Time-dependent Amplitude Analysis of $B^0 \rightarrow K^0{}_s \pi^+\pi^-$ decays with BaBar and constrains on the CKM matrix with the $B \rightarrow K^*\pi$ modes

Alejandro Pérez LAL-Université Paris-Sud 11

Seminar CPPM Marseille – Monday Feb. 22nd 2010

My research activities

- Ph.D. Thesis at LPNHE 2006-2008:
 - → Experimental data analysis with BaBar data ($B^0 \rightarrow K^0_{\ s} \pi^+ \pi^-$)
 - Phenomenological analysis
- Since Feb. 2009 post-doc at LAL working with the SuperB and BaBar groups
 - → SuperB: Detector Geometry Working Group (DGWP). Use the physics cases B→K^(*)νν and B⁺→τ⁺ν, to test the different detector geometries
 - → **BaBar:** Fully inclusive BF and energy spectrum measurement of $B \rightarrow X_s \gamma$

The "SuperB Era"

 SuperB aims at the construction of a very high luminosity asymmetric e⁺e⁻ flavor factory

Figure 3-1. Large Piwinski angle and crabbed waist scheme. The collision area is shown in yellow.

Aims:

- Operate at a reduced boost of $\beta \gamma = 0.28$ (BaBar is at 0.56)
- Very high luminosity of 1x10³⁶ cm⁻²s⁻¹ or more (100 more than BaBar)
- Polarized e^{τ} at interaction point $\Rightarrow \tau$ physics
- Ability to collide at the Y(4S) and the $J/\psi \Rightarrow B$ and D physics
- The plan is to built the accelerator facility at Frascati
- Expect funding approval from Italian government by mid March 2010

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

Alejandro Perez,

Seminar CPPM Marseille Feb. 22nd 2010

Alejandro Perez, Seminar CPP

New Physics Effects

New Physics Effects

New Physics Effects

$B \rightarrow K^{(*)}vv$: experimental status

Most of the searches for rare B decays performed by exploiting the Recoil Technique:

B_{tag}: full (partial) reconstruction in one hadronic

B_{sig}: look for the signal signature, e.g. K^(*) not

accompanied by additional (charged+neutral)

(semi-leptonic) decay

particles + missing energy

Recoil technique at B-Factories:

- Search for rare decays (10⁻⁵) with missing energy (Not possible at hadronic machines)
- Several benchmark channels at SuperB: $B \rightarrow \tau v$, $B \rightarrow K^{(\star)}vv$, ...
- Complementary to LHCb (B→K^(*)II)


```
Had Recoil (351 million BB)<sup>3</sup>: BF(B<sup>+</sup>\rightarrowK<sup>+</sup>vv) < 4.2×10<sup>-5</sup>
```

Had+SL Recoil (454 million BB)⁴:

 $\mathsf{BF}(\mathsf{B}^{\scriptscriptstyle +}{\rightarrow}\mathsf{K}^{{\scriptscriptstyle *}{\scriptscriptstyle *}}\nu\nu)<8.0{\times}10^{{\scriptscriptstyle -}5}$

 $BF(B^0 \rightarrow K^{*0}vv) < 12.0 \times 10^{-5}$

Had Recoil (535 million BB pairs)¹: $BF(B^+ \rightarrow K^+ \nu \nu) < 1.4 \times 10^{-5}$ $BF(B^0 \rightarrow K^0_{\ S} \nu \nu) < 1.6 \times 10^{-4}$ $BF(B^+ \rightarrow K^{*+} \nu \nu) < 1.4 \times 10^{-4}$ $BF(B^0 \rightarrow K^{*0} \nu \nu) < 3.4 \times 10^{-4}$ All measurements still consistent with SM expectation

¹ K. F. Chen et al. [BELLE Collaboration], Phys. Rev. Lett. 99, 221802 (2007). ² B. Aubert et al. [BaBar collaboration], Phys.Rev. Lett. 101801 (2005) ³ H.Kim on behalf of the BaBar collaboration, arXiv:hep-ex/08052365 (2008). ⁴ B. Aubert et al. [BaBar collaboration], Phys.Rev.D78:072007,2008

SuperB detector (I)

- Use BaBar detector as baseline design
- **Reduce boost from** $\gamma\beta = 0.56 \rightarrow 0.28 \Rightarrow$ **better geometrical acceptance**
- Expect significant improvement for rare decays with missing energy

SuperB detector (II)

- Improve current sub-detectors performances using new technologies
- Study the addition of other sub-detectors to improve coverage:
 - → Bwd EMC and Fwd PiD
- Expect significant improvement for rare decays with missing energy
- My job is to try quantify those improvements

b→sy: Motivations

Flavor changing neutral current: • not present at tree level in SM Loop diagram • measurement sensitive to new heavy particles (H⁺,SUSY?) Photon spectrum are sensitive to Heavy Quark parameters m_b and μ_{π}^{2} Extraction of these with small errors leads to improvement of $|V_{ub}|$ from B $\rightarrow X_{ub}$ decays

- Current status on $B(B \rightarrow X_s \gamma, E_{\gamma} > 1.6 \text{GeV})$:
 - Experiment (HFAG): (3.52±0.23_{stat+syst}±0.09_{shpFcn})×10⁻⁴
 - Theory: (3.15±0.23)×10⁻⁴ (Misiak, *et al.*)
 - (2.98±0.26)×10⁻⁴ (Becher/Neubert)

b→sy: Motivations

- Current status on $B(B \rightarrow X_s \gamma, E_{\gamma} > 1.6 GeV)$:
 - Experiment (HFAG): (3.52±0.23_{stat+syst}±0.09_{shpFcn})×10⁻⁴
 - Theory: (3.15±0.23)×10⁻⁴ (Misiak, *et al.*)
 - (2.98±0.26)×10⁻⁴ (Becher/Neubert)

Eur.

Phys.

C

СЛ

27,199

b→sγ: Previous BaBar Analysis

Unexpected large systematic:

- 12% due to yields extraction from m_{FS} fits
- out of which 10% is due to BB background modeling
- Need understand these systematics ⇒ measurement will be systematics dominated for SuperB expected statistic (100 times BaBar+Belle)
- The plan is to produce a publication with the whole BaBar dataset

Outline

- Introduction
- Analysis: time-dependent amplitude analysis of $B^0 \rightarrow K^0_{\ s} \pi^+ \pi^$ decays with BaBar
 - Physical motivation
 - → Dataset
 - → Time-dependent Dalitz fit
 - Results
- Phenomenological interpretation: SU(2) isospin-based analysis of the $B \rightarrow K^* \pi$ modes
- Conclusions and perspectives

Introduction

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

$$\mathbf{B}_{s}^{0} \quad V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0$$

$$\mathbf{B}_{d}^{0} V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

Alejandro Perez,

Seminar CPPM Marseille Feb. 22nd 2010

Unitarity Triangle Parameters

Unitarity Triangle (UT)

L)

The CKM Unitarity predicts that all constraints intersect at one point!

Alejandro Perez,

Seminar CPPM Marseille Feb. 22nd 2010

Current Status of CKM parameters

Standard CKM fit uses diverse measurements theoretically under control:

- From B factories: Δm_{d} , $\sin 2\beta$, $|V_{cb}|$, $|V_{ub}|$, α , γ

 $|\varepsilon_{\kappa}|, \Delta m_{s}, |V_{ud}|, |V_{us}|$ - Other sources:

$B^{0} \rightarrow K^{0}_{s} \pi^{+} \pi^{-}$ Analysis

B. Aubert *et al.* [BaBar Collaboration], *Time-dependent amplitude* analysis of $B^0 \rightarrow K^0_{\ S} \pi^* \pi^-$, *Phys. Rev.* D**80**:112001 (2009).

HPWS Group: E. Ben Haim, M. Graham, J. Ocariz, A. Pérez, M. Pierini, J. Wu

UK Group: P. Del Amo Sanchez, T. Gershon, P. Harrison, C. Hawkes, J. Ilic, T. Latham, M. Gagan, N. Soni, F. Wilson

New physics in penguin dominated modes

• b \rightarrow ccs (i.e. J/ Ψ K⁰_S) golden modes (Theo. clean)

• b \rightarrow qqs (q = u,d,s) loop dominated (NP sensitive)

Time-dependent CPV parameters

- C: Direct CP asymetry
- S: mixing induced CP asymmetry

Standard Model (SM)	New Physics (NP)
$S_{ccs} = S_{qqs} + \Delta S_{SM} = sin2\beta$	$S_{ccs} \neq S_{qqs} + \Delta S_{sm}$
C _{ccs} ≈ C _{qqs} ≈ 0	$C_{ccs} \neq C_{qqs}$

 $sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$ HEAG

b→ccs	World Ave	rage		II.		0.68±	0.03
κ° ¢ κ°	BaBar		-	- <mark>5</mark> 8	0.1	$2 \pm 0.31 \pm$	0.10
	 ✓ Belle 			₹2	0.5	$50 \pm 0.21 \pm$	0.06
	Average			Ξē		0.39 ±	0.18
	BaBar				0.5	58 ± 0.10 ±	0.03
	Belle			4	0.6	64 ± 0.10 ±	0.04
K _s K _s K _s K _s	Average			-		0.61 ±	0.07
	⊻″BaBar			C l	- 0.7	71 ± 0.24 ±	0.04
	🖌 Belle			∠ _	0.3	30 ± 0.32 ±	0.08
	🦻 Average					0.58±	0.20
	BaBar			- G	0.3	33 ± 0.26 ±	0.04
	Belle				0.3	33 ± 0.35 ±	0.08
°∺ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Average			눈올		0.33 ±	0.21
	∽ BaBar			N D	0.2	20 ± 0.52 ±	0.24
~	Average			÷ È		0.20 ±	0.57
	BaBar			ि 🤇	-	0.62 +0.25 ±	0.02
ΥΫ́	Belle			<u> </u>	0.1	11 ± 0.46 ±	0.07
8	Average					0.48 ±	0.24
	BaBar			0 <mark>00</mark>	-	0.62 ±	0.23
	🗠 Belle		-	<mark><</mark> _₽	0.1	$18\pm0.23\pm$	0.11
ω.	Average			Ξę		0.42 ±	0.17
	BaBar	Ā	0		-0.7	72 ± 0.71 ±	0.08
۶	Average	<u> </u>	Ĕ			-0.72 ±	0.71
	BaBar Q2	В			0.41 ± 0.1	$8\pm0.07\pm$	0.11
5	🖌 Belle			4	→ 0.68 ±	0.15 ± 0.03	+0.21
	🖌 Average			-		0.58 ±	0.13
-3	-2	-1	(1	2	3
-0	-2	-1	<u> </u>	,	I	ź	3
	b →ccs value						
						-	

16

$\sin(2\beta^{\rm eff}) \equiv \sin(2\phi_1^{\rm eff})$	HFAG Moriond 2007 PBELIMINABY
---	-------------------------------------

b→ccs	World Average	×	†	0	.68 ± 0.03	
0	BaBar	-	<u>+ <mark>5</mark>8</u>	0.12 ± 0	.31 ± 0.10	
ž	Belle			0.50 ± 0	.21 ± 0.06	
-	Average		포운	0	.39 ± 0.18	
o ,	BaBar		-6	0.58 ± 0	.10 ± 0.03	
ž	Belle		4	0.64 ± 0	.10 ± 0.04	
F	Average		-	0	.61 ± 0.07	
ד	BaBar		C i	- 0.71 ± 0	.24 ± 0.04	
× ×	Belle	-		0.30 ± 0	.32 ± 0.08	
ž	Average		÷.	0	.58 ± 0.20	
Ś	BaBar		r <mark>æð</mark> r	0.33 ± 0	.26 ± 0.04	
~	Belle			0.33 ± 0	.35 ± 0.08	
	Average			.	32 ± 0.21	
× ×	BaBar	V	9	0.20 ± 0	.52 ± 0.24	
°ط	Average		.5	0	.20 ± 0.57	
_ yr	BaBar			0.62 :	0.30 ± 0.02	
×	Belle			0.11 ± 0	.46 ± 0.07	
	Average		<mark></mark> 27 L	0	.40 ± 0.24	
Ŷ	BaBar			0	.62 ± 0.23	
<u>ح</u>	Belle	-	T E E	0.18±0	.23 ± 0.11	
. o	Average			0 70 1 0	.42 ± 0.17	
°_	Babar	e e		-0.72 ± 0	.71 ± 0.08	
ຊ ີ	Average	9		0-	$.72 \pm 0.71$	
× ×	Dabar Q2D			$0.41 \pm 0.18 \pm 0.07 \pm 0.11$		
+	Average			$\rightarrow 0.68 \pm 0.15 \pm 0.03 \stackrel{\circ}{_{-0.13}}$		
: ¥	Aveiage	il		.i	.56 ± 0.15	
-3	-2 -	1 0)	1 2	3	3
0	-					
		b –	→CCS Va	alue		
	Deneri	al a sector	a ta at a			
	Penguir			nodes		
				o) 1/0		
<u> </u>	1 ₀ (980)	K°_s and	Ι ρ°(77	U)K° _s		
1						
'	contrit	oute to l	B⁰→K⁰)ູπ⁺π⁻	16	

