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PhD 1989: « Physique statistique et propriétés critiques des membranes »  
(under the supervision of F. David)  
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Renormalization of the bending energy by thermal fluctuations

coupled to internal order within the membrane

Melting transition in 2 dimensions 
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interactions between several fluctuating objects; (ii) or one deals with the in-
teraction of a single freely fluctuating object with another non-fluctuating fixed
object. Case (i) includes for instance self-avoiding polymers or membranes,
polyelectrolytes and charged gels, as well as the description of intersections of
random walks. Case (ii) includes the problems of binding/unbinding of a long
molecule or a membrane on a wall, the wetting of an interface. One can also
reduce to this class the problems of unbinding of two membranes or interfaces,
and that of the steric repulsions between membranes in a lamellar phase.

Among the many different generic situations one can think of, one case is
now well understood, namely that where the fluctuating objects are only one-
dimensional objects. Indeed, many problems in case (ii) can then be solved by
simple analogy with quantum mechanics, i.e. by use ofa diffusion equation. The
situation is more complicated in case (i), a paradigm of which is the celebrated
problem of self-avoiding polymers. Still in this case, the use of perturbative ex-
pansions and renormalization group techniques allows for explicit results on
the thermodynamics of these objects. For instance, a self-avoiding polymer em-
bedded in a d-dimensional external space can be described by the continuous
Edwards hamiltonian [1,21

lf(d~ cif) ~f0Sdsf0Sds/~d(r(s)_r(sF)). (1.1)

This model can then be viewed as a one-dimensional field theory, with position
field r(s) at abscissa s along the chain of size S, and with a non-local interac-
tion term. This field theory then has a formal perturbative expansion in b: this
point of view dates back the work of Fixman [31and has been developed by
des Cloizeaux [2,4]. The terms of this expansion are in general integrals over
the internal coordinates s of the interaction points and may diverge when these
interaction points come close to each other (~s— s’I —p 0). The theory can then
be regularized by analytic continuation in d ~ 2, and the natural expansion
parameter is then bS

2”/2, hence large in the thermodynamic limit S —~ oo for
d < 4. For dimensional reasons, the corresponding long-distance divergences are
twinned with the short-distance divergences, and appear as poles in d at d = 4.
Within a double expansion in b and E = 4—d, the structureof these poles is such
that the theory is renormalizable for e ~ 0. This means that the poles at  = 0
can actually be absorbed into redefinitions of the parameters of the model, and
that a scaling limit is obtained for the thermodynamical properties of the poly-
mer when e ~ 0. Still, a rigorous proof of renormalizability requires the use of
the famous equivalence of the Edwards model with the 0(n) model for n = 0,
that is a model with a n-component field 0 (r) in the d-dimensional external
space, as shown by de Gennes [5]. From this different point of view, which was
the first to be developed in the 70’s, the self-avoiding polymer problem is seen
as a d-dimensional local field theory, that is a theory with local interactions, and

S.F. Edwards P.-G. de Gennes J. Legrand des Cloizeaux

(1965)Edwards’s model for polymers

De Gennes’s n=0 limit of the O(n) model
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partition functions make their double expansions in
terms of ZR and s, and expressed as functions of
S’, £R, finite when s -+ 0. The particular form of
equation (6) is the defmition of the dimensional
renormalization or minimal subtraction scheme [5].
The renormalization constants have no fmite parts
in 8 but only poles.
The relation between the regularized partition

functions (3) and the renormalized ones is then (for
the monodisperse case)

where iT[ has a finite limits for s -+ 0, when expressed
in terms of zR (and not z).
The second dimensional renormalization scheme we

use is (for the polydisperse case)

where the renormalization constants Zb, Zm, Z have
also the minimal form (6). As we shall see, these
renormalization constants Zb, Zm, Z are exactly those
of field theory in the limit of a number of components
n = 0. In this scheme, the relation between regularized
and renormalized partition function will be

where the fl’ R are other renormalized partition func-
tions, depending on { Sj,R } bR, and it, and regular in s,
when s - 0. 

