is algebraic of degree 1.

Minimal polynomial of the derivative of T) (degree 2 in 1):

2764807, '~ — 27648v® (31v +24) T{® + 1152v° (1021v? + 1678y + 541) T}
— 18v* (46080v>t + 51935v? + 138243v% + 92253v + 17089) T?
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+4v (216v3 (2433v3 + 2879v* + 1255V + 153) t + 8027v° + 67626v° + 134820v* + 109109v> + 38007v*

+5103v + 188) T7+(41472v8 (v — 1) t% — 1273 (78871v* 4 122456v> + 80010v* + 19688V + 1375) t

—3876v" —53138v® — 145202v° — 151460v* — 71656v> — 14332v* — 958v — 18) T7/ +(—13824v> (5v + 1) (v — 1) t*
+8v% (5v + 1) (6823v* + 11843v> + 9045v* + 2429v + 100) t + 208v” + 6088v® + 24600v° + 31836v* + 19256v>

+5040v2 + 440v +12) T; + (1 728v* (v = 1) (5v + 12 t2 = 12v (3v + 1) (1358v° 4 2771v* 4 2504v* + 8682

Full series T(y):
degree 55

+58v + 1)t — 312v° — 2401v> — 3747v* — 2821v> — 899v? — 78v — 2) T{+v (—96\/2 (v—1)(5v+ 1) t?
+4 (v +1) (1229v° 4 2390v* + 2114v> + 697vZ +49v + 1) t + (104v* +189v> +177v* +67v +3)) T
+2v2 (v —1) (5v + 1 2-2v2 (v + 2) (104v* + 189V +-177v2 + 67v +3) t = 0.



1. 3-colourings:
triangulations vs. cubic maps

+1245184C1°+866304C7 —80 (8192t — 1995) C5—2880 (512t +49) C
—504 (2944t + 219) C§—24 (36640t + 1383) C3 — (16384t* + 334416t + 3033) (]
4096t% + 13584t — 153) C3 -9 (1536t 4 1300t — 33) C§-27 (4t +1) (32t — 1) C
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What do these two results have in common?

The GF of properly 3-coloured The GF of properly 3-coloured

triangulations is algebraic of cubic maps is algebraic of
degree 2 degree |
u=3_3 0 = 366224456791 + 1385117116928

—1101210667321321 + 2091641987340288°
— 123874767626895361° — 255865982784897024u*
+43583360519456686081° — 23067589573752127488
+ 821997003987662929921 — 288230376151711744000

» Algebraicity

. . —5/2
. Universality class: number of maps ~ kp"n >/
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degree 2 degree |
P(t,T3)=0 Genus 0 Q(t, ()=0 Genus]

+ Bijection with bipartite maps
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one colour
\ \

>

«

N vertices triangulate n-2 edges
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How do these two results differ?

The GF of properly 3-coloured
triangulations is algebraic of
degree 2

P(t,T3)=0 Genus 0

+ Bijection with bipartite maps
« Bijections with
= combinatorial explanation
of algebraicity

Every map has O(1) colourings

I-catalytic

The GF of properly 3-coloured
cubic maps is algebraic of
degree |

Q(t, ()=0 Genus]

Combinatorial
explanation?

A random map has a" colourings

2-catalytic



l1l. Equations,
equations, equations
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S Bipartite maps counted by edges (t): series B

Tutte's approach: delete the root edge
e @O
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— Record a new, “catalytic” statistic: half the degree of the root
face (new variable y)

B(y) —B(1)

B(y) =1+ tyB(y)? + ty —

An equation in one catalytic variable, y



Properly 3-coloured triangulations are 1-catalytic

S Bipartite maps counted by edges (t): series B

Tutte's approach: delete the root edge
e @O
- @9

— Record a new, “catalytic” statistic: half the degree of the root
face (new variable y)

POI(B(U)>B(1)>t>U) =0

An equation in one catalytic variable, y
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Properly 3-coloured cubic maps are 2-catalytic

.. as the 3-state Potts model on cubic maps (V)

.. or the g-state Potts model on cubic maps (q, V)

.. Or dualy the g-state Potts model on triangulations
.. or the g-state Potts model on general planar maps

Why? Computing the Potts polynomial requires deletion and
contraction of the root-edge e:

PM(q>V) — PM\e(q>V) - (V — 1)PM/e(q>V)

— Record the (y) and the

(x) '
deletion
@ \A ‘
@ contraction



The g-state Potts model on triangulations

Proposition. Let Q(x,y)=Q(q, v, ti x,y) be the only formal series in t
satisfying

Q% y) =1 —-yQi(x)

Qlx,y) =T+t J +xt(Q(x,y) — 1) +xytQ1 (x)Q(x,y)
+yt(v —1)Q(x,y)(2xQ1 (x) + Q2(x)) + y*t (q + 1V_XJZV> Q(0,y)Q(x,y)

i yt(v—1) Q(x,y) — Q(0,y)
with 1 —xtv X

Qi(x) = [y'1Q(x,y).

