
Claire Dalmazzone, 12th February 2025

Rubidium clock drift correction 
for HK timing system

1



Contents

• Timing in HK


• Rubidium clock drift correction


• Real-time implementation


• Validation on data

2



Time generation system

3

• Signal generated by a free 
running Rubidium atomic 
clock


• GNSS receiver 
continuously measures 
difference Rb - GNSS Time


• Measured difference used 
to correct Rb signal in 
order to keep a 
synchronisation below 
100ns.



Rubidium clock drift correction

4



Drift correction

5

Offline correction Online correction

Ti
m

e 
di
ffe

re
nc

es

Time

Ti
m

e 
di
ffe

re
nc

es

Ti
m

e 
di
ffe

re
nc

es
Ti

m
e 

di
ffe

re
nc

es

Rb Time stamps 
to correct

, , a b c Rb - GPS Time

Time

, , a b c

, , a b c

, , a b c
, , a b c , , a b c

, , a b c
Rb - GPS Time

Rb Time stamps 
to correct

, , a b c

• Rubidium atomic clocks have a good short 
term stability but their frequency drifts with 
time


• The comparison to GNSS allows to estimate 
this drift and correct it


• To correct it in real-time, we can extrapolate 
the measured drift to the near future


• In practice, we receive on measurement every 
16minutes. The correction to apply is thus 
changed every 16 minutes. 



Drift correction
• Fit the Rb - GNSS Time measured by Septentrio receiver with piece-wise 

polynomial functions of time:





• Correct Rb time signal by subtracting the fit result extrapolated t the near 
future:


 

∀t ∈ [tk, tk + Δt], tRb − tGNSS = bk ⋅ t + ck

∀t ∈ ]tk + Δt, tk + Δt + δt], tRb,corr = tRb − (bk ⋅ t + ck)

6

Determines frequency at which we recalculate the correction 
coefficients: should be as small as possible for better efficiency 

(one Septentrio epoch ~16min).



Real-time implementation

7



Midas

8

• Currently using Midas for our data-takings


• Midas is a data acquisition system, used by T2K ND280 for instance


• It works with frontends (programs written in python or C++) that can be 
launched via a webpage, and an online database (ODB) containing all 
information related to the internal operation of the data acquisition and any 
user information related to the configuration of the experiment.


• The frontend programs can access and edit the ODB during a run. Each time 
it does so, this is also saved in the midas file written by the corresponding 
run.



Correction

• Done with the Correction Frontend, script 
correction_fe.py

9



Correction

• Done with the Correction Frontend, script 
correction_fe.py


• It continuously reads the ODB of the 
cggtts_septentrio frontend.


• Every time a new measurement is 
available, it updates the correction 
coefficients

10



Correction

• Done with the Correction Frontend, script 
correction_fe.py


• It continuously reads the ODB of the 
cggtts_septentrio frontend.


• Every time a new measurement is 
available, it updates the correction 
coefficients


• Stores the coefficients in its ODB

11

Should be deleted

Number of Septentrio measurements to use. 
Should be in Settings, not Variables…



Validation on data

12



Validation on data

13

GNSS 
antenna

Septentrio 
receiver

Rb

Counter
WR switch 

WR switch

PPS IN

Freq. IN
PPS OUT

Freq. OUT

Ext. ref.

Cable

Optical fiber

10 MHz

PPS

PPS
10 MHzGround floor

5th floor

Roof

PPS
10 MHz

PPS

WR switch 

PPS

10 MHz
PPS

10 MHz reference + PPS reference 
(UTC(OP)) distributed through the 

T-REFIMEVE network

Setup@LPNHE Paris

*UTC(OP): French official realisation of UTC made by 
SYRTE lab (3km from LPNHE)• Simultaneous Rb - GPS 

Time and Rb - UTC(OP) 
measurement


• Use Rb - GPS Time to 
extract correction


• Apply correction to both 
measurements


• Check residual differences 
and Allan Standard Deviation


• Results of the offline 
validation: arXiv:2407.20825

https://arxiv.org/abs/2407.20825


Validation on data

14

Rubidium atomic clock: FS 725 
from Stanford Research System Antenna: Septentrio PolaNt 

Choke Ring
GNSS receiver: Septentrio PolarRx5

Counter: Keysight 53220a White Rabbit Switch



Correction test

• To test the correction, added a ApplyCorr 
frontend that applies it to a time signal 
measured by a Keysight frontend

15



Correction test

• To test the correction, added a ApplyCorr 
frontend that applies it to a time signal


• It continuously reads the ODB of the 
Keysight_1(2) frontend.

16

Checks if it is a Time measurement

Reads the TIME value only



Correction test

• To test the correction, added a ApplyCorr 
frontend that applies it to a time signal


• It continuously reads the ODB of the 
Keysight_1(2) frontend.


• Every time a new Keysight measurement 
is available, it reads the current value of 
the correction coefficient in the Correction 
ODB and stores both the computed 
correction and the residual (key sight 
measurement - correction)

17

Date (in MJD) of the applied correction



Results

18

When the time difference becomes too negative, the order of 
the PPS switches

Take this into account by applying correction to 
“measurement-1s” when needed



Results

19

Distribution to which the correction should be applied After bug fix, no more drift

Bug when the Rb-UTC(SYRTE)<0



Results

20

After bug fix

HK requirements



Conclusion

• Need to collect more statistics to make sure there is no residual drift


• Features to implement in the future:


‣ Alarm system (frontend crash etc.)


‣ Error estimation for the correction (could be useful in case of low satellite 
coverage)


‣ Use GNSS comparisons to estimate when to change the Rubidium 
frequency 


Thank you!
21



Results

22



Results

23