Counting rate analyses ⇒ signal-background discrimination

- Counting rate analyses ⇒ signal-background discrimination
- Time-dependent analyses ⇒ time-evolution of signal

- Counting rate analyses ⇒ signal-background discrimination
- Time-dependent analyses \Rightarrow time-evolution of signal
- Amplitude analyses ⇒ Interference of signal in phase-space
 Dalitz Plot (DP)
 Dalitz Plot (DP)
 Can study decay dynamics
 Measure phases differences from interference

- Counting rate analyses ⇒ signal-background discrimination
- Time-dependent analyses ⇒ time-evolution of signal
- Amplitude analyses \Rightarrow Interference of signal in phase-space
- Time-dependent amplitude analyses ⇒ time-evolution of signal interference
 - → Use all available information
 - → Can measure all previous observables
 - Additionally can measure phase differences related with time-dependent CPV
- Will only concentrate in describing modeling of time-evolution of decay-dynamics

Data Set

- Run 1-5: 347.3 fb⁻¹ \rightarrow 382.9x10⁶ BB pairs
- Reconstruction and Selection → 22525 events
- Overall signal efficiency $\rightarrow 25\%$

- Run 1-5: 347.3 fb⁻¹ \rightarrow 382.9x10⁶ BB pairs
- Reconstruction and Selection → 22525 events
- Overall signal efficiency $\rightarrow 25\%$

Main contributions:

 Continuum (e⁺e⁻ → qq, q=u,d,s,c) background (~14k events)

- Run 1-5: 347.3 fb⁻¹ \rightarrow 382.9x10⁶ BB pairs
- Reconstruction and Selection → 22525 events
- Overall signal efficiency $\rightarrow 25\%$

Main contributions:

- Continuum (e⁺e⁻ → qq, q=u,d,s,c) background (~14k events)
- B-background: peaking in DP (~5k vents)

- Run 1-5: 347.3 fb⁻¹ \rightarrow 382.9x10⁶ BB pairs
- Reconstruction and Selection → 22525 events
- Overall signal efficiency $\rightarrow 25\%$

Main contributions:

- Continuum (e⁺e⁻ → qq, q=u,d,s,c) background (~14k events)
- B-background: peaking in DP (~5k vents)

- Run 1-5: 347.3 fb⁻¹ \rightarrow 382.9x10⁶ BB pairs
- Reconstruction and Selection \rightarrow 22525 events •
- Overall signal efficiency $\rightarrow 25\%$

Main contributions:

- Continuum ($e^+e^- \rightarrow qq$, q=u,d,s,c) background (~14k events)
- B-background: peaking in DP (~5k vents)
- Signal

- Run 1-5: 347.3 fb⁻¹ \rightarrow 382.9x10⁶ BB pairs
- Reconstruction and Selection → 22525 events
- Overall signal efficiency $\rightarrow 25\%$

- Run 1-5: 347.3 fb⁻¹ \rightarrow 382.9x10⁶ BB pairs
- Reconstruction and Selection → 22525 events
- Overall signal efficiency $\rightarrow 25\%$

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model

$$\begin{cases} A(DP) = \sum a_j F_j(DP) \\ \overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP) \end{cases}$$

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model

$$A(DP) = \sum a_j F_j(DP)$$
$$\overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP)$$

Isobar amplitudes:

Weak phases information

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model $\begin{cases} A(DP) = \sum a_j F_j(DP) \\ \overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP) \end{cases}$

Shapes of intermediate states over DP

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model

Signal Model:

$$A(DP) = \sum a_j F_j(DP)$$

$$\overline{A}(DP) = \sum \overline{a_j F_j}(DP)$$
Shapes of intermediate states over DP
$$\int_{0.9}^{0.9} \int_{0.8}^{0.8} \int_{0.7}^{0.9} \int_{0.8}^{0.8} \int_{0.8$$

|A(SDP)|²

■
$$B^0 \to \rho^0(770) K_s^0$$
 (GS

- $B^0 \rightarrow f_0(980) K^0_{S}$ (Flatté)
- $\blacksquare \quad B^{0} \rightarrow K^{*}(892)\pi \text{ (RBW)}$
- Kπ S-wave (LASS)
- Non-resonant (flat phase space)
- $B^{0} \rightarrow f_{X}(1300)K^{0}_{S}$ (RBW)
- $B^0 \rightarrow f_2(1270)K^0_S$ (RBW)
- $\blacksquare \quad B^{0} \to \chi_{c0} K^{0}_{S} (RBW)$

Common Signal Model for all BaBar $B \rightarrow K\pi\pi$ analyses

Alejandro Perez,

Seminar CPPM Marseille Feb. 22nd 2010

^{0.1} Square DP

0.2

Parameterizing Decay amplitude using Isobar Model: Shapes of intermediate $A(DP) = \sum a_j F_j(DP)$ $\overline{A}(DP) = \sum \overline{a_i} \overline{F_j}(DP)$ **Dalitz Plot** states over **DP Isobar Model** 0.9 **0.8**E 0.7 Signal Model: $B^0 \rightarrow \rho^0(770) K^0_{\rm S}$ (GS) $|A(SDP)|^2$ $B^{0} \rightarrow f_{0}(980) K^{0}_{s}$ (Flatté) $B^0 \rightarrow K^*(892)\pi$ (RBW) 0.2 ^{0.1} Square DP $K\pi$ S-wave (LASS) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 **m**'_{π+π} Non-resonant (flat phase space) $B^0 \rightarrow f_x(1300) K^0_s (RBW)$ $B^{0} \rightarrow f_{2}(1270)K^{0}_{S}(RBW)$ $|A(SDP)|^2$ $B^{0} \rightarrow \chi_{c0} K^{0}_{S} (RBW)$ 0.6 .<u>_</u>[€]0.5 0.4 **Common Signal Model for all BaBar** 0.3 0.2F $B \rightarrow K \pi \pi$ analyses 0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m'_{π+π}-

z, Seminar CPPM Marseille Feb. 22nd 2010

Alejandro Perez,

Parameterizing Decay amplitude using Isobar Model: Shapes of intermediate $A(DP) = \sum a_j F_j(DP)$ $\overline{A}(DP) = \sum \overline{a}_i \overline{F}_j(DP)$ **Dalitz Plot** states over **DP Isobar Model** 0.9F **0.8**E 0.7 Signal Model: $B^{0} \rightarrow \rho^{0}(770) K^{0}_{S}$ (GS) $|A(SDP)|^2$ $B^{0} \rightarrow f_{0}(980) K^{0}_{s}$ (Flatté) $B^{0} \rightarrow K^{*}(892)\pi (\text{RBW})$ 0.2 ^{0.1} Square DP $K\pi$ S-wave (LASS) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 **m**'_{π+π} Non-resonant (flat phase space) $B^{0} \rightarrow f_{x}(1300) K^{0}_{S}$ (RBW) $B^{0} \rightarrow f_{2}(1270)K^{0}_{S}$ (RBW) $|A(SDP)|^2$ $B^{0} \rightarrow \chi_{c0} K^{0}_{S} (RBW)$ 0.6 .<u>_</u> [≨]0.5 [0.4 **Common Signal Model for all BaBar** 0.3 0.2 $B \rightarrow K \pi \pi$ analyses 0.1

0.3

0.1 0.2

0.4

m'_{π+π}.

0.5 0.6 0.7 0.8 0.9

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

Parameterizing Decay amplitude using Isobar Model: Shapes of intermediate $A(DP) = \sum a_j F_j(DP)$ $\overline{A}(DP) = \sum \overline{a}_i \overline{F}_j(DP)$ **Dalitz Plot** states over **DP Isobar Model** 0.9 0.8E 0.7 Signal Model: $B^{0} \rightarrow \rho^{0}(770) K^{0}_{S}$ (GS) $|A(SDP)|^2$ $B^0 \rightarrow f_0(980) K^0_{\rm S}$ (Flatté) $B^0 \rightarrow K^*(892)\pi$ (RBW) 0.2 ^{0.1} Square DP $K\pi$ S-wave (LASS) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 **m**'_{π+π} Non-resonant (flat phase space) $B^0 \rightarrow f_x(1300) K^0_s$ (RBW) $B^{0} \rightarrow f_{2}(1270)K_{S}^{0}(RBW)$ A(SDP)|²- $B^{0} \rightarrow \chi_{c0} K^{0}_{S} (RBW)$ 0.6 .<u>_</u>[€]0.5 0.4 **Common Signal Model for all BaBar** 0.3 0.2F $B \rightarrow K \pi \pi$ analyses 0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m'_{π+π}-

Alejandro Perez,

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model

$$A(DP) = \sum a_j F_j(DP)$$
$$\overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP)$$

$$\begin{array}{l|l} \hline \textbf{Time-dependent DP PDF} & (|\mathbf{q}/\mathbf{p}| \sim \mathbf{1}) & \Delta t = \text{time difference between B}^{0} \cdot \overline{\mathbf{B}}^{0} \text{ decays} \\ f(\Delta t, DP, q_{\mathrm{tag}}) & \propto & (|A|^{2} + |\bar{A}|^{2}) \frac{e^{-|\Delta t|/\tau}}{4\tau} \\ & \left(1 + q_{\mathrm{tag}} \frac{2\mathcal{I}m[(q/p)\bar{A}A^{*}]}{|A|^{2} + |\bar{A}|^{2}} \sin(\Delta m_{d}\Delta t) - q_{\mathrm{tag}} \frac{|A|^{2} - |\bar{A}|^{2}}{|A|^{2} + |\bar{A}|^{2}} \cos(\Delta m_{d}\Delta t) \right) \\ \hline \textbf{mixing and decay CPV} & \textbf{DCPV} \end{array}$$

Parameterizing Decay amplitude using Isobar Model:

Parameterizing Decay amplitude using Isobar Model:

$$\begin{array}{l} \text{Dalitz Plot} \\ \text{Isobar Model} \end{array} \begin{cases} A(DP) = \sum a_j F_j(DP) \\ \overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP) \\ \overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP) \\ \hline A(DP) = \sum \overline{a}_j \overline{F}_j(DP) \\ \hline Sensitivity to phase difference between amplitudes in the same DP plane (B^0 or B^0). \\ \hline A(DP, q_{\text{tag}}) \propto (|A|^2 + |\overline{A}|^2) \frac{e^{-|\Delta t|/\tau}}{4\tau} \\ \left(1 + q_{\text{tag}} \frac{2\mathcal{I}m[(q/p)\overline{A}A^*]}{|A|^2 + |\overline{A}|^2} \sin(\Delta m_d \Delta t) - q_{\text{tag}} \frac{|A|^2}{|A|^2 + |A|^2} \cos(\Delta m_d \Delta t)\right) \\ \hline \text{mixing and decay CPV} \end{array}$$

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model

$$A(DP) = \sum a_j F_j(DP)$$
$$\overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP)$$

$\begin{array}{ll} \underline{\text{Time-dependent DP PDF}} & (|\mathbf{q}/\mathbf{p}| \sim \mathbf{1}) \\ f(\Delta t, DP, q_{\mathrm{tag}}) & \propto & \left(|A|^2 + |\bar{A}|^2\right) \frac{e^{-|\Delta t|/\tau}}{4\tau} \\ & \left(1 + q_{\mathrm{tag}} \frac{2\mathcal{I}m[(q/p)\bar{A}A^*]}{|A|^2 + |\bar{A}|^2} \sin(\Delta m_d \Delta t) - q_{\mathrm{tag}} \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \cos(\Delta m_d \Delta t)\right) \\ & \\ \underline{\text{mixing and decay CPV}} & \\ \end{array}$

Complex amplitudes a_i and \bar{a}_j determine DP interference pattern. Module and phase can be directly fitted on data.