[Bernardi-mbm 1]
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The g-state Potts model on triangulations

Proposition. Let Q(x,y)=Q(q, v, ti x,y) be the only formal series in t
satisfying

Qlx,y) =1+t Qixy)=T=yix)  ythv=1) Qlx,y) = Q0 y)

y I —xtv X

Then Q(0,y) :=T(y) is the g-Potts GF of near-triangulations.

Proposition. When g # 0,4 is of the form 4—cos(|<n:/m)2, the series
Q(0,y)=T(y) also satisfies an equation in one catalytic variable (y).

Includes g=2 (Ising), g=3.

[Bernardi-mbm 1]



3-Potts on near-triangulations is (also) 1-catalytic

Proposition. Take g=3. There exists an explicit polynomial such that

POI(T(U)>T1>T3>T5>T7>V>t)y) =0

where T, = y'IT(y)

is the contribution of near-triangulations with root-face of degree i.
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3-Potts on near-triangulations is (also) 1-catalytic

Proposition. Take g=3. There exists an explicit polynomial such that

POI(T(U)>T1>T3>T5>T7>V>t>y) =0

where T = y'T(y)

is the contribution of near-triangulations with root-face of degree i.

0 =78732(v—1)" vy T(y)°
+729 (v—1)° viy” (37v2y2 —108v2y — 20vy? + 144v* — 36yv — 17y2) T(y)?
—54(v—1)"vy® (486 Ty viy* —405v*ty* +486vity® —56viyt — 81v3ty?
+342vHy° + 53v Yt — 1044vHy® +18v2y° + 60vAy* + 1458vty — 99v3y?
—333v*y® —55vy* — 972v* +486v3y + 171v7y* — 27vy’® — 2y*) T(y) + -

No combinatorial [Bernardi-mbm 1]
explanation
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Theorem [Popescu 86]
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S;(ty), AI(T), ..., Ak(t) In . then all these series
are algebraic over F(ty).
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One-catalytic implies algebraic !

Theorem [Popescu 86]
If a system of polynomial equations of the form

Poli (S1(t;y),...,S5(ty), Aq(t), ..., Ax(t), t,y) =0

with coefficients in some field F has a Si(tiy), .,
S;(ty), AI(T), ..., Ak(t) In . then all these series
are algebraic over F(ty).

Proposition [mbm-Jehanne 06]
Same result for a single equation of a “proper” type...

+ effective procedure.

* Extension to systems [Notarantonio-Yurkevich 23(a)]
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3-Potts on near-triangulations is (also) 1-catalytic

Proposition. Let g=3. There exists an explicit polynomial such that

Pol(T(y), Ty, T3, Ts, T7, v, t,y) =0 (1)
where

Corollary. The 3-Potts GF of near-triangulations T(y) is algebraic.

[Bernardi-mbm 1]

Better algorithms than [mbm-Jehanne 061: Bostan, Chyzak,
Notarantonio, Safey el Din (2022-) ... but (1) was still too big.

Now a solution...

What happened?



1V. Some tools




General approach to 1-catalytic equations [mbm-AJ]

Consider the l-catalytic equation

POI(S(U)>A1>A2>A3>A4>t>y) = 0.

Theorem: Let A(a), a2, as, a4, t, y) be the discriminant of
Pol(s, a), az, as, a4, 1, ) in its first variable.

Then, as a polynomial iny, A(A), A2, Az, A4, 1,yY) has

N, V2, V3, Va.
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* A much smaller system !
D—|—(T1>T3>T5>T7>t> ul) — ayD+(T1>T3>T5>T7>t) ul)
D—(T1)T3>T5>T7)t) ul) — ayD—(T1)T3)T5)T7)t> ul)

0, i=1,2
0, i=3,4.

* Handle U), U2 and Uz, U4 via their symmetric functions
They turn out to have degree Il while each Ui has degree 22.

e Use explicit elliptic parametrisations for curves of genus |

Solution for 3-Potts

on near-triangulations



The case of general planar maps

Proposition. The 3-Potts generating function M(v,t) of general planar
maps is algebraic of degree 22, with an explicit minimal polynomial.

Cmbm-Notarantonio 25]

Genus 4-...

« Same starting point with D+, D_
+ Alternative solution technique



V. Asymptotics




Asymptotics for 3-Potts on near-triangulations

Proposition. Fix v > 0. The 3-Potts GF T) of near-triangulations of
outer degree 1 has radius of convergence py where

A1(v,py) =0 for O0<v<v.:=1+3/V47,
Ar(v,py) =0 for v, <v,

for explicit polynomials Ay and Az of degrees 5 and 9 in p.
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Asymptotics for 3-Potts on near-triangulations

Proposition. Fix v > 0. The 3-Potts GF T) of near-triangulations of
outer degree 1 has radius of convergence py where

A1(v,py) =0 for O0<v<v.:=1+3/V47,
Ar(v,py) =0 for v, <v,

for explicit polynomials Ay and Az of degrees 5 and 9 in p.

As 1 approaches p,

Ty =0y +Bv(1 —t/pv) +vv(1 —t/py)* (1 4+ 0(1)),

Wit a=3/2 if v£ve, «a=6/5 if v=-v,.
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