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Rubidium clock drift correction 
for HK timing system
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Time generation system
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• Signal generated by a free 
running Rubidium atomic 
clock


• GNSS receiver 
continuously measures 
difference Rb - GNSS Time


• Measured difference used 
to correct Rb signal in 
order to keep a 
synchronisation below 
100ns.



Rubidium clock drift correction
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Drift correction
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• Rubidium atomic clocks have a good short 
term stability but their frequency drifts with 
time


• The comparison to GNSS allows to estimate 
this drift and correct it


• To correct it in real-time, we can extrapolate 
the measured drift to the near future


• In practice, we receive on measurement every 
16minutes. The correction to apply is thus 
changed every 16 minutes. 



Drift correction
• Fit the Rb - GNSS Time measured by Septentrio receiver with piece-wise 

polynomial functions of time:





• Correct Rb time signal by subtracting the fit result extrapolated t the near 
future:


 

∀t ∈ [tk, tk + Δt], tRb − tGNSS = bk ⋅ t + ck

∀t ∈ ]tk + Δt, tk + Δt + δt], tRb,corr = tRb − (bk ⋅ t + ck)
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Determines frequency at which we recalculate the correction 
coefficients: should be as small as possible for better efficiency 

(one Septentrio epoch ~16min).



Real-time implementation
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Midas
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• Currently using Midas for our data-takings


• Midas is a data acquisition system, used by T2K ND280 for instance


• It works with frontends (programs written in python or C++) that can be 
launched via a webpage, and an online database (ODB) containing all 
information related to the internal operation of the data acquisition and any 
user information related to the configuration of the experiment.


• The frontend programs can access and edit the ODB during a run. Each time 
it does so, this is also saved in the midas file written by the corresponding 
run.



Correction

• Done with the Correction Frontend, script 
correction_fe.py
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Correction

• Done with the Correction Frontend, script 
correction_fe.py


• It continuously reads the ODB of the 
cggtts_septentrio frontend.


• Every time a new measurement is 
available, it updates the correction 
coefficients
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Correction

• Done with the Correction Frontend, script 
correction_fe.py


• It continuously reads the ODB of the 
cggtts_septentrio frontend.


• Every time a new measurement is 
available, it updates the correction 
coefficients


• Stores the coefficients in its ODB
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Should be deleted

Number of Septentrio measurements to use. 
Should be in Settings, not Variables…



Validation on data
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Validation on data
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*UTC(OP): French official realisation of UTC made by 
SYRTE lab (3km from LPNHE)• Simultaneous Rb - GPS 

Time and Rb - UTC(OP) 
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• Use Rb - GPS Time to 
extract correction


• Apply correction to both 
measurements


• Check residual differences 
and Allan Standard Deviation


• Results of the offline 
validation: arXiv:2407.20825

https://arxiv.org/abs/2407.20825


Validation on data
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Rubidium atomic clock: FS 725 
from Stanford Research System Antenna: Septentrio PolaNt 

Choke Ring
GNSS receiver: Septentrio PolarRx5

Counter: Keysight 53220a White Rabbit Switch



Correction test

• To test the correction, added a ApplyCorr 
frontend that applies it to a time signal 
measured by a Keysight frontend
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Correction test

• To test the correction, added a ApplyCorr 
frontend that applies it to a time signal


• It continuously reads the ODB of the 
Keysight_1(2) frontend.
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Checks if it is a Time measurement

Reads the TIME value only



Correction test

• To test the correction, added a ApplyCorr 
frontend that applies it to a time signal


• It continuously reads the ODB of the 
Keysight_1(2) frontend.


• Every time a new Keysight measurement 
is available, it reads the current value of 
the correction coefficient in the Correction 
ODB and stores both the computed 
correction and the residual (key sight 
measurement - correction)
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Date (in MJD) of the applied correction



Results
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When the time difference becomes too negative, the order of 
the PPS switches

Take this into account by applying correction to 
“measurement-1s” when needed



Results
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Distribution to which the correction should be applied After bug fix, no more drift

Bug when the Rb-UTC(SYRTE)<0



Results
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After bug fix

HK requirements



Conclusion

• Need to collect more statistics to make sure there is no residual drift


• Features to implement in the future:


‣ Alarm system (frontend crash etc.)


‣ Error estimation for the correction (could be useful in case of low satellite 
coverage)


‣ Use GNSS comparisons to estimate when to change the Rubidium 
frequency 


Thank you!
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Results
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Results
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