Physical Parameters

Direct CP asymmetries:

$$C_{j} = \frac{|a_{j}|^{2} - |\bar{a}_{j}|^{2}}{|a_{j}|^{2} + |\bar{a}_{j}|^{2}}$$

$$A_{CP}^{j} = \frac{|\bar{a}_{\bar{j}}|^{2} - |a_{j}|^{2}}{|\bar{a}_{\bar{j}}|^{2} + |a_{j}|^{2}}$$

The mixing and decay CPV S parameter:

$$S_{j} = \frac{2 \operatorname{Im}[a_{j}^{*}\overline{a}_{j} (q/p)]}{\left|a_{j}\right|^{2} + \left|\overline{a}_{j}\right|^{2}} = \sqrt{(1-C^{2})} \sin(2\beta_{eff}^{j})$$

Counting rate measurements: sinus ambiguity $2\beta_{eff} \leftrightarrow \pi - 2\beta_{eff}$

Phase differences:

 $2\beta_{eff}^{i} = \arg\left[a_{j}\overline{a}_{j}^{*}(q/p)^{*}\right] \implies f_{0}(980) \text{ and } \rho^{0}(770)$ $\Delta\varphi_{j\overline{j}} = \arg\left[a_{j}\overline{a}_{\overline{j}}^{i}\right](q/p)^{*} \implies \mathsf{K}^{*}(892)\pi \text{ ("CPS phase")}$

The phases accessed through interference over the DP

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

Maximum Likelihood Fit Results

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

Fit Parameters:

- 11 yields (Signal and background),

- 34 shape parameters (i.e. signal and background PDFs for discriminant variables),

- 30 moduli and phases of isobar amplitudes

Total: 75 parameters floated!

Fit Results: qualitative

- The fit founds two solutions almost degenerated differing by 0.16 in -2Log(L) units
- Non-isobar parameters:
 - Values found are identical in both solutions

Isobar parameters:

- Moduli of isobar amplitudes are similar in both solutions. Mean differences in non-resonant (NR) and minor components
- Phases vary significantly for one solution to the other

 There is an intrinsic ambiguity in resolving the interference pattern in the DP

Fit Results: qualitative

Goodness of Fit (Projection Plots)

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

 $m_{\pi\pi}$ (all events)

Alejandro Perez,

 $m_{\pi\pi}$ (all events)

 $m_{\pi\pi}$ (all events)

Alejandro Perez,

 $m_{\pi\pi}$ (all events)

Alejandro Perez,

Alejandro Perez,

Alejandro Perez,

Fit Results: Proj. Plots (IV) $J/\psi K^0_{s}$ veto low mass region Μ_{Ksπ} 240 220h_{κsπ} < 0 $h_{Ks\pi} > 0$ 200160160All events 140140 120 120 100 100 80 ┿╆╷╬╁╷ $1.\overline{2}$ $m_{K^0\pi}(GeV/c^2)$ 76 6 0.81.8 0.8 $\overline{\frac{1.2}{m_{K^0\pi}^{0}(GeV/c^2)}}$ 1.4 1.6 0.6 1.4 1.6 1.8

<u> ∆t dependent asymmetry:</u>

J/ψ Band (Background events due to π/μ mis-ID)

22n

Fit to our data gives:

 $S = 0.690 \pm 0.077$

Fit Results: Proj. Plots (VI)

Fit Results: Proj. Plots (VII)

Results on physical observables

Fit Results: Measured observables

- "Counting rate like":
 - 9 BFs \rightarrow 8 exclusive and 1 inclusive
 - -9 $A_{_{CP}} \rightarrow$ 8 exclusive and 1 inclusive
- Interference pattern:
 - $\phi(f_0, \rho^0)$, $\phi(P$ -wave K π , S-wave K π), $\phi(\rho^0, K^*)$ for B^0 or $\overline{B^0}$
- TD CPV (counting rate only access to S = sin(2β_{eff})):
 - C and $\beta_{eff} \rightarrow f_0(980) K^0_{S}$
 - C and $\beta_{eff} \rightarrow \rho^0(770) K^0_{s}$
- Phase difference between B⁰ and B⁰ ("CPS")
 - $\Delta \phi \rightarrow K^*(892)\pi$

Fit Results: Measured observables

- "Counting rate like":
 - 9 BFs \rightarrow 8 exclusive and 1 inclusive
 - -9 $A_{_{CP}} \rightarrow$ 8 exclusive and 1 inclusive
- Interference pattern:
 - $\phi(f_0, \rho^0)$, $\phi(P$ -wave K π ,S-wave K π), $\phi(\rho^0, K^*)$ for B^0 or $\overline{B^0}$
- TD CPV (counting rate only access to S = sin(2β_{eff})):
 - C and $\beta_{eff} \rightarrow f_0(980)K_s^0$
 - C and $\beta_{eff} \! \rightarrow \rho^{0}(770) K^{0}_{S}$
- Phase difference between B⁰ and B⁰ ("CPS")
 - $\Delta \phi \rightarrow K^*(892)\pi$

Seminar CPPM Marseille Feb. 22nd 2010

Alejandro Perez,

Alei

Alejandro Perez,

Aleja

Fit Results: CPS Phase K^{*}(892)π

Δφ(K(892)π):

- Sensitivity not by direct interference
- Only by interference with other components in the DP:

 $f_0(980)$ and $\rho^0(770)$

 $\Delta \phi(K(892)\pi)$: measured by interference in the corners of the DP

Fit Results: CPS Phase K^{*}(892)π

Alejandro Perez,

The Phenomenological Analysis

J. Charles, R. Camacho, J. Ocariz, A. Pérez

- Isospin-based analysis of the modes $B \rightarrow K^* \pi$
- More developments can be found in my Ph.D. Thesis: http://tel.archives-ouvertes.fr/docs/00/37/91/88/PDF/thesis.pdf

With the world averages of BaBar, Belle and CLEO

Work with CKMfitter software http://ckmfitter.in2p3.fr/

$B \rightarrow K^* \pi$ System: Isospin relations

$$A(B^{0} \to K^{*+}\pi^{-}) = V_{us}V_{ub}^{*}T^{+-} + V_{ts}V_{tb}^{*}P^{+-}$$

$$\sqrt{2}A(B^{0} \to K^{*0}\pi^{0}) = V_{us}V_{ub}^{*}T^{00}_{C} + V_{ts}V_{tb}^{*}(-P^{+-}+P_{EW})$$
(S)

Neglecting P_{EW} , the amplitude combinations:

$$3A_{3/2} = A(B^{0} \rightarrow K^{*+}\pi^{-}) + \sqrt{2} A(B^{0} \rightarrow K^{*0}\pi^{0}) = V_{us}V_{ub}^{*}(T^{++}+T^{00})$$

$$3\overline{A}_{3/2} = \overline{A}(\overline{B^{0}} \rightarrow K^{*-}\pi^{+}) + \sqrt{2} \overline{A}(\overline{B^{0}} \rightarrow \overline{K}^{*0}\pi^{0}) = V_{us}^{*}V_{ub}^{*}(T^{+-}+T^{00})$$

gives: $R_{3/2} = (3A_{3/2})/(3\overline{A}_{3/2}) = e^{-2i\gamma}$

$$CPS PRD74:051301 GPSZ PRD75:014002$$

From experiment:

- → Measurable from K⁺ $\pi^{-}\pi^{0}$ DP analysis $\overline{\phi} = \arg(\overline{A(B^{0} \rightarrow K^{*+}\pi^{-})}\overline{A^{*}(B^{0} \rightarrow K^{*0}\pi^{0})}))$ $\phi = \arg(A(B^{0} \rightarrow K^{*+}\pi^{-})A^{*}(B^{0} \rightarrow K^{*0}\pi^{0})))$
- Measurable from $K^0_{\ S}\pi^+\pi^-$ from a

<u>TI DP analysis</u>

$$\Delta \phi = \arg(\overline{\mathsf{A}}(\overline{\mathsf{B}}^{0} \rightarrow \mathsf{K}^{*}\pi^{+})\mathsf{A}^{*}(\mathsf{B}^{0} \rightarrow \mathsf{K}^{*}\pi^{-}))$$

Alejandro Perez,

$$A(B^{0} \rightarrow K^{*+}\pi^{-}) = V_{us}V_{ub}^{*}T^{+-} + V_{ts}V_{tb}^{*}P^{+-}$$

$$\sqrt{2}A(B^{0} \rightarrow K^{*0}\pi^{0}) = V_{us}V_{ub}^{*}T^{00}_{C} + V_{ts}V_{tb}^{*}(-P^{+-}+P_{EW})$$
(S)

Neglecting P_{EW} , the amplitude combinations:

$$3A_{3/2} = A(B^{0} \rightarrow K^{*+}\pi^{-}) + \sqrt{2} A(B^{0} \rightarrow K^{*0}\pi^{0}) = V_{us}V_{ub}^{*}(T^{+-}+T^{00})$$

$$3\overline{A}_{3/2} = \overline{A}(\overline{B^{0}} \rightarrow K^{*-}\pi^{+}) + \sqrt{2} \overline{A}(\overline{B^{0}} \rightarrow \overline{K^{*0}\pi^{0}}) = V_{us}^{*}V_{ub}(T^{+-}+T^{00})$$

gives: $R_{3/2} = (3A_{3/2})/(3\overline{A}_{3/2}) = (e^{-2i\gamma})$

$$CPS PRD74:051301$$

GPSZ PRD75:01400

From experiment:

- → Measurable from K⁺π⁻π⁰ DP analysis $\overline{\phi} = \arg(\overline{A(B^0 \rightarrow K^{*+}\pi^-)}\overline{A^*(B^0 \rightarrow K^{*0}\pi^0)})$ $\phi = \arg(A(B^0 \rightarrow K^{*+}\pi^-)A^*(B^0 \rightarrow K^{*0}\pi^0))$
- → Measurable from $K^0_{\ s}\pi^+\pi^-$ from a

TI DP analysis

$$\Delta \phi = \arg(\overline{\mathsf{A}}(\overline{\mathsf{B}}^{0} \rightarrow \mathsf{K}^{*-}\pi^{+})\mathsf{A}^{*}(\mathsf{B}^{0} \rightarrow \mathsf{K}^{*+}\pi^{-}))$$

Alejandro Perez,

$$A(B^{0} \rightarrow K^{*+}\pi^{-}) = V_{us}V_{ub}^{*}T^{+-} + V_{ts}V_{tb}^{*}P^{+-}$$

$$\sqrt{2}A(B^{0} \rightarrow K^{*0}\pi^{0}) = V_{us}V_{ub}^{*}T^{00}_{C} + V_{ts}V_{tb}^{*}(-P^{+-}+P_{EW})$$
(S)

Neglecting P_{EW} , the amplitude combinations:

$$3A_{3/2} = A(B^{0} \rightarrow K^{*+}\pi^{-}) + \sqrt{2} A(B^{0} \rightarrow K^{*0}\pi^{0}) = V_{us}V_{ub}^{*}(T^{++}T^{00})$$

$$3\overline{A}_{3/2} = \overline{A}(\overline{B^{0}} \rightarrow K^{*-}\pi^{+}) + \sqrt{2} \overline{A}(\overline{B^{0}} \rightarrow \overline{K}^{*0}\pi^{0}) = V_{us}^{*}V_{ub}(T^{+-}+T^{00})$$

gives: $R_{3/2} = (3A_{3/2})/(3\overline{A}_{3/2}) = e^{-2i\gamma}$

$$CPS PRD74:051301 GPSZ PRD75:01400$$

From experiment:

- → Measurable from K⁺π⁻π⁰ DP analysis $\overline{\phi} = \arg(\overline{A(B^0} \rightarrow K^{*+}\pi^{-})\overline{A^*}(\overline{B^0} \rightarrow K^{*0}\pi^{0})))$ $\phi = \arg(A(B^0 \rightarrow K^{*+}\pi^{-})A^*(B^0 \rightarrow K^{*0}\pi^{0}))$
- → Measurable from $K^0_{\ S}\pi^+\pi^-$ from a

TI DP analysis

$$\Delta \phi = \arg(\overline{\mathsf{A}}(\overline{\mathsf{B}}^{0} \to \mathsf{K}^{*}\pi^{+})\mathsf{A}^{*}(\mathsf{B}^{0} \to \mathsf{K}^{*}\pi^{-})) \checkmark$$

Alejandro Perez,

Revisiting CPS/GPSZ

- Original plan: extend CPS/GPSZ method by including all available observables of $K^*\pi$ system

Phase difference between B⁰ and B⁰ amplitudes only accessible from TD DP analyses (include **q/p** factor) From \mathbb{K}^0 , $\pi^+\pi^-$: $\Delta \phi = \arg((\mathbf{q}/\mathbf{p})\mathbf{A}(\mathbf{B}^0 \rightarrow \mathbf{K}^* \pi^+)\mathbf{A}^*(\mathbf{B}^0 \rightarrow \mathbf{K}^* \pi^-)) \text{ and not}$ $\Delta \phi = \arg(A(B^0 \rightarrow K^{-}\pi^+)A^*(B^0 \rightarrow K^{+}\pi^-))$ - Physical observable is $R'_{3/2} = (q/p)R_{3/2}$. - With $P_{EW} = 0$, $R'_{3/2} = (q/p)R_{3/2} = e^{-2i\beta}e^{-2i\gamma} = e^{-2i\alpha}$ \rightarrow Access to α and not $\gamma!$ - In case of $P_{FW} \neq 0$, $R'_{3/2} = \exp(-2i\phi_{3/2})$, $\phi_{3/2}$: " α shifted"