’

The two schemes (I) and (II) are not the same. The
difference is in the renormalizations of b or z =

(2 n)-d/2 bS 2 - d/2. That of b is the standard one in
field theory. That of z is more convenient for polymer
theory, since the variable z is a natural expansion
variable. This is the reason why we introduce it.

Incidentally, let us note that the convergent integral
representation established by us for the dimensionally
renormalized polymer partition functions [8] corres-
ponds to the scheme II of this article. This integral
representation has nevertheless a quite simple expres-
sion in terms of the z-parameter [8].
To prove the existence of these two schemes, we

shall use field theory. We shall prove the existence of
the scheme II first, and then of the other one I, which is
a little more subtle.

3. Field theory and proof of existence.

As it is well known [10], there is a correspondence
between the continuous polymer theory just described,
and the O(nN) field theory (n -+ 0) given by the
Hamiltonian

There are as many fields (p,, and masses mj, as there are polymer chains. If one defines in Fourier space

and the connected Green functions by

one has the exact correspondence

(The contour is taken on the right hand side of the
singularities of the integrand.)
Now, we know that there exists [5] a (unique) dimen-

sional renormalization or minimal subtraction scheme
(for n - 0) :

where Zb, Z., Z have the same minimal polar struc-
ture as in (6). Substituting (11) makes the renormalized
Green’s functions finite, when expressed in terms of
bR, Mj2 ,R. The parameter p is the arbitrary mass scale [5],
which makes bR dimensionless. Two important facts
must be noted. First, the renormalization of the mass
is mass-independent as emphasized by previous
authors [5]. Second, in principle, for n # 0, there is
a mixing of the renormalizations of the masses [5] :

(PGG 1972, JdC 1975)

Des Cloizeaux’s direct renormalization (1981)

r(s)

ss0



1. INTERACTING MANIFOLD RENORMALIZATION: A BRIEF HIS-

TORY

As can be seen in the set of lectures in this volume, which presents an extended version

of [1], the statistical mechanics of random surfaces and membranes, or more generally

of extended objects, poses fundamental problems. The study of polymerized membranes,

which are generalizations of linear polymers [2,3] to two-dimensionally connected networks,

is emphasized, with a number of possible experimental realizations [4,5,6,7,8], or numerical

simulations [9,10]. From a theoretical point of view, a clear challenge in the late eighties

was to understand self-avoidance (SA) effects in membranes.

The model proposed1 in [11,12] aimed to incorporate the advances made in polymer

theory by renormalization group (RG) methods into the field of polymerized, or teth-

ered, membranes. As we saw in part I of these lectures, these extended objects, a priori

two-dimensional in nature, are generalized for theoretical purposes to intrinsically D–

dimensional manifolds with internal points x ∈ IRD, embedded in external d-dimensional

space with position vector !r(x) ∈ IRd. The associated continuum Hamiltonian H general-

izes that of Edwards for polymers [2]:

βH =
1

2

∫

dDx
(

∇x!r(x)
)2

+
b

2

∫

dDx

∫

dDx′ δd
(

!r(x)−!r(x′)
)

, (1.1)

with an elastic Gaussian term and a self-avoidance two-body δ-potential with interaction

parameter b > 0. For 0 < D < 2, the Gaussian manifold (b = 0) is crumpled with a

Gaussian size exponent

ν0 =
2−D

2
, (1.2)

and a finite Hausdorff dimension

dH = D/ν0 = 2D/(2−D); (1.3)

the finiteness of the upper critical dimension d! = 2dH for the SA-interaction allows an

ε-expansion about d! [11–13]:

ε = 4D − 2ν0d (1.4)

1 R.C. Ball was actually the first to propose, while a postdoc in Saclay in 1981, the extension

of the Edwards model to D-manifolds, with the aim, at that time, to better understand polymers!

(unpublished).

