

Neutrino Physics with Borexino

CPPM

February 2, 2010 – Marseille

Davide Franco Milano University & INFN

Outline

Neutrinos from the Sun
 The physics of Borexino
 The Borexino detector
 The "radio-purity" challenge
 The reached goals (⁷Be, ⁸B and μ_ν)
 Near and far future goals

Neutrinos: cosmic messengers

Messengers from the Sun's core

✓ Core (0-0.25 R_s)

✓ Nuclear reactions: T~1.5 10⁷ °K
 ✓ energy chains pp e CNO (neutrino production)

✓ Radiative region (0.25-0.75 Rs)

✓ Photons carry energy in ~ 10^5 y

✓ Convective region (0.75-1 Rs)

- ✓ Strong convection and turbulence
- ✓ Complex surface phenomena

✓ Corona (> 1 Rs)

 ✓ Complex magneto-hydrodynamic phenomena
 ✓ Gas at T~ 10⁶ °K

Neutrino Production In The Sun

pp chain: **pp**, *pep*, ⁷Be, *hep* ,and ⁸B ν

CNO cycle: $^{13}N,\,^{15}O,\,and\,^{17}F\,\,\nu$

Solar Neutrino Spectra

The Standard Solar Model before 2004

One fundamental input of the Standard Solar Model is the **metallicity** of the Sun - abundance of all elements above Helium:

The Standard Solar Model, based on the old metallicity derived by Grevesse and Sauval (Space Sci. Rev. **85**, 161 (1998)), was in **agreement within 0.5 in %** with the solar sound speed measured by helioseismology.

The Standard Solar Model after 2004

Latest work by Asplund, Grevesse and Sauval (Nucl. Phys. A **777**, 1 (2006)) indicates a **lower** metallicity **by a factor ~2**. This result destroys the agreement with helioseismology

[cm ⁻² s ⁻¹]	рр (10 ¹⁰)	pep (10 ¹⁰)	hep (10 ³)	⁷ Be (10 ⁹)	⁸ B (10 ⁶)	¹³ N (10 ⁸)	¹⁵ O (10 ⁸)	¹⁷ F (10 ⁶)
BS05 AGS 98	6.06	1.45	8.25	4.84	5.69	3.07	2.33	5.84
BS05 AGS 05	5.99	1.42	7.93	4.34	4.51	2.01	1.45	3.25
Δ	-1%	-2%	-4%	-12%	-23%	-42%	-47%	-57%

Solar neutrino measurements can solve the problem!

Borexino goals: solar physics

- ✓ First ever observations of sub-MeV neutrinos in real time
- ✓ Check the balance between photon luminosity and neutrino luminosity of the Sun
- ✓ CNO neutrinos (direct indication of metallicity in the Sun's core)
- ✓ *pep* neutrinos (indirect constraint on *pp* neutrino flux)
- ✓ Low energy (3-5 MeV) ⁸B neutrinos
- ✓ Tail end of *pp* neutrino spectrum?

Borexino goals: neutrino physics

✓ Test of the matter-vacuum oscillation transition with ⁷Be, pep, and low energy ⁸B neutrinos

 \checkmark I imit on the **neutrino** magnetic moment by analyzing the ⁷Be energy spectrum and with Cr source

✓ SNEWS network for supernovae

 \checkmark First evidence (>3 σ) of geoneutrinos

Solar Neutrino Survival Probability

Borexino Collaboration

(Germany)

Abruzzo 120 Km da Roma

Laboratori esterni

Laboratori Nazionali del Gran Sasso

Assergi (AQ) Italy ~3500 m.w.e

Borexino – Rivelatore e impianti

Detection principles and v signature

- Borexino detects solar v via their elastic scattering off electrons in a volume of highly purified liquid scintillator
 - ✓ Mono-energetic **0.862 MeV** ⁷**Be** v are the main target, and the only considered so far
 - \checkmark Mono-energetic pep ν , CNO $\nu\,$ and possibly pp ν will be studied in the future
- Detection via scintillation light:
 - ✓ Very low energy threshold
 - ✓ Good position reconstruction
 - ✓ Good energy resolution

BUT...