$B \rightarrow K^* \pi$ System: Physical Observables

$$A(B^{0} \rightarrow K^{*+}\pi^{-}) = V_{us}V_{ub}^{*}T^{+-} + V_{ts}V_{tb}^{*}P^{+-}$$

$$\sqrt{2}A(B^{0} \rightarrow K^{*0}\pi^{0}) = V_{us}V_{ub}^{*}T_{c}^{00} + V_{ts}V_{tb}^{*}(-P^{+-}+P_{EW})$$
7 QCD and 2 CKM = 9 unknowns
(S)

Observables:

- 2 BFs and 2 $A_{_{\rm CP}}$ from DP and Q2B analyses.
- 3 phase differences:

$$\begin{array}{c} * \ \phi = \arg(\mathsf{A}(\mathsf{B}^{0} \rightarrow \mathsf{K}^{*0} \pi^{0}) \mathsf{A}^{*}(\mathsf{B}^{0} \rightarrow \mathsf{K}^{**} \pi^{-})) \\ \hline \phi = \arg(\overline{\mathsf{A}}(\overline{\mathsf{B}^{0}} \rightarrow \overline{\mathsf{K}^{*0}} \pi^{0}) \overline{\mathsf{A}^{*}}(\overline{\mathsf{B}^{0}} \rightarrow \mathsf{K}^{**} \pi^{+})) \end{array} \right\} \text{ from } \mathsf{B}^{0} \rightarrow \mathsf{K}^{*} \pi^{-} \pi^{0}$$

A total of 7 observables Need an additional hypothesis

$B \rightarrow K^* \pi$ system: two strategies

Scenario 1: use CKM from external input (global fit) and fit hadronic parameters:

- Uncontroversial: only assumes CKM unitarity
- inputs: CKM from global fit and experimental measurements
- output:
 - * Explore hadronic amplitudes, test of theoretical calculations

Scenario 2: use external hadronic input and fit for CKM:

- If Had \rightarrow Had + δ Had gives CKM \rightarrow CKM + δ CKM (Ex.: α from B $\rightarrow \pi\pi$
- If Had \rightarrow Had + δ Had gives CKM \rightarrow CKM + Δ CKM \bigcirc

Goal: test CPS/GPSZ method

$B \rightarrow K^* \pi$ system: Theoretical prediction

CPS/GPSZ: relation between the P_{EW} and $T_{3/2} = T^{+-} + T_{C}^{00}$

- $B \rightarrow \pi \pi$: $P_{_{EW}} = RT_{_{3/2}}$, R=1.35% and real. (SU(2) and Wilson coeff. | $c_{_{8,9}}$ | small). P and T CKM of same order $\rightarrow P_{_{FW}}$ negligible
- $B \rightarrow K\pi$: $P_{EW} = RT_{3/2}$ (same as $\pi\pi$ and SU(3)) P amplified CKM wrt. T ($|V_{ts}V_{tb}^*/V_{us}V_{ub}^*|\sim 50$) $\rightarrow P_{EW}$ non-negligible

$$- \mathbf{B} \rightarrow \mathbf{K}^* \pi : \mathbf{P}_{\mathrm{EW}} = \mathbf{R}_{\mathrm{eff}} \mathbf{T}_{3/2}$$

- $R_{eff} = R(1-r_{VP})/(1+r_{VP})$,
- r_{vP} complex \rightarrow vector-pseudoscalar phase space,
- GPSZ estimation $|r_{yp}| < 5\%$

Scenario 1: exploring hadronic parameters

Input here:

- Experimental measurements
- CKM from global fit

P_{EW}/T_{3/2}

 $P_{EW} = R_{eff} T_{3/2}$ 1 $R_{off} = 1.35\%$ (GPSZ) 0.5 **Conservative** theoretical error dilutes strongly -0.5 the constraint -1 **CPS/GPSZ method** totally dominated by -1.5 theoretical errors

Conclusions (I)

Experimental analysis

- Measure (β_{eff} ,C) for f₀(980)Ks and ρ^{0} (770)Ks
 - f₀(980)Ks: CPV conservation excluded at 3.5σ
 - Agreement with b \rightarrow ccs at 1.1 σ
 - Trigonometric ambiguity not resolved
 - $\rho^{0}(770)$ Ks: β_{eff} measured for the first time
 - Trigonometric ambiguity disfavoured at 1.9σ
 - Preferred solution in agreement with b \rightarrow ccs
- $\Delta \phi(K^*(892)\pi)$ measured for the first time
- Analysis published in PRD
- BaBar and Belle are steeping down ⇒ it is now the turn of LHCb and maybe the future SuperB project to improve the measurements on B⁺→K⁺π⁻π⁺, B⁰→K⁺π⁻π⁰ and B⁰→K⁰_sπ⁺π⁻

Conclusions (I)

Alejandro Perez,

Conclusions (I)

Conclusions (II)

Phenomenological analysis

- Theoretical expectation on P_{ew} marginally compatible with data
- CPS/GPSZ method dominated by theoretical uncertainty
- K*π: marginal constrain on CKM parameters with current measurements (assuming CPS/GPSZ)
- Potential for CKM physics will depend on the evolution of the theoretical errors

mesons Oscillation

B mesons and CP violation

Types of CP violation

- CPV in mixing: $|B^0 \rightarrow \overline{B^0}|^2 \neq |\overline{B^0} \rightarrow \overline{B^0}|^2$ $|q/p| \neq 1$ For B mesons $|q/p| \sim 1$ (B Mixing parameter)

B mesons and CP violation

Types of CP violation

- CPV in mixing: $|B^0 \rightarrow \overline{B^0}|^2 \neq |\overline{B^0} \rightarrow \overline{B^0}|^2$ $|q/p| \neq 1$ For B mesons $|q/p| \sim 1$ (B Mixing parameter)

- Direct CPV: $|B \rightarrow f|^2 \neq \overline{|B} \rightarrow \overline{f|}^2$

Types of CP violation

- CPV in mixing: $|B^0 \rightarrow \overline{B^0}|^2 \neq |\overline{B^0} \rightarrow B^0|^2$ $|q/p| \neq 1$ For B mesons $|q/p| \sim 1$ (B Mixing parameter)

- Direct CPV: $|B \rightarrow f|^2 \neq \overline{|B} \rightarrow \overline{f|}^2$

- Mixing and decay CPV: $|B^0 \rightarrow f_{CP}^{+} + B^0 \rightarrow \overline{B^0} \rightarrow f_{CP}^{-}|^2 \neq |\overline{B^0} \rightarrow f_{CP}^{-} + \overline{B^0} \rightarrow B^0 \rightarrow f_{CP}^{-}|^2$ $A_{CP}(t) = Ssin(\Delta m_d \Delta t) - Ccos(\Delta m_d \Delta t)$ $S = 2lm(\lambda_{CP})/(1+|\lambda_{CP}^{-}|^2)$ $C = (1-|\lambda_{CP}^{-}|^2)/(1+|\lambda_{CP}^{-}|^2)$ $\lambda_{CP}^{-} = (q/p)[A(B^0 \rightarrow f_{CP}^{-})/A(\overline{B^0} \rightarrow \overline{f_{CP}^{-}})]$

Existing Measurements

- TD Q2B analysis f₀(980)K⁰_s. 123x10⁶ BB, BaBar 2004 (PRL94:041802)
- TD Q2B analysis f₀(980)K⁰_s. 386x10⁶ BB, Belle 2005 (arXiv:hep-ex/0507037)
- **TD Q2B analysis** $\rho^{0}(770)K_{s}^{0}$. 227x10⁶ BB, BaBar 2006 (PRL98:051803)
- TI Q2B analysis $K_s \pi^+ \pi^-$. 232x10⁶ BB, BaBar 2006 (PRD73:031101)
- TI tag-integrated DP analysis.
 388x10⁶ BB, Belle 2006 (PRD75:012006)
- Our Preliminary Results TD DP analysis presented at LP07.
 383x10⁶ BB, BaBar 2007 (arXiv:hep-ex/0708.2097)
- Two weeks before my thesis: TD DP analysis
 657x10⁶ BB, Belle 2008 (arXiv:hep-ex/0811.3665)

Alejandro Perez,

Seminar CPPM Marseille Feb. 22nd 2010

TD= Time dependentTI= Time integratedDP= Dalitz PlotQ2B= Quasi-Two Body

Belle results 2008: 2β_{eff}

FIG. 5: Likelihood scans of ϕ_1^{eff} for $B^0 \to \rho^0(770)K_S^0$ (top) and $B^0 \to f_0(980)K_S^0$ (bottom) for Solution 1 (left) and Solution 2 (right). The solid (dashed) curve contains the total (statistical) error and the dotted box indicates the parameter range corresponding to $\pm 1\sigma$.

Belle results 2008: $\Delta\phi(K^*(892)\pi)$

FIG. 7: Likelihood scan of $\Delta \phi$ for Solution 1 (left) and Solution 2 (right). The solid (dashed) curve contains the total (statistical) error and the dotted box indicates the parameter range corresponding to $\pm 1\sigma$.

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

PEP-II: a B factory at SLAC

Seminar CPPM Marseille Feb. 22nd 2010

The BaBar Detector

∆t measurement and flavor tagging

- Neutral B mesons produced in a coherent B⁰-B⁰ state
- Flavor tagging with B partner
- $\Delta t \text{ extracted from } \Delta z \text{ measurement } (\Delta t \approx \Delta z \gamma \beta)$

Dalitz Plot (DP)

$$L = \prod_{c=1}^{5} e^{-N_{c}^{'}} \prod_{i=1}^{N_{c}} \left(N_{s} \varepsilon_{c} \left(1 - f_{SCF,c} \right) P_{S,c}^{TM} + N_{s} \varepsilon_{c} f_{SCF,c} P_{S,c}^{SCF} + N_{q\overline{q}} P_{q\overline{q},c} + \sum_{i=1}^{N_{class}} N_{B,j} \varepsilon_{B,c} P_{B,c} \right) (\vec{x}_{i})$$

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

Parameterization

Parameterization

 $A(DP) = \sum q_j F_j(DP)$ $\overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP)$

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model

Shapes of intermediate states over DP

$$F_j^L(DP) = R_j(m) \times X_L(|\vec{p}^{\star}|r) \times X_L(|\vec{q}|r) \times T_j(L,\vec{p},\vec{q})$$

Relativistic Breit-Wigner: $K^{*}(892)\pi$

Flatte:

Gounaris-Sakurai:

S-wave $K\pi$:

f₀(980)K

p(770)K

LASS lineshape.

Parameterization

Event Selection

- π candidates from standard list
- K^0_{s} candidates from two $\pi^+\pi^-$ (standard list)
- B⁰ candidates using mass constrained vertexing
- **5.272** < m_{ES} < 5.286 GeV/c²
- |∆E| < 65 MeV
- I∆t < 20 ps</p>
- σ(Δt) < 2.5ps</p>
- $|M(K^{0}_{S}) M(K^{0}_{S})PDF| < 15 \text{ MeV/c}^{2}$
- Lifetime significance > 5
- cos(K⁰_s,K⁰_s daughters) < 0.999</p>
- NN > -0.4
- PID requirements to separate from kaons and reject leptons

Total efficiency ~ 25%

Multiple candidates:

candidate selected arbitrarily, in order to not to bias the ΔE distribution

Mod(time-stamp,nCands)

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

Alejandro Perez,

Seminar CPPM Marseille Feb. 22nd 2010

129

B-background Model

Parameterization (I)

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

Standard Parameterizations:

- Signal TM: Bifurcated Crystal Ball (parameters floated)
- Signal SCF: Non-parametric (Keys)
- $D\pi$ and $J/\psi K_s^0$ Bbkg: Share same PDF as signal. Allows to fit parameters directly on data.
- All other B-backgrounds: Non-parametric (Keys)
- Continuum: Argus (parameters floated)

Parameterization (II)

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

Standard Parameterizations:

- Signal TM: Double Gaussian (parameters floated)
- Signal SCF: Gaussian (fix parameters)
- $D\pi$: Share same PDF as signal. Allows to fit parameters directly on data.
- All other B-backgrounds: Non-parametric (Keys)
- Continuum: 2nd degree polynomial (parameters floated)

Parameterization (III)

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

Standard Parameterizations:

- Signal TM and SCF: Non-parametric (Keys). Separated in tagging categories
- All other B-backgrounds: Non-parametric (Keys). Same for all tagging categories
- Continuum: conditional PDF. Non-negligible correlation with DP Variables

Parameterization (III)

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

Continuum: Non-negligible correlation with DP Variables PDF dependent on the DP:
$$\begin{split} \overline{P_{q\bar{q}}(NN;\Delta_{\text{Dalitz}},A,B_0,B_1,B_2)} &= (1-NN)^A \left(B_2 NN^2 + B_1 NN + B_0 \right). \\ A &= a_1 + a_4 \Delta_{\text{Dalitz}}, \\ B_0 &= c_0 + c_1 \Delta_{\text{Dalitz}}, \\ B_1 &= a_3 + c_2 \Delta_{\text{Dalitz}}, \\ B_2 &= a_2 + c_3 \Delta_{\text{Dalitz}}, \end{split}$$
 is the probability of the proba

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

Parameterization (III)

Continuum: Non-negligible correlation with DP Variables

Alejandro Perez,

Seminar CPPM Marseille Feb. 22nd 2010

Parameterization (V)

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

- **Background Parameterizations:**
- **DP PDF:** Non-parametric PDF.
 - Continuum: constructed using off-peak and on-peak

(m_{FS}, Δ E) side band data.