1
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infinite D-space propagator 6 means that V is really a
"patch" of an infinite Gaussian manifold, on which acts
the excluded volume with the Euclidean 6. It is con-
venient to define the dimensionless variables

+ ~ ~ ~

FIG. 2. Perturbation expansion (3), where n+1 (n ~0)
multiple points of the manifold are located at the origin in the
orthogonal space W~ of dimension d' =d —D'.

where 6 is the Coulomb potential in internal D-space '

G(x) = [So(2—D)/2] '
I x I, solution of AG(x)

=26 (x), with So =2rr i /I (D/2) the area of the unit
sphere. As noticed in Refs. 10 and 11, the use of the

—[(2 D)S /4 ] d'/2b~o —(2 —D)dV2

=——Z A " ' "[(2—D)S/4 ]

The parameter z-bX' is the dimensionless interaction,
analogous to that defined for polymers' or crumpled
manifolds, '' and for d &d*, z ~ in the large-size
limit of the crumpled manifold. The parameter g repre-
sents the dimensionless second virial coeKcient' of a
solution of crumpled manifolds interacting with Euclide-

!
an elements. The virial expansion of the osmotic pres-
sure II reads indeed from Eq. (2)

pfl=c, +c,—z,,,c,c, le!+
=c,+c,+gc, c2I v I'""

I @ I [(2 —D)so/4~] ""+

g=z g I„( z)", — (8)
n=0

where I„ is obtained from (4) by performing the Gauss-
ian integral over the n-independent variables k;, i
=2, . . . , n + 1, with k = —g2 + 'k;,

n+]
, +d x;(detD)

D is the symmetric nxn matrix of elements D;~, i,j
=2, . . . , n+1,

(9)

D;) = —,
' ( I x;, I

' +
I x) i I

' —
I x;, I

' ),
(10)

D;;=Ix;, I' o,
where we note x;~ =x; —xj. Here V'=—X V is the res-
caled manifold of unit volume I

V'I =1, and all x; are
now dimensionless, as I„.

Renormalization. —The first coe%cients I„read Ip =1
and

with a=(2 —D)d'/2=(2 —D)(d —D')/2. The same in-
tegral appears for SA manifolds '' in the calculation of
the configuration exponent y, and leads to the nonuniver-
sal dependence of y on the boundary shape of V. ' ''
However, the divergences studied there are those appear-
ing near ' '' e =2D, while here we are interested in the
other pole [Eq. (1)]: a=D —e. The leading term for
e 0+ in (11) is easily extracted as (setting

where C] and Cq are the number concentrations of
smooth 8 and crumpled V manifolds and I 8 I

is the
(very large) D' volume of A. By analogy to the poly-
mer' ' and self-avoiding manifold " cases, we expect
g to reach a (universal) fixed-point limit g* when

We can rewrite the series expansion (3) and
(4) as

r Ix, —x~l =y)

26
(12)

1r„lp -—(,), II s „
1

(n+1)tnt

' n
So

This divergence does not depend on the manifold's shape.
In order to establish the one-loop renormalizability, we
have to consider the leading divergence of the generic
term I„[Eq. (9)]. Notice first that in the matrix D;, the
symmetry between the n + 1 integration points on V' has
been broken in favor of a reference point x]. Of course
the determinant is symmetric [see Eqs. (4) and (5)].
The leading divergence of integral (9) is obtained by
taking one of the points (e.g. , x;) and letting first the dis-
tance x; —x~ I 0. Then for any other j Ai, 2D;,=

I x; ~

—x; ~
V

I x~ ~ I
. If we assume moreover

1 & D, then the first term dominates and for x; x],
D;, = —,

' lx;~ I

= —,
' D;;, bj'~i Theref. ore in the expan-

sion of detD with respect to line i and column i, the di-
agonal term D;; dominates and for i 1 detD
=D;;detD/i =

I x;~ I detD/i, where detD/i is the new
determinant of order n —1 obtained from D by deleting
column i and row i Hence. x; disappears from D/i
Now, by symmetry, we could have taken any pair of
points (i,j, i &j) such that x; xj gives detD=

I x;~ I detD/i. Now, among all the (n+ 1)n/2
pairs of points (i,j ) in the n+1 points, we choose an ar-
bitrary ordered set of n pairs P =[(i„j,), a=1, . . . , n]
such that the distances