- No direction measurement
- The v induced events can't be distinguished from other β events due to natural radioactivity

Extreme radiopurity of the scintillator is a must!

Typical v rate (SSM+LMA+Borexino)

Borexino Background

Expected solar neutrino rate in 100 tons of scintillator ~ 50 counts/day (~ 5 10⁻⁹ Bq/kg)

Just for comparison:

Natural water	~ 10 Bq/kg in 238 U, 232 Th and 40 K
Air	~ 10 Bq/m ³ in ³⁹ Ar, ⁸⁵ Kr and ²²² Rn
Typical rock	~ 100-1000 Bq/kg in 238 U, 232 Th and 40 K

BX scintillator must be **9/10 order of magnitude less** radioactive than anything on earth!

 Low background nylon vessel fabricated in hermetically sealed low radon clean room (~1 yr)

✓ Rapid transport of scintillator solvent (PC) from production plant to underground lab to avoid cosmogenic production of radioactivity (⁷Be)

✓ Underground **purification plant** to distill scintillator components.

✓ **Gas stripping** of scintllator with special nitrogen free of radioactive ⁸⁵Kr and ³⁹Ar from air

✓ All materials **electropolished SS or teflon**, precision cleaned with a dedicated cleaning module

Detector layout and main features

CPPM – February 2, 2009

Nylon vessel installation

CPPM – February 2, 2009

Counting Test Facility

- ✓ CTF is a small scale prototype of Borexino:
- \checkmark ~ 4 tons of scintillator
- ✓ 100 PMTs
- ✓ Buffer of water
- ✓ Muon veto
- ✓ Vessel radius: 1 m

CTF demonstrates the Borexino feasibility

May 15, 2007

photo: BOREXINO calibration

CPPM – February 2, 2009

Davide Franco – Università di Milano & INFN

Borexino background

Radiolsotope		Concentrati	on or Flux	Strategy for Reduction		
Name	Source	Typical	Required	Hardware	Software	Achieved
μ	cosmic	~200 s⁻¹ m⁻²	~ 10 ⁻¹⁰	Underground	Cherenkov signal	<10 ⁻¹⁰
		at sea level		Cherenkov detector	PS analysis	(overall)
Ext.γ	rock			Water Tank shielding	Fiducial Volume	negligible
lnt.γ	PMTs, SSS			Material Selection	Fiducial Volume	negligible
	Water, Vessels			Clean constr. and handling		
¹⁴ C	Intrinsic PC/PPO	~ 10 ⁻¹²	~ 10 ⁻¹⁸	Old Oil, check in CTF	Threshold cut	~ 10 ⁻¹⁸
238U	Dust	~ 10 ⁻⁵ -10 ⁻⁶ g/g	< 10 ⁻¹⁶ g/g	Distillation, Water Extraction		~ 2 10 ⁻¹⁷
²³² Th	Organometallic (?)	(dust)	(in scintillator)	Filtration, cleanliness		~ 7 10 ⁻¹⁸
⁷ Be	Cosmogenic (¹² C)	∼ 3 10 ⁻² Bq/t	< 10 ⁻⁶ Bq/ton	Fast procurement, distillation	Not yet measurable	?
⁴⁰ K	Dust,	~ 2 10 ⁻⁶ g/g	< 10 ⁻¹⁴ g/g scin.	Water Extraction	Not yet measurable	?
	PPO	(dust)	< 10 ⁻¹¹ g/g PPO	Distillation		
²¹⁰ Pb	Surface contam.			Cleanliness, distillation	Not yet measurable	?
	from ²²² Rn decay				(NOT in eq. with ²¹⁰ Po)	
²¹⁰ Po	Surface contam.			Cleanliness, distillation	Spectral analysis	~ 14
	from ²²² Rn decay				α/β stat. subtraction	~ 0.01 c/d/t
²²² Rn	air, emanation from	~ 10 Bq/I (air)	< 1 c/d/100 t	Water and PC N ₂ stripping,	Delayed coincidence	< 0.02 c/d/t
	materials, vessels	~100 Bq/l (water)	(scintillator)	cleanliness, material selection		
³⁹ Ar	Air (nitrogen)	~17 mBq/m³ (air)	< 1 c/d/100 t	Select vendor, leak tightness	Not yet measurable	?
⁸⁵ Kr	Air (nitrogen)	~ 1 Bq/m ³ in air	< 1 c/d/100 t	Select vendor, leak tightness	Spectral fit	= 25±3
				(learn how to measure it)	fast coincidence	= 29±14
CPPM – February 2, 2009 Davide Franco – Università di Milano & INFN						INFN

