Meandering through random cycles and random colorings

Fig. 3: Equivalence between (a) a bi-colored fatgraph with a unique vertex and a marked edge, (b) a system of bi-colored arches and (c) a system of arches closed into a set of connected circuits

B. Eynard,
IPHT CEA Saclay, CRM Montréal

ReNewQuantum

ERC SYNERGY GRANT

Coloring Random Triangulations

P. Di Francesco*,

Department of Mathematics,
University of North Carolina at Chapel Hill,
CHAPEL HILL, N.C. 27599-3250, U.S.A.

B. Eynard#

Department of Mathematical Sciences, University of Durham, Science Labs, South Road, DURHAM DH1 3HP, U.K.

E. Guitter^{\$}

Service de Physique Théorique, C.E.A. Saclay, F-91191 Gif sur Yvette Cedex, France

Nucl. Phys., B 516, No. 3, 543-587 (1998).

Random matrix integral :
$$Z = \int dA \ dB \ e^{-N \operatorname{Tr} p \log(1-A) + q \log(1-B) + gAB}$$

The free energy is easily obtained from (4.31) by expanding the resolvent (4.35) up to the second order in $1/\alpha$. We find

$$t\partial_t f(p,q,z;t) = \Omega_2 - \frac{z^2}{2} = \frac{U_1 U_2 U_3}{t^2} (1 - U_1 - U_2 - U_3)$$
(4.49)

Note that this is explicitly symmetric in p, q, z as expected.

Hamiltonian Cycles on a Random Three-coordinate Lattice

B. Eynard

Department of Mathematical Sciences
University of Durham, Science Labs. South Road
Durham DH1 3LE, UK

E. Guitter²

Service de Physique Théorique de Saclay F-91191 Gif-sur-Yvette Cedex, France

C. Kristjansen³

The Niels Bohr Institute Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

Nucl. Phys., B 528, No. 3, 523-532 (1998).

5 Conclusion

We have solved the non-trivial combinatorial problem of determining the number of spherical triangulations consisting of 2v triangles and being densely covered by a single self-avoiding and closed walk. Let us define the entropy exponent of such objects ω_H , as

$$\log \omega_H = \lim_{v \to \infty} \frac{1}{2v} \log \left(\mathcal{N}_0^{(1)}(2v) \right). \tag{5.1}$$

From (3.5) we see that

$$\omega_H = 4. \tag{5.2}$$

For triangulations without decorations the corresponding exponent takes the value [17]

$$\omega_H^{(T)} = 2 \cdot 3^{3/4} \tag{5.3}$$

and for triangulations corresponding to one-particle-irreducible three-coordinate graphs

$$\omega_H^{(1PI)} = \frac{16}{3\sqrt{3}}. (5.4)$$

Counting mobiles by integrable systems

 M. Bergère¹, B. Eynard¹², E. Guitter¹, S. Oukassi¹
 ¹ Université Paris-Saclay, CEA, CNRS, Institut de physique théorique 91191 Gif-sur-Yvette, France.

² CRM Centre de Recherches Mathématiques de Montréal, QC, Canada. arXiv:2312.08196

Figure 5: Schematic picture of a black half-mobile enumerated by B_{ij} , a white half-mobile enumerated by W_{ij} and a mobile with a marked corner (or a single labeled vertex), as enumerated by R_i .

Theorem 4.3 (Main theorem) Assume $g_1 = \tilde{g}_1 = 0$ and g_k , \tilde{g}_k as in eq (4.75). Then the semi-infinite matrices Q and P whose elements are given by the scalar products

$$Q_{n,m} = \langle \phi_m(z), X(z)\psi_n(z) \rangle$$
, $P_{n,m} = \langle \phi_m(z), Y(z)\psi_n(z) \rangle$, $n, m \ge 0$, (4.76)

are the solution to the combinatorial mobile problem. In particular, we have the expression

$$R_n = R \frac{h_{n-1}h_{n+1}}{h_n^2}, \quad h_n = \det_{1 \le a, b \le N} \left(\bar{w}_a^{n+b} - w_a^{n+b} \right).$$
 (4.77)

Merci Emmanuel