I x; —x~. I y, 0, Va, in the
successive order y] ~y2~ . ~y„. In this limit we
can factorize detD=Q"=~y, . The contribution of
this sector P to I„[Eq. (9)] is then the iteration of (12),
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Abstract†

We consider a model of a D-dimensional tethered manifold interacting by excluded volume

in IRd with a single point. Use of intrinsic distance geometry provides a rigorous definition of

the analytic continuation of the perturbative expansion for arbitrary D, 0 < D < 2. Its one-

loop renormalizability is first established by direct resummation. A renormalization operation

R is then described, which ensures renormalizability to all orders. The similar question of the

renormalizability of the self-avoiding manifold (SAM) Edwards model is then considered, first at

one-loop, then to all orders. We describe a short-distance multi-local operator product expansion,

which extends methods of local field theories to a large class of models with non-local singular

interactions. It vindicates the direct renormalization method used earlier in part I of these lectures,

as well as the corresponding scaling laws.
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performed via the direct renormalization method adapted from that of des Cloizeaux in

polymer theory [14], as we explained in part I.

Only the polymer case, with an integer internal dimension D = 1, can be mapped,

following de Gennes [15], onto a standard field theory, namely a (Φ2(!r))2 theory for an

n-component field Φ(!r) in external d-dimensional space, with n → 0 components. This

is instrumental in showing that the direct renormalization method for polymers is mathe-

matically sound [16], and equivalent to rigorous renormalization schemes in standard local

field theory, such as the Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) construction

[17]. For manifold theory, we have to deal with non-integer internal dimensions D, D "= 1,

and no such mapping exists. Therefore, two outstanding problems remained in the theory

of interacting manifolds: (a) the mathematical meaning of a continuous internal dimension

D; (b) the actual renormalizability of the perturbative expansion of a manifold model like

(1.1), implying the scaling behavior expected on physical grounds.

r (  )xxr (  )

(a)

x x

0

(b)

DD

D’

Fig. 1: (a) A D-manifold interacting with an impurity located at point 0 in IRd; (b)

interaction with an Euclidean hyperplane of dimension D′ in IRd′

, with d′ = d+D′.

In [18], a simpler model was proposed, of a crumpled manifold interacting by excluded

volume with a fixed Euclidean subspace of IRd [19]. The simplified model Hamiltonian

introduced there reads:

βH =
1

2

∫

dDx
(

∇x!r(x)
)2

+ b

∫

dDx δd
(

!r(x)
)

, (1.5)

with a pointwise interaction of the Gaussian manifold with an impurity located at the

origin (Fig. 1a). Note that this Hamiltonian also represents interactions of a fluctuating
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We consider a model of a D-dimensional tethered manifold interacting by excluded volume in H with

a single point. By use of intrinsic distance geometry, we first provide a rigorous definition of the analytic
continuation of its perturbative expansion for arbitrary D, 0 & D (2. We then construct explicitly a re-
normalization operation R, ensuring renormalizability to all orders. This is the first example of
mathematical construction and renormalization for an interacting extended object with continuous inter-
nal dimension, encompassing field theory.

PACS numbers: 05.20.—y, 11.10.6h, 11.17.+y

The statistical mechanics of random surfaces and
membranes, or more generally of extended objects, poses
fundamental problems [1]. Among those, the study of
polymerized membranes, which are simple generaliza-
tions of linear polymers [2,3] to two-dimensionally con-
nected networks, is prominent, with a number of possible
experimental realizations [4,5]. From a theoretical point
of view, a clear challenge is to understand self-avoidance
(SA) effects in membranes. Recently, a model was pro-
posed [6,7] which aimed to incorporate the advances
made in polymer theory by renormalization group
methods into the field of polymerized, or tethered mem-
branes. These extended objects, a priori two dimensional
in nature, are generalized for theoretical purposes to in-
trinsically D dimension-al manifolds with internal points
x 6 IR, embedded in external d-dimensional space with
position vector r(x) 6 IR . The associated continuum
Hamiltonian )Y generalizes that of Edwards for polymers
[2]:

p& =— dox [V,r(x) ] '2"
+ —"d x d x'6 (r(x) —r(x')),

with an elastic Gaussian term and a self-avoidance two-
body 8 potential with interaction parameter b )0. For
0(D (2, the Gaussian manifold (b=0) is crumpled
with a finite Hausdorff dimension dH =2D/(2 —D); and
the finiteness of the upper critical dimension d* =2dH for
the SA interaction allows for an e expansion about d*
[6-8], performed via a direct renormalization method
adapted from that of des Cloizeaux in polymer theory [9].