The starting point: no cut spectrum

INFN

Energy scale

MC vs data comparison of photoelectron time distributions from $^{14}\mathrm{C}$

LY = 510 (1%) p.e./MeV kB = 0.0197 (15%) cm/MeV Ph.Y. ~ 12000 photons/MeV

Detecting (and rejecting) cosmic muons

- μ are identified by ID and OD
 - ✓ OD eff: ~ 99%

 \checkmark

- ✓ ID based on pulse shape analysis
- ✓ Rejection factor
 - > 10³ (conservative)

 $\boldsymbol{\mu}$ crossing the buffer only

 μ crossing the scintillator

10000

Detecting (and rejecting) cosmogenic neutrons

A dedicated trigger starts after each muon opening a gate for 1.6 ms. An offline clustering algorithm identifies neutron in high multiplicity events

CPPM - February 2, 2009

Muon and neutron cuts

Position reconstruction

- Position reconstruction algorythms (we have 4 codes right now)
 - \checkmark time of flight fit to hit time distribution
 - $\checkmark\,$ developed with MC, tested and validated in CTF
 - cross checked and tuned in Borexino with ²¹⁴Bi-²¹⁴Po events and ¹⁴C events

Spatial distributions and resolutions

Spectrum after FV cut (100 tons)

Assuming secular equilibrium and looking in the FV only_: 0.00256 cpd/ton corresponding to $^{232}\text{Th} = (6.8 \pm 1.5) \times 10^{-18} \text{ g/g}$

CPPM - February 2, 2009

α/β discrimination

Average time profiles of the scintillation pulses emitted by a PC+PPO (1.5 g/l) mixture under alpha and beta irradiation

²¹⁰Po contamination

α/β statistical subtraction

New results with 192 days of statistics

New results with 192 days of statistics

Systematic and Final Result

Estimated 1σ Systematic Uncertainties^{*} [%]

Total Scintillator Mass	0.2
Fiducial Mass Ratio	6.0
Live Time	0.1
Detector Resp. Function	6.0
Cuts Efficiency	0.3
Total	8.5

*Prior to Calibration

Expected interaction rate in absence of oscillations: 75±4 cpd/100 tons

for LMA-MSW oscillations: 48±4 cpd/100 tons, which means:

$$f_{\rm Be} = 1.03^{+0.24}_{-1.03}$$

⁷Be Rate: 49±3_{stat}±4_{syst} cpd/100 tons , which means

$$f_{
m Be}=1.02\pm0.10$$

Constraints on pp and CNO fluxes

Combining Borexino 7Be results with other experiments, the expected rate in Clorine and Gallium experiments is

$$R_l \ [\text{SNU}] = \sum_i R_{l,i} f_i P_{ee}^{l,i}$$
 where $l = \{\text{Ga, Cl}\}$
 $i = \{pp, pep, \text{CNO}, \text{^7Be}, \text{^8B}\}$
 $f_i \quad \text{measured over}$
predicted flux ratio
 $P_{ee}^{l,i}$ Survival Probability

- $\mathsf{R}_{i,k}$ and $\mathsf{P}_{i,k}$ are calculated in the hypothesis of high-Z SSM and MSW LMA
- Rk are the rates actually measured by Clorine and Gallium experiments
- f⁸B is measured by SNO and SuperK to be 0.87 ±0.07
- f⁷Be =1.02 ±0.10 is given by Borexino results

Plus luminosity constraint: $0.919 f_{pp} + 0.075 f_{Be} + 0.0068 f_{CNO} = 1$

$$f_{pp} = 1.004^{+0.008}_{-0.020}$$

best determination of pp flux!