- B-background: constructed using MC
- ∆t PDF:
 - Continuum: empirical parameterization (triple-gaussian)

- B-background: same as signal for most neutral modes. Customized PDFs for charged generic and $D\pi$ components

Signal efficiency over DP

TM and SCF efficiencies vary significantly over the DP

Take these effect into account in the time-DP PDF

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

DP resolution function

- (smaller than widths of resonant structures)
- Significant dispersion of SCF events

Alejandr

 \Rightarrow 2D Convolution with resolution function $R_{SCF}(m'_{rec}, \theta'_{rec}, m'_{true}, \theta'_{true})$

Continuum DP PDF

Use m_{ES} and ΔE side-bands on data to build DP PDF for continuum events

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

Fit Results: Non isobar

Parameter Name	Fit Result Sol-I	Fit Result Sol-II
ΔNLL	0.0	0.16
$N(B^0 \rightarrow D^+ \pi^-)$	3361 ± 60	3362 ± 60
$N(B^0 \rightarrow J/\Psi K_s^0)$	1804 ± 44	1803 ± 43
$N(B^0 \rightarrow \eta' K_s^0)$	46 ± 16	44 ± 16
$N(B^0 \rightarrow \Psi(2S)K_s^0)$	142 ± 13	142 ± 13
N(cont-Lepton)	46 ± 8.9	47 ± 9
N(cont-KaonI)	800 ± 31	800 ± 31
N(cont-KaonII)	2127 ± 49	2127 ± 49
N(cont-KaonPion)	1775 ± 45	1775 ± 45
N(cont-Pion)	2048 ± 48	2048 ± 48
N(cont-Other)	1614 ± 42	1614 ± 42
N(cont-NoTag)	5829 ± 80	5829 ± 80
$f_{core}(\Delta E)$ Signal	0.63 ± 0.14	0.63 ± 0.14
$\mu_{core}(\Delta E)$ Signal	$-1.3\pm0.7~{ m MeV}$	$-1.3\pm0.6~{ m Mev}$
$\sigma_{core}(\Delta E)$ Signal	$17.1 \pm 1.4 \mathrm{MeV}$	$17.1 \pm 1.3 \; \mathrm{Mev}$
$\mu_{tail}(\Delta E)$ Signal	$-7.3\pm2.9~{ m MeV}$	$-7.4\pm3.0~{ m Mev}$
$\sigma_{tail}(\Delta E)$ Signal	$31.2 \pm 4.6 \mathrm{MeV}$	$31.4\pm4.6~{ m Mev}$
Slope (ΔE) Continuum	-8.51 ± 5.77	-8.49 ± 5.77
$\mu(m_{ES})$ Signal	$5.2788 \pm 0.0001 { m GeV}/c^2$	$5.2788 \pm 0.0001 \; { m Gev}/c^2$
$\sigma_L(m_{ES})$ Signal	$2.24 \pm 0.06 \text{ MeV}/c^2$	$2.24 \pm 0.06 \text{ Mev}/c^2$
$\sigma_R(m_{ES})$ Signal	$2.73 \pm 0.07 \text{ MeV}/c^2$	$2.73 \pm 0.07 \; { m Mev}/c^2$
Argus Slope (m_{ES}) Continuum	-0.3 ± 0.2	-0.4 ± 0.2
$a_1(NN)$ Continuum	1.9 ± 0.1	1.9 ± 0.1
$a_2(NN)$ Continuum	3.2 ± 0.4	3.2 ± 0.4
$a_{3}(NN)$ Continuum	-1.1 ± 0.1	-1.1 ± 0.1
$a_5(NN)$ Continuum	-0.47 ± 0.05	-0.48 ± 0.05
$\mu_{common}(\Delta t)$ Continuum	$0.018 \pm 0.007 \ ps$	$0.018 \pm 0.007 \; \mathrm{ps}$
$\sigma_{core}(\Delta t)$ Continuum	$1.14 \pm 0.02 \ ps$	$1.14 \pm 0.02 \text{ ps}$
$f_{tail}(\Delta t)$ Continuum	0.16 ± 0.02	0.16 ± 0.02
$\sigma_{tail}(\Delta t)$ Continuum	$2.8\pm0.2~ps$	$2.8\pm0.2~\mathrm{ps}$
$f_{outlier}(\Delta t)$ Continuum	0.030 ± 0.004	0.030 ± 0.004
$\sigma_{outlier}(\Delta t)$ Continuum	$10.7\pm0.9\ ps$	$10.7\pm0.8~\mathrm{ps}$

There are two solutions almost degenerated.

They differ by 0.16 in -2Log(L) units

Fit Results: Non isobar

Parameter Name	Fit Result Sol-I	Fit Result Sol-II	
ΔNLL	0.0	0.16	There are two
$N(B^0 \rightarrow D^+ \pi^-)$	3361 ± 60	3362 ± 60	A colutions almo
$N(B^0 \rightarrow J/\Psi K_s^0)$	1804 ± 44	1803 ± 43	solutions aime
$N(B^0 \rightarrow \eta' K_s^0)$	46 ± 16	44 ± 16	degenerated
$N(B^0 \rightarrow \Psi(2S)K_{\pi}^0)$	142 ± 13	142 ± 13	degenerated.
N(cont-Lepton)	46 ± 8.9	47 ± 9	
N(cont-KaonI)	800 ± 31	800 ± 31	I ney differ by
N(cont-KaonII)	2127 ± 49	2127 ± 49	
N(cont-KaonPion)	1775 ± 45	1775 ± 45	-2LOG(L) UNITS
N(cont-Pion)	2048 ± 48	2048 ± 48	
N(cont-Other)	1614 ± 42	1614 ± 42	
N(cont-Nolag)	5829 ± 80	5829±80	
$J_{core}(\Delta E)$ Signal (AE) Signal	0.63 ± 0.14	0.63 ± 0.14	
$\mu_{core}(\Delta E)$ Signal			
$\mu_{e,u}(\Delta E)$ Signal NON	-isopar par	ameters	
$\sigma_{L-2}(\Delta E)$ Signal	•		
Slope(ΔE) Continue	Ale al lie h al		
	itical in dot	n solutions	
$a_i(m_{ES})$ Signal		$4.24 \pm 0.00 \text{ MeV}$	
$\sigma_{\rm r}(m_{\rm ES})$ Signal	$2.24 \pm 0.00 \text{ MeV/c}^2$ 2.73 ± 0.07 MeV/c ²	$2.24 \pm 0.00 \text{ MeV}/c^2$ 2.73 ± 0.07 MeV/c ²	
Argus Slope (m_{Pa}) Continuum	-0.3 ± 0.2	-0.4 ± 0.2	
$a_1(NN)$ Continuum	1.9 ± 0.1	1.9 ± 0.1	
$a_2(NN)$ Continuum	3.2 ± 0.4	3.2 ± 0.4	
a ₃ (NN) Continuum	-1.1 ± 0.1	-1.1 ± 0.1	
a ₅ (NN) Continuum	-0.47 ± 0.05	-0.48 ± 0.05	
$\mu_{common}(\Delta t)$ Continuum	$0.018 \pm 0.007 \ ps$	$0.018 \pm 0.007 \text{ ps}$	
$\sigma_{core}(\Delta t)$ Continuum	$1.14 \pm 0.02 \ ps$	$1.14 \pm 0.02 \text{ ps}$	
$f_{tail}(\Delta t)$ Continuum	0.16 ± 0.02	0.16 ± 0.02	
$\sigma_{tail}(\Delta t)$ Continuum	$2.8\pm0.2~ps$	$2.8\pm0.2~\mathrm{ps}$	
$f_{outlier}(\Delta t)$ Continuum	0.030 ± 0.004	0.030 ± 0.004	
$\sigma_{outlier}(\Delta t)$ Continuum	$10.7\pm0.9\ ps$	$10.7\pm0.8~\mathrm{ps}$	

i mejanare i erez,

utions almost generated. ey differ by 0.16 in

Fit Results: Isobar

Isobar Amplitude	A Sol-I	$\phi[deg]$ Sol-I	A Sol-II	$\phi[deg]$ Sol-II
$A(f_0(980)K_S^0)$	4.0	0.0	4.0	0.0
$\bar{A}(f_0(980)K_S^{\bar{0}})$	3.7 ± 0.4	-73.9 ± 19.6	3.2 ± 0.6	-112.3 ± 20.9
$A(\rho(770)K_{S}^{0})$	0.10 ± 0.02	35.6 ± 14.9	0.09 ± 0.02	66.7 ± 18.3
$\bar{A}(\rho(770)K_{S}^{0})$	0.11 ± 0.02	15.3 ± 20.0	0.10 ± 0.03	-0.1 ± 18.2
A(NR)	2.6 ± 0.5	35.3 ± 16.4	1.9 ± 0.7	56.7 ± 23.6
$\bar{A}(NR)$	2.7 ± 0.6	36.1 ± 18.3	3.1 ± 0.6	-45.2 ± 17.8
$A(K^{*+}(892)\pi^{-})$	0.154 ± 0.016	-138.7 ± 25.7	0.145 ± 0.017	-107.0 ± 24.1
$\bar{A}(K^{*-}(892)\pi^+)$	0.125 ± 0.015	163.1 ± 23.0	0.119 ± 0.015	76.4 ± 23.0
$A((K\pi)_0^{*+}\pi^-)$	6.9 ± 0.6	-151.7 ± 19.7	6.5 ± 0.6	-122.5 ± 20.3
$\bar{A}((K\pi)_{0}^{*-}\pi^{+})$	7.6 ± 0.6	136.2 ± 19.8	7.3 ± 0.7	52.6 ± 20.3
$A(f_X(1300)K_S^0)$	1.41 ± 0.23	43.2 ± 22.0	1.40 ± 0.28	85.9 ± 24.8
$\bar{A}(f_X(1300)K_S^0)$	1.24 ± 0.27	31.6 ± 23.0	1.02 ± 0.33	-67.9 ± 22.1
$A(f_2(1270)K_S^0)$	0.014 ± 0.002	5.8 ± 19.2	0.012 ± 0.003	23.9 ± 22.7
$\bar{A}(f_2(1270)K_S^0)$	0.011 ± 0.003	-24.0 ± 28.0	0.011 ± 0.003	-83.3 ± 24.3
$A(\chi_{c0}K_S^0)$	0.33 ± 0.15	61.4 ± 44.5	0.28 ± 0.16	51.9 ± 38.4
$\bar{A}(\chi_{c0}K_S^0)$	0.44 ± 0.09	15.1 ± 30.0	0.43 ± 0.08	-58.5 ± 27.9

Alejandro Perez,

Seminar CPPM Marseille Feb. 22nd 2010

Fit Results: Isobar

Isobar Amplitude	A Sol-I	$\phi[deg]$ Sol-I	A Sol-II	$\phi[deg]$ Sol-II
$A(f_0(980)K_S^0)$	4.0	0.0	4.0	0.0
$\bar{A}(f_0(980)K_S^0)$	3.7 ± 0.4	-73.9 ± 19.6	3.2 ± 0.6	-112.3 ± 20.9
$A(\rho(770)K_{S}^{0})$	0.10 ± 0.02	35.6 ± 14.9	0.09 ± 0.02	66.7 ± 18.3
$\bar{A}(\rho(770)K_{S}^{0})$	0.11 ± 0.02	15.3 ± 20.0	0.10 ± 0.03	-0.1 ± 18.2
A(NR)	2.6 ± 0.5	35.3 ± 16.4	1.9 ± 0.7	56.7 ± 23.6
$\bar{A}(NR)$	2.7 ± 0.6	36.1 ± 18.3	3.1 ± 0.6	-45.2 ± 17.8
$A(K^{*+}(892)\pi^{-})$	0.154 ± 0.016	-138.7 ± 25.7	0.145 ± 0.017	-107.0 ± 24.1
$\bar{A}(K^{*-}(892)\pi^+)$	0.125 ± 0.015	163.1 ± 23.0	0.119 ± 0.015	76.4 ± 23.0
$A((K\pi)_0^{*+}\pi^-)$	6.9 ± 0.6	-151.7 ± 19.7	6.5 ± 0.6	-122.5 ± 20.3
$\bar{A}((K\pi)_{0}^{*-}\pi^{+})$	7.6 ± 0.6	136.2 ± 19.8	7.3 ± 0.7	52.6 ± 20.3
$A(f_X(1300)K_S^0)$	1.41 ± 0.23	43.2 ± 22.0	1.40 ± 0.28	85.9 ± 24.8
$\bar{A}(f_X(1300)K_S^0)$	1.24 ± 0.27	31.6 ± 23.0	1.02 ± 0.33	-67.9 ± 22.1
$A(f_2(1270)K_S^0)$	0.014 ± 0.002	5.8 ± 19.2	0.012 ± 0.003	23.9 ± 22.7
$\bar{A}(f_2(1270)K_S^0)$	0.011 ± 0.003	-24.0 ± 28.0	0.011 ± 0.003	-83.3 ± 24.3
$A(\chi_{c0}K_S^0)$	0.33 ± 0.15	61.4 ± 44.5	0.28 ± 0.16	51.9 ± 38.4
$\bar{A}(\chi_{c0}K_S^0)$	0.44 ± 0.09	15.1 ± 30.0	0.43 ± 0.08	-58.5 ± 27.9