It should be stressed, however, that only the polymer
case, with an integer internal dimension D=1, can be
mapped, following de Gennes [10], onto a standard field
theory, namely, a (@ ) theory for a field 0& with n 0
components. This is instrumental to show that the direct
renormalization method for polymers is mathematically
sound [11], and equivalent to rigorous renormalization
schemes in standard local field theory, such as the land-
mark Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ)
construction [12]. For manifold theory, we have to deal
with noninteger internal dimension D, D&l, where no

such mapping exists. Therefore, two outstanding prob-
lems remain in the theory of interacting manifolds: (a)
the mathematical meaning of a continuous internal di-
mension D; (b) the actual renormalizability of the per-
turbative expansion of a manifold model like (1), then
implying scaling as expected on physical grounds.

A first answer was brought up in [13],where a simpler
model of a crumpled manifold interacting by excluded
volume with a fixed Euclidean subspace of R was pro-
posed. The direct resummation of leading divergences of
the perturbation series indeed validates their one-loop re-
normalization, a result later extended to the Edwards
model (1) [14].

In this Letter, we announce the results of an extensive
study of these questions [15]. We first propose a math-
ematical construction of the D-dimensional internal mea-
sure d x via distance geometry within the elastic mani-
fold, with expressions for manifold Feynman integrals
which generalize the a-parameter representation of field
theory. In the case of the manifold model of [13], we
then describe the essential properties which make it
indeed renormalizable to all orders by a renormalization
of the coupling constant, and we directly construct a re-
normalization operation, generalizing the BPH Z con-
struction to manifolds.

The simplified model Hamiltonian introduced in [13]
reads

1 DPP =— doxV[„r(x)]' +b' doxy"(r(x)), (2)

with now a pointwise interaction of the Gaussian mani-
fold with the origin. Notice that this Hamiltonian also
represents interactions of a Auctuating (possibly directed)
manifold with a nonAuctuating D' Euclidean subspace of

tR"+, r then standing for the coordinates transverse to
this subspace. The excluded volume case (b) 0) paral-
lels that of the Edwards model (1) for SA manifolds,
while an attractive interaction (b (0) is also possible,
describing pinning phenomena. The dimensions of r and
b are, respectively, [r] =[x'] with a size exponent v=(2

D)/2, and [b] =[x '] w—ith e =D —vd. For fixed D—
and v, the parameter d (or equivalently e) controls the
relevance of the interaction, with the exclusion of a point
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We consider acontinuous model ofD-dimensional elastic (polymerized) manifold fluctu-
ating in d-dimensional euclidean space, interacting with a single impurity via an attractive
or repulsive ö-potential (but without self-avoidance interactions). Except for D = 1 (the
polymer case), this model cannot be mapped onto a local field theory. We show that the
use of intrinsic distance geometry allows for a rigorous construction of the high-temperature
perturbative expansion and for analytic continuation in the manifold dimension D. We
study the renormalization properties of the model for 0 < D < 2, and show that for
bulk space dimension d smaller that the upper critical dimension d* = 2D/(2 — D), the
perturbative expansion is ultraviolet finite, while ultraviolet divergences occur as poles at
d = d*. The standard proof of perturbative renormalizability for local field theories (the
Bogoliubov—Parasiuk—Hepp theorem) does not apply to this model. We prove perturbative
renormalizability to all orders by constructing a subtraction operator R based on ageneral-
ization of the Zimmermann forests formalism, andwhich makes the theory finite at d = d*.
This subtraction operation corresponds to a renormalization of the coupling constant of the
model (strength of the interaction with the impurity). The existence of a Wilson function,
of an c-expansion a Ia Wilson—Fisher around the critical dimension, of scaling laws for
d < d* in the repulsive case, and of non-trivial critical exponents of the delocalization
transition for d > d* in the attractive case, is thus established. To ourknowledge, this study
provides the first proof of renormalizability for a model of extended objects, and should
be applicable to the study of self-avoidance interactions for random manifolds.