Neutrino Magnetic Moment

Neutrino-electron scattering is the most sensitive test for μ_{ν} search

$$\left(\frac{d\sigma}{dT}\right)_W = \frac{2G_F^2 m_e}{\pi} \left[g_L^2 + g_R^2 \left(1 - \frac{T}{E_\nu}\right)^2 - g_L g_R \frac{m_e T}{E_\nu^2}\right]$$

EM current affects cross section: spectral shape sensitive to μ_v sensitivity enhanced at low energies (c.s.~ 1/T)

$$\left(\frac{d\sigma}{dT}\right)_{EM} = \mu_{\nu}^2 \frac{\pi \alpha_{em}^2}{m_e^2} \left(\frac{1}{T} - \frac{1}{E_{\nu}}\right)$$

A fit is performed to the energy spectrum including contributions from $^{14}\text{C},$ leaving $\mu_{\rm v}$ as free parameter of the fit

Estimate	Method	10 ⁻¹¹ µв
SuperK	⁸ B	<11
Montanino et al.	⁷ Be	<8.4
GEMMA	Reactor	<5.8
Borexino	⁷ Be	<5.4

⁸B neutrinos with the lowest threshold: 2.8 MeV

Expected ⁸B v rate in 100 tons of liquid scintillator above <u>2.8</u> <u>MeV</u>: **0.26±0.03 c/d/100 tons**

Davide Franco – Università di Milano & INFN

Background in the 2.8-16.3 MeV range

✓ Cosmic Muons

- ✓ External background
- ✓ High energy gamma's from neutron captures

✓ ²⁰⁸Tl and ²¹⁴Bi from radon
 emanation from nylon vessel

✓ Cosmogenic isotopes

✓ ²¹⁴Bi and ²⁰⁸TI from ²³⁸U and ²³²Th bulk contamination

Count-rate: 1500 c/d/100 ton

S/B ratio < 1/6000!!!

Muon and neutron cuts

Muon cut:

- All events detected by the outer detector are rejected
- Residual muon rate: <10-3 c/d

Neutron cut:

- 2 ms veto after each muon detected by the outer detector, in order to reject induced neutrons (mean capture time ~250 μ s)
- Residual neutron rate: ~10⁻⁴ c/d

Count-rate: 4.8 c/d/100 ton

Fiducial Volume Cut (radius < 3 m, ~100 tons)

Count-rate: 2.3 c/d/100 ton

Muon induced radioactive nuclides

Isotopes	τ	Q	Decay	σ	E_{μ}
		[MeV]		$[\mu \text{barn}]$	[GeV]
Short-lived	$(\tau < 2s)$				
^{12}B	$0.03 \mathrm{~s}$	13.4	β^{-}	$\sim \! 4500$	320
⁹ Li	$0.26 \ s$	13.6	β^{-}	$<\!\!2$	190
⁸ Li	$1.21 \mathrm{~s}$	16.0	β^{-}	5	320
$^{8}\mathrm{He}$	$0.17 \ s$	10.6	β^{-}	$<\!\!2$	190
$^{6}\mathrm{He}$	$1.17 \mathrm{~s}$	3.5	β^{-}	23	320
^{9}C	$0.19 \mathrm{~s}$	16.5	β^+	5	190
^{8}B	$1.11~{\rm s}$	18.0	β^+	11	320
unts/100 keV	Со	smoge energ	enic ca y spec	andidat strum	e
³ ¹⁰ Entire mass 10 100 tons					