Moduli of isobar amplitudes similar in both solutions (Mean differences in NR and minor

components)

Alejandro Perez,

Fit Results: Isobar

T 1 4 1 1, 1		(1) 1(i) x		11 101 17
Isobar Amplitude	A Sol-I	$\phi[deg]$ Sol-1	A Sol-II	$\phi[deg]$ Sol-II
$A(f_0(980)K_S^0)$	4.0	0.0	4.0	0.0
$\bar{A}(f_0(980)K_S^0)$	3.7 ± 0.4	-73.9 ± 19.6	3.2 ± 0.6	-112.3 ± 20.9
$A(\rho(770)K_{S}^{0})$	0.10 ± 0.02	35.6 ± 14.9	0.09 ± 0.02	66.7 ± 18.3
$\bar{A}(\rho(770)K_{S}^{\bar{0}})$	0.11 ± 0.02	15.3 ± 20.0	0.10 ± 0.03	-0.1 ± 18.2
A(NR)	2.6 ± 0.5	35.3 ± 16.4	1.9 ± 0.7	56.7 ± 23.6
$\bar{A}(NR)$	2.7 ± 0.6	36.1 ± 18.3	3.1 ± 0.6	-45.2 ± 17.8
$A(K^{*+}(892)\pi^{-})$	0.154 ± 0.016	-138.7 ± 25.7	0.145 ± 0.017	-107.0 ± 24.1
$\bar{A}(K^{*-}(892)\pi^+)$	0.125 ± 0.015	163.1 ± 23.0	0.119 ± 0.015	76.4 ± 23.0
$A((K\pi)_0^{*+}\pi^-)$	6.9 ± 0.6	-151.7 ± 19.7	6.5 ± 0.6	-122.5 ± 20.3
$\bar{A}((K\pi)_{0}^{*-}\pi^{+})$	7.6 ± 0.6	136.2 ± 19.8	7.3 ± 0.7	52.6 ± 20.3
$A(f_X(1300)K_S^0)$	1.41 ± 0.23	43.2 ± 22.0	1.40 ± 0.28	85.9 ± 24.8
$\bar{A}(f_X(1300)K_S^0)$	1.24 ± 0.27	31.6 ± 23.0	1.02 ± 0.33	-67.9 ± 22.1
$A(f_2(1270)K_S^0)$	0.014 ± 0.002	5.8 ± 19.2	0.012 ± 0.003	23.9 ± 22.7
$\bar{A}(f_2(1270)K_S^{\bar{0}})$	0.011 ± 0.003	-24.0 ± 28.0	0.011 ± 0.003	-83.3 ± 24.3
$A(\chi_{c0}K_S^0)$	0.33 ± 0.15	61.4 ± 44.5	0.28 ± 0.16	51.9 ± 38.4
$\bar{A}(\chi_{c0}K_S^{\bar{0}})$	0.44 ± 0.09	15.1 ± 30.0	0.43 ± 0.08	-58.5 ± 27.9

But some phases vary significantly!

Alejandro Perez,

Seminar CPPM Marseille Feb. 22nd 2010
Fit Results: Isobar

Isobar Amplitude	A Sol-I	$\phi[deg]$ Sol-I	A Sol-II	$\phi[deg]$ Sol-II
$A(f_0(980)K_S^0)$	4.0	0.0	4.0	0.0
$\bar{A}(f_0(980)K_S^0)$	3.7 ± 0.4	-73.9 ± 19.6	3.2 ± 0.6	-112.3 ± 20.9
$A(\rho(770)K_{S}^{0})$	0.10 ± 0.02	35.6 ± 14.9	0.09 ± 0.02	66.7 ± 18.3
$\bar{A}(\rho(770)K_{S}^{0})$	0.11 ± 0.02	15.3 ± 20.0	0.10 ± 0.03	-0.1 ± 18.2
A(NR)	2.6 ± 0.5	35.3 ± 16.4	1.9 ± 0.7	56.7 ± 23.6
$\bar{A}(NR)$	2.7 ± 0.6	36.1 ± 18.3	3.1 ± 0.6	-45.2 ± 17.8
$A(K^{*+}(892)\pi^{-})$	Ambia	uity in ro	eolvina	the
$\overline{A}(V^{*}=(900) = \pm)$	AIIDIU		SUIVIIIU	
$A(K (892)\pi^{+})$			U	
$\frac{A(K^{-}(892)\pi^{+})}{A((K\pi)_{0}^{*+}\pi^{-})}$	interfer	ence pa	ttern in	the DP
$\frac{A(K^{-}(892)\pi^{+})}{A((K\pi)_{0}^{*+}\pi^{-})} \\ \bar{A}((K\pi)_{0}^{*-}\pi^{+})$		ence pa	ttern in	the DP
$\frac{A(K^{-}(892)\pi^{+})}{A((K\pi)_{0}^{*+}\pi^{-})} \\ \frac{\bar{A}((K\pi)_{0}^{*-}\pi^{+})}{A(f_{X}(1300)K_{S}^{0})}$	1.41 ± 0.23	ence pa 150.2 ± 15.0 43.2 ± 22.0	ttern in 1.40 ± 0.28	the DP <u>52.0 ± 20.5</u> 85.9 ± 24.8
$ \frac{A(K^{-}(892)\pi^{+})}{A((K\pi)_{0}^{*+}\pi^{-})} \\ \frac{\bar{A}((K\pi)_{0}^{*-}\pi^{+})}{A(f_{X}(1300)K_{S}^{0})} \\ \bar{A}(f_{X}(1300)K_{S}^{0}) $		EXAMPLE 7 130.2 ± 13.0 43.2 ± 22.0 31.6 ± 23.0	$\frac{1.5 \pm 0.7}{1.40 \pm 0.28}$ 1.02 ± 0.33	
$ \begin{array}{r} A(K = (892)\pi^{+}) \\ \hline A((K\pi)_{0}^{*+}\pi^{-}) \\ \hline \bar{A}((K\pi)_{0}^{*-}\pi^{+}) \\ \hline A(f_{X}(1300)K_{S}^{0}) \\ \hline \bar{A}(f_{X}(1300)K_{S}^{0}) \\ \hline A(f_{2}(1270)K_{S}^{0}) \\ \hline \end{array} $	$ \begin{array}{c} interfer \\ 1.41 \pm 0.23 \\ 1.24 \pm 0.27 \\ 0.014 \pm 0.002 \end{array} $	EXAMPLE 19.0 150.2 ± 19.0 43.2 ± 22.0 31.6 ± 23.0 5.8 ± 19.2	$\begin{array}{c} \text{ttern in} \\ \hline 1.40 \pm 0.28 \\ 1.02 \pm 0.33 \\ \hline 0.012 \pm 0.003 \end{array}$	
$ \begin{array}{c} A(K = (892)\pi^{+}) \\ \overline{A}((K\pi)_{0}^{*+}\pi^{-}) \\ \overline{A}((K\pi)_{0}^{*-}\pi^{+}) \\ \overline{A}(f_{X}(1300)K_{S}^{0}) \\ \overline{A}(f_{X}(1300)K_{S}^{0}) \\ \overline{A}(f_{2}(1270)K_{S}^{0}) \\ \overline{A}(f_{2}(1270)K_{S}^{0}) \\ \end{array} $	$interfer 1.41 \pm 0.23 1.24 \pm 0.27 0.014 \pm 0.002 0.011 \pm 0.003$	Tence para 130.2 ± 13.0 43.2 ± 22.0 31.6 ± 23.0 5.8 ± 19.2 -24.0 ± 28.0	$\begin{array}{c} \text{ttern in} \\ \hline 1.40 \pm 0.28 \\ 1.02 \pm 0.33 \\ \hline 0.012 \pm 0.003 \\ 0.011 \pm 0.003 \end{array}$	$\begin{array}{c} \textbf{52.6 \pm 20.3} \\ \hline 85.9 \pm 24.8 \\ -67.9 \pm 22.1 \\ \hline 23.9 \pm 22.7 \\ -83.3 \pm 24.3 \end{array}$
$ \begin{array}{r} A(K^{-}(892)\pi^{+}) \\ \hline A((K\pi)_{0}^{*+}\pi^{-}) \\ \hline A((K\pi)_{0}^{*-}\pi^{+}) \\ \hline A(f_{X}(1300)K_{S}^{0}) \\ \hline A(f_{X}(1300)K_{S}^{0}) \\ \hline A(f_{2}(1270)K_{S}^{0}) \\ \hline A(f_{2}(1270)K_{S}^{0}) \\ \hline A(\chi_{c0}K_{S}^{0}) \\ \hline \end{array} $	$interfer 1.41 \pm 0.23 1.24 \pm 0.27 0.014 \pm 0.002 0.011 \pm 0.003 0.33 \pm 0.15$	Tence para 43.2 ± 22.0 31.6 ± 23.0 5.8 ± 19.2 -24.0 ± 28.0 61.4 ± 44.5	$\begin{array}{c} \text{ttern in} \\ \hline 1.40 \pm 0.28 \\ \hline 1.02 \pm 0.33 \\ \hline 0.012 \pm 0.003 \\ \hline 0.011 \pm 0.003 \\ \hline 0.28 \pm 0.16 \end{array}$	
$ \begin{array}{r} A(K^{-}(892)\pi^{+}) \\ \hline A((K\pi)_{0}^{*+}\pi^{-}) \\ \hline A((K\pi)_{0}^{*-}\pi^{+}) \\ \hline A(f_{X}(1300)K_{S}^{0}) \\ \hline A(f_{X}(1300)K_{S}^{0}) \\ \hline A(f_{2}(1270)K_{S}^{0}) \\ \hline A(f_{2}(1270)K_{S}^{0}) \\ \hline A(\chi_{c0}K_{S}^{0}) \\ \hline A(\chi_{c0}K_{S}^{0}) \\ \hline A(\chi_{c0}K_{S}^{0}) \\ \hline \end{array} $	$ \begin{array}{r} 1.0 \pm 0.0 \\ 1.41 \pm 0.23 \\ 1.24 \pm 0.27 \\ 0.014 \pm 0.002 \\ 0.011 \pm 0.003 \\ 0.33 \pm 0.15 \\ 0.44 \pm 0.09 \\ \end{array} $	EXAMPLE 19.0 43.2 ± 22.0 31.6 ± 23.0 5.8 ± 19.2 -24.0 ± 28.0 61.4 ± 44.5 15.1 ± 30.0	$\begin{array}{c} \hline \textbf{tern in} \\ \hline 1.40 \pm 0.28 \\ \hline 1.02 \pm 0.33 \\ \hline 0.012 \pm 0.003 \\ \hline 0.011 \pm 0.003 \\ \hline 0.28 \pm 0.16 \\ \hline 0.43 \pm 0.08 \end{array}$	

But some phases vary significantly!

Alejandro Perez,

Veto on Charm Background

Dπ, J/ψK⁰_s vetoed

No R cut

Signal enhanced by R cut

Alejandro Perez,

Seminar CPPM marsenne reu. 22nu 2010

$D\pi$ Band

1/ 1 JO COULD OL 101

J/ψ Band

Systematic Uncertainties

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

Systematic Uncertainties

- Reconstruction and SCF model
- Ks efficiency, tracking effic., PID and luminosity
- Fixed params. in fit
- Tag-side interference
- Continuum and B-background PDFs

Signal DP Model:

- Lineshapes fix parameters: mass, width, radius.