1. Introduction

One general problem arising in statistical physics is the understanding of the
effect of interactions on the thermodynamical properties of extended fluctuating
geometrical objects. These objects may be (one-dimensional) lines, like long lin-
ear macromolecules or polymers, (two-dimensional) surfaces, like membranes
or interfaces, or even (three-dimensional) volumes, like gels. The interactions
involve in general two-body attractive or repulsive forces, and one may in gen-
eral reduce such problems into two different classes: (i) either one deals with
self-interactions between distinct points ofthe same fluctuating object, or mutual

Member of C.N.R.S.

2 Laboratoire de la Direction des Sciences de la Matiêre du Commissariat a l’Energie Atomique.
0550-3213/93/$ 06.00 © l993—Elsevier Science Publishers B.V. All rights reserved
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The renormalizability of the self-avoiding manifold Edwards model is established. We use a new short
distance multilocal operator product expansion, which extends methods of local field theories to a large
class of models with nonlocal singular interactions. This validates the direct renormalization method in-
troduced before, as well as scaling laws. A new general hyperscaling relation is derived. Manifolds at
the 8 point and long-range Coulomb interactions are briefly discussed.

PACS numbers: 05.20.—y, 11.10.6h, 11.25.—w

The statistical mechanics of fluctuating surfaces has at-
tracted much attention in recent years with applications
in many areas of physics from string theories in high en-
ergy physics to interface and membrane problems in soft
condensed matter physics and biophysics [I]. In particu-
lar, tethered surfaces, which model polymerized flexible
membranes, have unusual and interesting elastic proper-
ties. While these properties are now well understood
theoretically for "phantom membranes, " that is, when
self-avoidance (SA) interactions are ignored, the conse-
quence of incorporating SA constraints to describe real
membranes is still an open problem. In practice, the
search for a consistent theoretical treatment of SA in-
teractions raises the fundamental question of applying re-
normalization group (RG) methods to extended objects,
which is the issue addressed here.

The theoretical study of SA polymerized membranes is
centered around a model of tethered self-avoiding mani-
folds (SAM) [2,3] directly inspired by the Edwards mod-
el for polymers [4]. The surfaces are generalized to in-
trinsically D-dimensional manifolds, representing D-
dimensional connected networks, whose nodes, labeled by
internal continuous coordinates x E IR, are embedded in
external d-dimensional space with position vector r(x)
E IR . The associated continuum Hamiltonian S' is

/f/ktt T = —J"d x [&„r(x)1
1

2

+ —J~ d x„d x'b' (r(x) —r(x')),
with an elastic Gaussian term and a self-avoidance two-

body 8 potential with excluded volume parameter b & 0,
nonlocal in "manifold space" IR .

A finite upper critical dimension (UCD) d* for the SA
interaction exists only for manifolds with a continuous
internal dimension 0 & D & 2. Phantom manifolds (b
=0) are crumpled with a finite Hausdorff dimension
dH=2D/(2 D), and d* =2—dH. In [2,3,5] an e expan-
sion about d* was performed via a direct renormalization
(DR) method adapted from polymer theory [6]. But
many issues remain unanswered: The consistency of the
DR method is proven only for D=1 by the famous map-
ping of (I) onto a (zero component) (@2)2(r) field
theory in external d-dimensional space [7]. When D&I,
model (I) can no longer be mapped onto a local field
theory, and the validity of RG methods and of scaling
laws has been justified only at leading order through ex-
plicit partial resummations [8]. The questions of a prop-
er treatment for boundaries and of the value of the
configuration exponent y [5] are also open.