Energy [MeV]

Davide Franco – Università di Milano & INFN

Cosmogenic cut

Cosmogenic cut:

- 5 s veto after each μ crossing the $\frac{1}{2}$ buffer
- Rejection efficiency cut: 99.7%
- Residual short-lived cosmogenic rate: **3x10**⁻³ **c/d**
- Dead-time: 23.4%
- Effective detector live-time: 188
 days

Count-rate: 0.4 c/d/100 ton

Summary of the Cuts and Systematic

Counts 2.8-16.3 MeV	Counts 5.0-16.3 Me
60449	42314
3363	1135
3280	1114
567	≿ 10 ³ =
71	× t
65	10 I I
62	t 10-
14 <u>+</u> 3	U
48 <u>+</u> 8	10
50 <u>+</u> 5	
40 <u>+</u> 4	1
	Counts 2.8-16.3 MeV 60449 3363 3280 567 71 65 62 14 ± 3 48 ± 8 50 ± 5 40 ± 4

*MSW-LMA: Δm^2 =7.69×10⁻⁵ eV², tan²0=0.45

✓ Systematic errors:

 \checkmark 6% from the determination of the fiducial mass

✓ 3% (2%) uncertainty in the ⁸B
 rate above 2.8 MeV (5.0 MeV)
 from the determination of the light
 yield (1%)

The ⁸B v spectrum

Neutrino oscillation is confirmed at 4.2 σ , including the theoretical uncertainty (10%) on the ⁸B flux from the Standard Solar Model

⁸B equivalent v flux

Equivalent unoscillated ⁸B neutrino flux, as derived from the electron scattering rate

	2.8-16.3 MeV	5.0-16.3 MeV
Rate [c/d/100 tons]	0.26±0.04±0.02	0.14±0.03± 0.01
$\Phi^{\text{ES}}_{\text{exp}}$ [10 ⁶ cm ⁻² s ⁻¹]	2.65±0.44±0.18	2.75±0.54±0.17
$\Phi^{\text{ES}}_{exp} / \Phi^{\text{ES}}_{th}$	0.96±0.19	1.02±0.23

⁸B solar neutrino flux measurements via elastic scattering

Good agreement with the SK-I and SNO D20 measurements (same threshold at 5 MeV)

	Threshold	Φ_{8B}^{ES}
	[MeV]	$[10^6 \text{ cm}^{-2} \text{ s}^{-1}]$
SuperKamiokaNDE I [8]	(5.0)	$2.35 {\pm} 0.02 {\pm} 0.08$
SuperKamiokaNDE II [9]	7.0	$2.38 \pm 0.05^{+0.16}_{-0.15}$
SNO D_2O [7]	(5.0)	$2.39^{+0.24}_{-0.23}{}^{+0.12}_{-0.12}$
SNO Salt Phase [6]	5.5	$2.35 {\pm} 0.22 {\pm} 0.15$
SNO Prop. Counter [10]	6.0	$1.77^{+0.24}_{-0.21}{}^{+0.09}_{-0.10}$
Borexino	(5.0)	$2.75 {\pm} 0.54 {\pm} 0.17$
Borexino	2.8	$2.65{\pm}0.44{\pm}0.18$

Electron Neutrino Survival Probability

 \overline{P}_{ee} is defined such that:

R: measured rate E_v and T_e : neutrino and recoiled electron energies $T_0 = 2.8$ MeV: energy threshold

 $\begin{array}{l} {\sf E}_0 = 3.0 \; \text{MeV: minimum neutrino energy at } {\sf T}_0 \\ {\sf N}_e \text{: number of target electrons} \\ {\sigma_x} \; (x{=}e,\mu{-}\tau) \text{: elastic cross sections} \end{array}$

$$R = \int_{T_e > T_0} dT_e \int_{E_\nu > E_0} dE_\nu \left(\overline{P}_{ee} \cdot \frac{d\sigma_e}{dT_e} (E_\nu, T_e) + (1 - \overline{P}_{ee}) \cdot \frac{d\sigma_{\mu-\tau}}{dT_e} (E_\nu, T_e) \right) N_e \cdot \frac{d\Phi_e}{dE_\nu} (E_\nu)$$