- Uncertainty on the signal model components

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

Dominant

Systematics: Signal DP Model (I)

- Isobar Model: predefined list of resonant components
- Signal model construction: add resonances that improves fit significantly, exclude the rest → Systematic uncertainty
- Systematic evaluation:
 - Use MC high statistics samples with rich resonant structure
 - Isobar parameters estimated in the best way available

۲	BF(ρ(1450))	= 13.0 % * BF(ρ(770))	(From $\rho\pi$ analysis)
۲	BF(ρ(1700))	= 7.0 % * BF(ρ(770))	(From $\rho\pi$ analysis)
۲	BF(f0(1710))	= (3.0 ± 11.2)(%) * BF(f0(892))	(From fit on Data)
۲	BF(χc2)	= $(1.5 \pm 0.7)(\%) * BF(\chi c0)$	(From fit on Data)
۲	BF(K*2(1430))	= (4.1 ± 1.5)(%) * BF(K*0(1430))	(From fit on Data)
۲	BF(K*(1410))	= 2.7 % * BF(K *(892))	(From charged $K\pi\pi$)
۲	BF(K*(1680))	= 15.6 % * BF(K*(892))	(From charged $K\pi\pi$)
•	BF(χc2) BF(K*2(1430)) BF(K*(1410)) BF(K*(1680))	= $(1.5 \pm 0.7)(\%) * BF(\chi c0)$ = $(4.1 \pm 1.5)(\%) * BF(K*0(1430))$ = $2.7 \% * BF(K*(892))$ = $15.6 \% * BF(K*(892))$	(From fit on Data) (From fit on Data) (From charged Kππ (From charged Kππ

Fit high statistics samples with nominal signal model

Alejandro Perez, evaluated as bias on isobar parameters

Systematics: Signal DP Model (I)

- Isobar Model: predefined list of resonant components
- Signal model construction: add resonances that improves fit significantly, exclude the rest → Systematic uncertainty
- Systematic evaluation:
 - Use MC high statistics samples with rich resonant structure

- Isobar pa	Bias	es:
 BF(ρ(145) 	- BFs small	
 BF(ρ(170)) 	- A small	
BF(f0(17	СР	
 BF(χc2) 	- dominant in ph	ases
BF(K*2(1		
BF(K*(14	10)) = 2.7 % * BF(K*(892))	(From charged $K\pi\pi$)
BF(K*(16)	80)) = 15.6 % * BF(K*(892))	(From charged $K\pi\pi$)

Fit high statistics samples with nominal signal model Alejandrogenezics evaluated as bias on isobar parameters

Systematics: Signal DP Model (II)

Results:

Par.	Syst. Error	Par.	Syst. Error
$C(f_0(980))$	0.04	$C(\rho^0(770))$	0.03
$FF(f_0(980))$	0.6	$FF(\rho^{0}(770))$	0.23
$2\beta_{eff}(f_0(980))$	4.1	$2\beta_{eff}(\rho^0(980))$	3.7
$A_{CP}(K^*(892))$	0.02	$A_{CP}((K\pi)_0^*)$	0.02
$FF(K^*(892))$	0.8	$FF((K\pi)_0^*)$	0.90
$\Delta\phi(K^*(892))$	8.1	$\Delta\phi((K\pi)_0^*)$	4.4
$C(f_2(1270))$	0.07	$C(f_X(1300))$	0.09
$FF(f_2(1270))$	0.69	$FF(f_X(1300))$	0.87
$\phi(f_2(1270))$	10.4	$\phi(f_X(1300))$	4.5
C(NR)	0.04	$C(\chi_C(0))$	0.05
FF(NR)	0.60	$FF(\chi_C(0))$	0.09
$\phi(NR)$	7.5	$\phi(\chi_C(0))$	8.2
$\Delta \phi(f_0, ho^0)$	4.4	FF_{Tot}	1.15
$\Delta \phi(K^*(892), (K\pi)_0^*)$	4.7	A_{CP}^{incl}	0.006
$\Delta\phi(\rho^0, (K\pi)_0^*))$	8.7	Signal Yield	31.7
$\Delta\phi(\rho^0, K^*(892)$	12.7		

Alejandro Perez,

Total Systematic

Parameter	Total	Parameter	Total
$C(f_0(980))$	0.05	$C(\rho^0(770))$	0.10
$FF(f_0(980))$	1.03	$FF(\rho^{0}(770))$	0.52
$2\beta_{eff}(f_0(980))$	5.9	$2\beta_{eff}(\rho^0(980))$	7.0
$A_{CP}(K^*(892))$	0.02	$A_{CP}((K\pi)_0^*)$	0.03
$FF(K^{*}(892))$	1.00	$FF((K\pi)_0^*)$	2.08
$\Delta\phi(K^*(892))$	9.3	$\Delta\phi((K\pi)_0^*)$	6.0
$C(f_2(1270))$	0.11	$C(f_X(1300))$	0.10
$FF(f_2(1270))$	0.74	$FF(f_X(1300))$	0.94
$\phi(f_2(1270))$	12.1	$\phi(f_X(1300))$	6.2
C(NR)	0.08	$C(\chi_C(0))$	0.06
FF(NR)	1.17	$FF(\chi_C(0))$	0.11
$\phi(NR)$	8.4	$\phi(\chi_C(0))$	9.5
FF_{Tot}	2.40	A_{CP}^{inclu}	0.01
$\Delta \phi(f_0, \rho^0)$	7.5	$\Delta \phi(K^*(892), (K\pi)^*_0)$	6.6
$\Delta\phi(\rho^0, (K\pi)_0^*))$	13.3	$\Delta\phi(\rho^0, K^*(892)$	15.4
Signal Yield	42.1		

Alejandro Perez,

Fit Results: Branching Fractions

Component	Branching Fraction $\mathcal{B}(10^{-6})$
$B^0 \to f_0(980) K^0$	$7.02^{+0.95}_{-0.61} \pm 0.70 \pm 0.17$
$B^0 \rightarrow \rho^0(770) K^0$	$4.33^{+0.64}_{-0.68} \pm 0.41 \pm 0.12$
$B^0 \to K^{*+}(892)\pi^-$	$5.51^{+0.51}_{-0.60} \pm 0.49 \pm 0.42$
$B^0 \to (K\pi)_0^{*+}\pi^-$	$22.69^{+1.13}_{-1.49} \pm 2.03 \pm 0.45$
$B^0 \to f_2(1270)K^0$	$1.16^{+0.34}_{-0.40} \pm 0.16 \pm 0.35$
$B^0 \to f_X(1300) K^0$	$1.82^{+0.51}_{-0.53} \pm 0.24 \pm 0.43$
Non-resonant	$5.78^{+1.00}_{-1.62} \pm 0.71 \pm 0.30$
$B^0 \to \chi_C(0) K^0$	$0.52^{+0.15}_{-0.21} \pm 0.04 \pm 0.05$
Inclusive	$50.12 \pm 1.61 \pm 3.99 \pm 0.73$

All BFs are consistent with

previous measurements

Alejandro Perez,

Fit Results: DCPV

Component

 $C(B^0 \to f_0(980)K^0)$

 $C(B^0 \to \rho^0(770)K^0)$

 $A_{CP}(B^0 \to K^{*+}(892)\pi^-)$

 $A_{CP}(B^0 \rightarrow (K\pi)_0^{*+}\pi^-)$

 $C(B^0 \to f_2(1270)K^0)$

 $C(B^0 \to f_X(1300)K^0)$

 $C(B^0 \to \chi_C(0)K^0)$

DCPV

- $\begin{array}{c} 0.08^{+0.32}_{-0.18} \pm 0.03 \pm 0.04 \\ -0.05^{+0.28}_{-0.29} \pm 0.10 \pm 0.03 \end{array}$
- $-0.21 \pm 0.10 \pm 0.01 \pm 0.02$
 - $\begin{array}{c} 0.09 \pm 0.12 \pm 0.02 \pm 0.02 \\ 0.28 \substack{+0.35 \\ -0.60 \\ \pm 0.08 \pm 0.07 \\ \pm 0.08 \pm 0.07 \end{array}$
 - $0.13^{+0.51}_{-0.36}\pm0.04\pm0.09$

(-0.87,0.53) at 95% CL $-0.29 \pm 0.53 \pm 0.04 \pm 0.05$

 $-0.010 \pm 0.050 \pm 0.008 \pm 0.006$

All consistent with no CPV

Alejandro Perez, Seminar CPP

C(NR)

 $A_{CP}^{\text{incl.}}$

Fit Results: DCPV

Component DCPV $C(B^0 \to f_0(980)K^0)$ $0.08^{+0.32}_{-0.18} \pm 0.03 \pm 0.04$ $-0.05^{+0.28}_{-0.29} \pm 0.10 \pm 0.03$ $C(B^0 \rightarrow \rho^0(770)K^0)$ $A_{CP}(B^0 \to K^{*+}(892)\pi^-)$ $-0.21 \pm 0.10 \pm 0.01 \pm 0.02$ $A_{CP}(B^0 \to (K\pi)_0^{*+}\pi^-)$ $0.09 \pm 0.12 \pm 0.02 \pm 0.02$ $C(B^0 \to f_2(1270)K^0)$ $0.28^{+0.35}_{-0.60} \pm 0.08 \pm 0.07$ $0.13^{+0.51}_{-0.36}\pm 0.04\pm 0.09$ $C(B^0 \to f_X(1300)K^0)$ C(NR)(-0.87,0.53) at 95% CL $C(B^0 \to \chi_C(0)K^0)$ $-0.29 \pm 0.53 \pm 0.04 \pm 0.05$ $A_{CP}^{\text{incl.}}$ $-0.010 \pm 0.050 \pm 0.008 \pm 0.006$

All consistent with no CPV

 $B^0 \rightarrow K^*(892)\pi 2\sigma$ away from zero

Alejandro Perez,

Fit Results: interference pattern

Fit Results: interference pattern

Fit Results: Direct CPV

Fit Results: Fit Fractions (I)

Fit Results: Fit Fractions (II)

No Free Lunch Theorem: Rpl

Freedom in writing decay amplitudes in terms of weak and strong phases.

$$A = M_1 e^{+i\phi_1} e^{i\delta_1} + M_2 e^{+i\phi_2} e^{i\delta_2} ,$$

$$\bar{A} = M_1 e^{-i\phi_1} e^{i\delta_1} + M_2 e^{-i\phi_2} e^{i\delta_2} ,$$

Consider two basic sets of weak phases $\{\phi_1, \phi_2\}$ and $\{\phi_1, \varphi_2\}$ with $\phi_2 \neq \varphi_2$; if an algorithm allows us to write ϕ_2 as a function of physical observables then, owing to the functional similarity of equation (1) and (5), we would extract φ_2 with exactly the same function, leading to $\phi_2 = \varphi_2$, in contradiction with the assumptions; then, a priori, the weak phases in the parametrization of the decay amplitudes have no physical meaning, or cannot be extracted without hadronic input.

It is not possible to extract at the same time hadronic and CKM parameters without additional input

Botella and Silva PRD71:094008 (2005)

$B \rightarrow K^* \pi$ system: experimental inputs

Parameter	BABAR	Belle	CLEO	WA
$\mathcal{B}(K^{*+}\pi^{-})$	$12.6^{+2.7}_{-1.6}\pm0.9$	$8.4 \pm 1.1^{+1.0}_{-0.9}$	$16^{+6}_{-5}\pm 2$	10.3 ± 1.1
$\mathcal{B}(K^{*0}\pi^0)$	$3.6\pm0.7\pm0.4$	$0.4^{+1.9}_{-1.7} \pm 0.1$	$0.0^{+1.3+0.5}_{-0.0-0.0}$	2.4 ± 0.7
$\mathcal{B}(K^{*0}\pi^+)$	$10.8 \pm 0.6^{+1.1}_{-1.3}$	$9.7\pm0.6^{+0.8}_{-0.9}$	$7.6^{+3.5}_{-3.0}\pm1.6$	10.0 ± 0.8
$\mathcal{B}(K^{*+}\pi^0)$	$6.9\pm2.0\pm1.3$	-	$7.1^{+11.4}_{-7.1}\pm1.0$	6.9 ± 2.3
$\mathcal{A}_{CP}(K^{*+}\pi^{-})$	$-0.30 \pm 0.11 \pm 0.03$	_	$0.26^{+0.33+0.10}_{-0.34-0.08}$	-0.25 ± 0.11
$\mathcal{A}_{CP}(K^{*0}\pi^0)$	$-0.15 \pm 0.12 \pm 0.02$	-	_	-0.15 ± 0.12
$\mathcal{A}_{CP}(K^{*0}\pi^+)$	$0.032 \pm 0.052 \substack{+0.16 \\ -0.13}$	$-0.032\pm0.059^{+0.044}_{-0.033}$	_	$-0.020\substack{+0.067\\-0.062}$
$\mathcal{A}_{CP}(K^{*+}\pi^0)$	$0.04 \pm 0.29 \pm 0.05$	_	_	0.04 ± 0.29
$\Delta \phi(K^*\pi)$	$-58.3 \pm 32.7 \pm 9.3$ (global min.)	_	—	-58.3 ± 34.0
	$-176.6 \pm 28.8 \pm 9.3 \ (\Delta \chi^2 = 0.16)$	-	-	-176.6 ± 30.3
$\phi(K^{*0}\pi^0/K^{*+}\pi^-)$	$-21.2 \pm 20.6 \pm 8.0$	_	_	-21.2 ± 22.1
$\bar{\phi}(\bar{K}^{*0}\pi^0/K^{*-}\pi^+)$	$-5.2 \pm 20.6 \pm 17.8$	-	_	-5.2 ± 27.2