In this Letter, we introduce a flexible formalism that
allows us to prove the validity of the RG approach to
self-avoiding manifolds, as well as to a larger class of
manifold models with nonlocal interactions. It broadly
extends a recent work by the authors [9] for a simpler
model [10], with a local singular interaction, of a phan-
tom manifold interacting with a single impurity [11].
The present formalism is based on a new operator prod-
uct expansion involving multilocal singular operators,
and allows for a systematic analysis of the short distance
ultraviolet (uv) singularities of the model. At the critical
dimension d*, we can classify all the relevant operators

0031-9007/94/72 (3)/31 I (5)$06.00
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MOPE: Multilocal Operator Product Expansion

molecule

atom

dipole
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Fig. 7: The notions of “atoms” and “molecules”, built up from dipoles.

p
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Fig. 8: A general diagram with two external points and three internal dipoles, rep-

resenting bi-local interactions δa (a); “molecules” describing singular configurations with

one (b), two (c,d) and three (e) “atoms”. (b,c,d) give UV divergences, (e) does not.

charges, they still can build neutral atoms. This requires some of the points xi to coincide

and the corresponding dipoles to form at least one closed loop (Fig. 7). This ensures that

the only sources of divergences are short-distance singularities, and extends the Schoenberg

theorem used above.

3.6. Multi-local Operator Product Expansion

A singular configuration can thus be viewed as a connected “molecule” (Fig. 7),

characterized by a set M of “atoms” p with assigned positions xp, and by a set L of

links a between these atoms, representing the dipolar constraints Ca associated with the

24



(SD = 2πD/2

Γ(D/2) is as before the volume of the unit sphere in IRD), and

PG(a) ≡
(−1)N

2N−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 . . . 1
1 0 a12 . . . a1N
1 a12 0 . . . a2N
...

...
...

. . .
...

1 a1N a2N . . . 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.46)

The factor Ω(D)
N (2.45) is the volume of the rotation group of the rigid simplex spanning

the points xi. The “Cayley-Menger determinant” [29] PG(a) is proportional to the squared

Euclidean volume of this simplex, a polynomial of degree N − 1 in the aij. The set

a of squared distances has to fulfill the triangular inequalities and their generalizations:

PK(a) ≥ 0 for all subgraphs K ⊂ G, which defines the domain of integration AG in (2.43).

For real D > |G|−2 = N−2, dµ(D)
G (a) is a positive measure on AG , analytic in D. It is

remarkable that, as a distribution, it can be extended to 0 ≤ D ≤ |G|− 2 [22]. For integer

D ≤ |G|−2, although the change of variables from xi to aij no longer exists, Eq.(2.44) still

reconstructs the correct measure, concentrated on D-dimensional submanifolds of IRN−1,

i.e., PK = 0 if D ≤ |K| − 2 [22]. For example, when D → 1 for N = 3 vertices, we have,

denoting the distances |ij| = √
aij :

dµ(D→1)
{1,2,3}(a)

d|12|d|13|d|23|
= 2 δ

(

|12|+|23|−|13|
)

+ 2 δ
(

|13|+|32|−|12|
)

+ 2 δ
(

|21|+|13|−|23|
)

, (2.47)

which indeed describes the 6 possibilities for nested intervals in IR, with degeneracy factors

2 corresponding to the reversal of the orientation.

Another nice feature of this formalism is that the interaction determinants in (2.17)

and (2.19) are also Cayley-Menger determinants! We have indeed

det [Πij ]1≤i,j≤N−1 = PG(a
ν) (2.48)

where aν ≡ [aνij] i<j
i,j∈G

is obtained by simply raising each squared distance to the power ν.

We arrive for (2.17) and (2.20) at the representation of “Feynman diagrams” in distance

geometry:

ZN =

∫

AG

dµ(D)
G IG , IG =

(

PG(a
ν)
)− d

2

Z(0)
N (#k) =

∫

AG∪{0}

dµ(D)
G∪{0} I

(0)
G (#k) ,

I(0)G (#k) = IG exp

(

−
1

2
#k2PG∪{0}(a

ν)

PG(aν)

)

,

(2.49)

which are D-dimensional extensions of the Schwinger α-parameter representation. We now

have to study the actual convergence of these integrals and, possibly, their renormalization.
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The ecstasy of distance geometry

Cayley-Menger determinant
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