 $\overline{P}_{ee}(^{8}B) = 0.35 \pm 0.10 (8.6 \text{ MeV})$ $P_{ee}(^{7}Be) = 0.56 \pm 0.10 (0.862 \text{ MeV})$

For the first time, we confirm at 1.8 σ , using data from a single detector, the presence of a transition between the low energy vacuum-driven and the high-energy matter-enhanced solar neutrino oscillations, in agreement with the prediction of the MSW-LMA solution for solar neutrinos

Calibrations

Goal: <5% 7Be measurement

Detector response vs position:

✓ 100 Hz 14 C+ 222 Rn in scintillator in >100 positions

Quenching and energy scale:

✓ Beta: ¹⁴C, ²²²Rn in scintillator
 ✓ Alpha: ²²²Rn in scintillator
 ✓ Gamma: ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ²⁰³Hg, ⁶⁵Zn, ⁴⁰K, ⁸⁵Sr, ⁵⁴Mn

✓Neutron: AmBe

Calibrations: Monte Carlo vs Data

Gamma sources in the detector center

What next?

BOREXino

NA54 @ CERN: 100 and 190 GeV muon beams on a 12 C target: 11 C represents 80% of all the muon-induced contaminants and more than 99% in the CNO pep-v energy window

Hagner et al., Astropart. Phys. 14, 33 (2000)

¹¹ C Rate				
(cts / day / 100 tons)				
All energy 0.8 – 1.4 MeV				
KamLAND	107	55		
BOREXino	15	7.4		
SNO+	0.15	0.074		

¹¹C production and decay

 μ (+ secondaries) + ¹²C $\rightarrow \mu$ (+ secondaries) + ¹¹C + n

Coincidence among:

- cosmic muon:
 - rate at LNGS (3700 mwe): 1.16 hr⁻¹ m⁻²
 - average energy: 320 GeV
- gamma from neutron capture:
 - energy: 2.2 MeV
 - capture time: 250 μs
- positron from ¹¹C decay:
 - deposited energy between 1.022 and 1.982 MeV
 - mean life: 30 min

Large scintillator detector potential

Borexino potential on geoneutrinos

Prompt signal energy spectrum (model) • Detection technique: inverse β -decay and delayed coincidence:

• Energy range: 1-2.6 MeV

• Efficiency: 80%

Cosmogenic β -n background (⁸Li and ⁶He) identified and rejected event by event

Prediction:

- geoneutrino signal: 6.3 / year / 300 tons
- reactor antineutrinos (in the geo-v range): **5.7 / year / 300 tons** (Balata *et al.,* 2006, ref. model Mantovani *et al.,* 2004)

Summary of the future measurements

pep and CNO v fluxes

- software algorithm based on a three-fold coincidence analysis to subtract efficiently cosmogenic ¹¹C background
- ✓ Muon track reconstruction

✓ Purifications planned for 2010

Conclusion

- Borexino opened the study of the solar neutrinos in real time below the barrier of natural radioactivity (5 MeV)
 - ✓ Two measurements reported for ⁷Be neutrinos
 - Best limits for *pp* and CNO neutrinos, combining information from SNO and radiochemical experiments
 - ✓ Opportunities to tackle *pep* and CNO neutrinos in direct measurement
 - ✓ First observation of ⁸B neutrino spectrum below 5 MeV
- Borexino will run comprehensive program to study antineutrinos
 - ✓ **geoneutrino** analysis is coming soon!
- Borexino is a powerful observatory for neutrinos from Supernovae explosions within few tens of kpc
- Best limit on neutrino magnetic moment. Improve by dedicated measurement with ⁵¹Cr neutrino source
- ...and do not forget the technological success of the high-radiopurity scintillator!