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

Scenario 1: prediction of unavailable phases

Input here:

- Experimental measurements
- CKM from global fit

(No assumption on any hadronic amplitude)

Scenario 1: exploring hadronic parameters Vuelatela

B→pK system: experimental inputs

Parameter	BABAR	Belle	CLEO	WA
$\mathcal{B}(K^+\rho^-)$	$8.0^{+0.8}_{-1.3}\pm0.6$	$15.1^{+3.4+2.4}_{-3.3-2.6}$	$16^{+8}_{-6} \pm 3$	$8.6^{+0.9}_{-1.1}$
$\mathcal{B}(K^0 ho^0)$	$4.9\pm0.8\pm0.9$	$6.1 \pm 1.0^{+1.1}_{-1.2}$	< 39	$5.4^{+0.9}_{-1.0}$
$\mathcal{B}(K^0 \rho^+)$	$8.0^{+1.4}_{-1.3}\pm0.6$	-	< 48	$8.0^{+1.5}_{-1.4}$
$\mathcal{B}(K^+ \rho^0)$	$3.56 \pm 0.45 \substack{+0.57 \\ -0.46}$	$3.89 \pm 0.47^{+0.43}_{-0.41}$	$8.4^{+4.0}_{-3.4}\pm1.8$	$3.81_{-0.46}^{+0.48}$
$\mathcal{A}_{CP}(K^+\rho^-)$	$0.14 \pm 0.06 \pm 0.01$	$0.22^{+0.22+0.06}_{-0.23-0.02}$	_	0.15 ± 0.06
$\mathcal{A}_{CP}(K^0 \rho^0)$	$-0.02 \pm 0.27 \pm 0.10$	$0.03^{+0.24}_{0.23}\pm 0.16$	_	0.01 ± 0.20
$\mathcal{A}_{CP}(K^0 \rho^+)$	$-0.12\pm 0.17\pm 0.02$	-	_	-0.12 ± 0.17
$\mathcal{A}_{CP}(K^+\rho^0)$	$0.44 \pm 0.10^{+0.06}_{-0.14}$	$0.405 \pm 0.101 \substack{+0.036 \\ -0.077}$	_	$0.419^{+0.081}_{-0.104}$
$2\beta_{\rm eff}(K^0\rho^0)$	$20.4 \pm 19.6 \pm 7.1$ (global min.)	_	_	20.4 ± 20.8
	$33.4 \pm 20.8 \pm 7.1 \ (\Delta \chi^2 = 0.16)$	-	—	33.4 ± 22.0

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

B→pK System: Physical Observables

$$A(B^{0} \rightarrow \rho^{+}K^{-}) = V_{us}V_{ub}^{*}t^{+-} + V_{ts}V_{tb}^{*}p^{+-}$$

$$A(B^{+} \rightarrow \rho^{0}K^{+}) = V_{us}V_{ub}^{*}n^{0+} + V_{ts}V_{tb}^{*}(-p^{+-}+p_{EW}^{0})$$

$$\sqrt{2}A(B^{+} \rightarrow \rho^{+}K^{0}) = V_{us}V_{ub}^{*}(t^{+-}+t^{00}_{c}-n^{0+}) + V_{ts}V_{tb}^{*}(p^{+-}-p_{EW}^{0}+p_{EW}^{0})$$

$$\sqrt{2}A(B^{0} \rightarrow \rho^{0}K^{0}) = V_{us}V_{ub}^{*}t^{00}_{c} + V_{ts}V_{tb}^{*}(-p^{+-}+p_{EW}^{0})$$

$$11 \text{ OCD and 2 CKM = 13 up kpoweps}$$

Same Isospin relations as $K^*\pi$

Observables:

- 4 BFs and 4 A_{CP} from DP and Q2B analyses.

- 1 phase differences:

* $2\beta_{eff} = arg((q/p)\overline{A}(\overline{B^0} \rightarrow \rho^0\overline{K^0})A^*(B^0 \rightarrow \rho^0K^0))$ from $B^0 \rightarrow K^0_{s}\pi^+\pi^-$

A total of 9 observables

Under constraint system

B→pK System: Physical Observables

A total of 9 observables

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

ρK+K^{*}π system: Physical Observables

Global phase between $K^*\pi$ and ρK now accessible:

- $K^*\pi$: 13 parameters
- ρK: 13 parameters
- global phase: 1 parameter

A total of = 27 unknowns

Observables:

- $K^*\pi$ only: 13 observables
- ρK only: 9 observables
- 7 phase differences from: interference between $K^{*}\pi$ and ρK resonances contributing to the same DP
 - $-\phi = \arg(\mathsf{A}(\mathsf{B}^{0} \rightarrow \rho^{0}\mathsf{K}^{0})\mathsf{A}^{*}(\mathsf{B}^{0} \rightarrow \mathsf{K}^{*+}\pi^{-})) \text{ from } \mathsf{B}^{0} \rightarrow \mathsf{K}^{0}{}_{s}\pi^{+}\pi^{-}$
 - $\phi = \arg(A(B^0 \rightarrow \rho^- K^+)A^*(B^0 \rightarrow K^{*+}\pi^-))$ and CP conjugated from $B^0 \rightarrow K^+ \pi^- \pi^0$
 - $\phi = \arg(A(B^0 \rightarrow \rho^0 K^+)A^*(B^0 \rightarrow K^{*0}\pi^+))$ and CP conjugated from $B^+ \rightarrow K^+\pi^-\pi^+$
 - $\phi = \arg(A(B^0 \rightarrow \rho^+ K^0)A^*(B^0 \rightarrow K^{*+}\pi^0))$ and CP conjugated from $B^* \rightarrow K^0 \pi^+ \pi^0$

A total of 29 experimentally independent observables

ρK+K^{*}π system: Physical Observables

Global phase between $K^*\pi$ and ρK now accessible:

- K^{*}π: 13 parameters
- ρK: 13 parameters
- global phase: 1 parameter

A total of = 27 unknowns

Many redundant observables

- ρ<mark>K only</mark>:

- K^{*}π only: 13

- 7 phase differences from: interference between $K^{*}\pi$ and ρK resonances contributing to the same DP
 - $-\phi = \arg(\mathsf{A}(\mathsf{B}^{0} \rightarrow \rho^{0}\mathsf{K}^{0})\mathsf{A}^{*}(\mathsf{B}^{0} \rightarrow \mathsf{K}^{*+}\pi^{-})) \text{ from } \mathsf{B}^{0} \rightarrow \mathsf{K}^{0}{}_{s}\pi^{+}\pi^{-}$
 - $\phi = \arg(A(B^0 \rightarrow \rho^- K^+)A^*(B^0 \rightarrow K^{*+}\pi^-))$ and CP conjugated from $B^0 \rightarrow K^+ \pi^- \pi^0$
 - $\phi = \arg(A(B^0 \rightarrow \rho^0 K^+)A^*(B^0 \rightarrow K^{*0}\pi^+))$ and CP conjugated from $B^+ \rightarrow K^+\pi^-\pi^+$
 - $\phi = \arg(A(B^0 \rightarrow \rho^+ K^0)A^*(B^0 \rightarrow K^{*+}\pi^0))$ and CP conjugated from $B^* \rightarrow K^0 \pi^+ \pi^0$

A total of 29 experimentally independent observables

ρK+K*π system: Extrapolation exercise

Alejandro Perez,

B→pK system: exploring hadronic parameters

Due to Significance in K⁺ρ⁻ Direct CPV

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

ρK+K*π system: experimental inputs

Parameter	BABAR	Belle	CLEO	WA
$\phi(K^0 \rho^0 / K^{*+} \pi^-)$	$-174.3 \pm 28.0 \pm 15.4$ (global min.)	_	_	-174.3 ± 32.0
	$173.7 \pm 29.8 \pm 15.4 \ (\Delta \chi^2 = 0.16)$	_	_	173.7 ± 33.5
$\phi(K^+ \rho^- / K^{*+} \pi^-)$	$-21.2 \pm 21.6 \pm 17.8$	_	_	-21.2 ± 28.0
$\bar{\phi}(K^{-}\rho^{+}/K^{*-}\pi^{+})$	$-42.4 \pm 20.6 \pm 8.0$	_	_	-42.4 ± 22.1
$\phi(K^+ \rho^0 / K^{*0} \pi^+)$	$29.0 \pm 16.6 \pm 10.0$	_	_	29.0 ± 19.4
$\bar{\phi}(K^-\rho^0/\bar{K}^{*0}\pi^-)$	$-26.1 \pm 15.5 \pm 6.8$	_	_	-26.1 ± 16.9

ρ K+K*π system: exploring $\phi_{3/2}$

- We use two independent $\phi_{3/2}$:

$$\begin{split} \mathsf{R'}_{3/2}(\mathsf{K}^*\pi) &= (\mathsf{q}/\mathsf{p}) \; \frac{\mathsf{A}(\overline{\mathsf{B}^0} \to \mathsf{K}^{*-}\pi^+) + \sqrt{2}.\mathsf{A}(\overline{\mathsf{B}^0} \to \overline{\mathsf{K}^{*0}}\pi^0)}{\mathsf{A}(\mathsf{B}^0 \to \mathsf{K}^{*+}\pi^-) + \sqrt{2}.\mathsf{A}(\mathsf{B}^0 \to \mathsf{K}^{*0}\pi^0)} \; = \exp(-2i\phi_{3/2}(\mathsf{K}^*\pi)) \\ \mathsf{R'}_{3/2}(\rho\,\mathsf{K}) \; &= (\mathsf{q}/\mathsf{p}) \frac{\mathsf{A}(\overline{\mathsf{B}^0} \to \mathsf{K}^-\rho^+) + \sqrt{2}.\mathsf{A}(\overline{\mathsf{B}^0} \to \overline{\mathsf{K}^0}\rho^0)}{\mathsf{A}(\mathsf{B}^0 \to \mathsf{K}^+\rho^-) + \sqrt{2}.\mathsf{A}(\mathsf{B}^0 \to \mathsf{K}^0\rho^0)} \; = \exp(-2i\phi_{3/2}(\rho\,\mathsf{K})) \end{split}$$

- both are independent functions of observables
- both can provide constraints on (ρ,η) with additional theoretical input.

Ex.: $P_{EW} = 0 \rightarrow \phi_{3/2} = \alpha$

- With current inputs only can set a marginal constraint on $\phi_{3/2}$

ρ K+K*π system: exploring $\phi_{3/2}$ (K*π)

Error for each solution improves by only adding pK system
 Adding the additional phases will further improve

Alejandro Perez, Seminar CPPM Marseille Feb. 22nd 2010

ρ K+K*π system: exploring $\phi_{3/2}$ (ρ K)

 $\phi_{3/2}(\rho K)$ fixed with information from interference of different K^{*} π and ρK resonances.

Limited constraint with current experimental inputs and errors The $f_{x}(1300)$

 $B^+ \rightarrow K^+ \pi^- \pi^+$

Recoil Analysis Technique (I)

Most of the searches for rare B decays performed by exploiting the Recoil Technique:

additional (charged+neutral)

particles + missing energy

Recoil technique at B-Factories:

- search for rare decays (10⁻⁵) with missing energy (Not possible at hadronic machines)
- Several benchmark channels at SuperB: $B \rightarrow \tau \nu$, $B \rightarrow K^{(*)} \nu \nu$, ...

Recoil Analysis Technique (II)

- Aim: collect as many as possible fully/partially reconstructed B mesons in order to study the properties of the recoil
- 1st step: reconstruction D→hadrons

2nd step:

Hadronic Breco:

- Use D as a seed and add X to have system compatible with B hypothesis (X = nπ[±] mK[±] rK⁰_S qπ⁰ and n+m+r+q<6)
- Sample of 1100 B decay modes with different purities
- Kinematics constrained completely (
- Low reconstruction efficiencies

Semi-Leptonic Breco:

- Use D as a seed and a lepton to form a DI pair (I = e[±],µ[±])
- Sample of 14 B decay modes
- Kinematics is unconstrained due to neutrino
- Higher reconstruction efficiencies (~2.0%)

(~0.4%)

 \bigcirc

(::)