Reconstruction of particles' trajectories for hadrontherapy using the FOOT experiment data

Juan FRANCO VILLAMIZAR under Ch. FINCK supervision

Summary.

- Introduction.
- Foot experiment.
 - FOOT experiment Set Up.
 - FOOT experiment reconstruction.
- Propagator.
 - Physical and Numerical fundamentals.
 - Propagator.
- Results.
- Conclusion.
- Bibliography.

Introduction.

Introduction.

- Motivation.
 - Cancer in France.
 - Leading death cause: accounting 30%
 - Treatments.
 - Surgery.
 - Chemotherapy.
 - New therapies.
 - Brachytherapy.
 - Immunotherapy.
 - Etc...
 - Radiotherapy.
 - X-ray.
 - Hadrontherapy.
 - Ballistic advantages.
 - Fragment's dose deposit.

Depth [mm]

FOOT experiment.

FOOT experimental setup.

Faculté

de physique et ingénierie Université de Strasbourg **ĬPHC**

Detectors involved.

- Pre-target region. Ο
 - Start Counter (SC).
 - Beam-Monitor (BM).
- Interacting and tracking region. Ο
 - Permanent Magnets.
 - Vertex (VTX).
 - Inner Tracker (IT).
 - **Microstrip Silicon Detector** (MSD).
- Downstream region. Ο
 - Time-of-Flight Wall (TW).
 - Calorimeter (Cal).
- Graphite Target.
- Beam Characteristics.
 - 12C at $E_{\text{beam}} = 0.2 \text{ GeV/u}$ Ο

CNAO24 configuration. Image taken from:

https://indico.in2p3.fr/event/23982/contributions/94968/attachments/65042/90558/GDRdet interdisciplinar 22062021.pdf

Global reconstruction. Image taken from Ch. FINCK propagator presentation.

Propagator.

Propagator: Physical and Numerical fundamentals.

- Bethe-Bloch implementation.
 - Crossing through various materials.

$$\left\langle -\frac{dE}{dx}\right\rangle = K \frac{z^2}{\beta^2} \frac{Z\rho}{A} \left[\ln\left(\frac{2m_e c^2 \beta^2 \gamma}{I}\right) - \beta^2 \right]$$

$$\Delta E = \left| \frac{dE}{dx} \right| \Delta x$$

- Lorentz Force.
 - Relativistic Lorentz force.
 - Curvature depend on charge-momentum ratio q/p.

$$\vec{F} = q\vec{v} \wedge \vec{B}$$
 $rac{d\vec{eta}}{dt} = rac{q|\vec{eta}|}{p} \vec{eta} \wedge \vec{B}$ (1)

Propagator: Physical and Numerical fundamentals.

Runge-Kutta Methods.

7

• f is the Lorentz force described in Eq. 1

• Runge-Kutta-Nyström.

$$\begin{split} \vec{K}_{1} &= \vec{f}(\vec{\beta}, \vec{x}) \\ \vec{K}_{2} &= \vec{f} \left(\vec{\beta} + \frac{1}{2} \vec{K}_{1}, \vec{x} + \frac{1}{2} \vec{\beta} h + \frac{1}{2} \vec{K}_{1} h^{2} \right) \\ \vec{K}_{3} &= \vec{f} \left(\vec{\beta} + \frac{3}{4} \vec{K}_{2}, \vec{x} + \frac{3}{4} \vec{\beta} h + \frac{3}{4} \vec{K}_{2} h^{2} \right) \\ \vec{K}_{4} &= \vec{f} \left(\vec{\beta} + \frac{2}{9} \vec{K}_{1} + \frac{1}{3} \vec{K}_{2} + \frac{4}{9} \vec{K}_{3}, \ \vec{x} + \vec{\beta} h + \left(\frac{2}{9} \vec{K}_{1} + \frac{1}{3} \vec{K}_{2} + \frac{4}{9} \vec{K}_{3} \right) h^{2} \right) \\ \vec{\beta}_{\text{new}} &= \vec{\beta} + h \left(\frac{2}{9} \vec{K}_{1} + \frac{1}{3} \vec{K}_{2} + \frac{4}{9} \vec{K}_{3} \right) \\ \vec{x}_{\text{new}} &= \vec{x} + \vec{\beta} h + \left(\frac{7}{24} \vec{K}_{1} + \frac{1}{4} \vec{K}_{2} + \frac{1}{3} \vec{K}_{3} + \frac{1}{8} \vec{K}_{4} \right) h^{2} \\ \vec{\beta}' &= \vec{\beta} h + \left(\frac{7}{24} \vec{K}_{1} + \frac{1}{4} \vec{K}_{2} + \frac{1}{3} \vec{K}_{3} + \frac{1}{8} \vec{K}_{4} \right) h^{2} \\ \epsilon &= \left\| \vec{\beta}' - \vec{\beta}_{\text{new}} \right\| \end{split}$$

• Runge-Kutta 4(5)

$$\begin{split} & \kappa_{1} = f(\beta, x) \\ & \vec{K}_{2} = \vec{f} \left(\vec{\beta} + \frac{1}{5} h \vec{K}_{1}, \vec{x} + \frac{1}{5} h \beta \right) \\ & \vec{K}_{3} = \vec{f} \left(\beta + h \left(\frac{3}{40} \vec{K}_{1} + \frac{9}{40} \vec{K}_{2} \right), \vec{x} + h \frac{3}{10} \vec{\beta} \right) \\ & \vec{K}_{4} = \vec{f} \left(\vec{\beta} + h \left(\frac{3}{10} \vec{K}_{1} - \frac{9}{10} \vec{K}_{2} + \frac{6}{5} \vec{K}_{3} \right), \vec{x} + h \frac{3}{5} \vec{\beta} \right) \\ & \vec{K}_{5} = \vec{f} \left(\vec{\beta} + h \left(-\frac{11}{54} \vec{K}_{1} + \frac{5}{2} \vec{K}_{2} - \frac{70}{27} \vec{K}_{3} + \frac{35}{27} \right), \vec{x} + h \vec{\beta} \right) \\ & \vec{K}_{6} = \vec{f} \left(\vec{\beta} + h \left(\frac{1631}{55296} \vec{K}_{1} + \frac{175}{512} \vec{K}_{2} + \frac{575}{13824} \vec{K}_{3} + \frac{44275}{110592} \vec{K}_{4} + \frac{253}{4096} \vec{K}_{5} \right), \vec{x} + h \frac{7}{8} \vec{\beta} \right) \end{split}$$

$$\begin{aligned} \vec{\beta_4} &= \vec{\beta} + h\left(\frac{25}{216}\vec{K_1} + \frac{1408}{2565}\vec{K_3} + \frac{2197}{4104}\vec{K_4} - \frac{1}{5}\vec{K_5}\right) \\ \vec{\beta_5} &= b\vec{eta} + h\left(\frac{16}{135}\vec{K_1} + \frac{6656}{12825}\vec{K_3} + \frac{28561}{56420}\vec{K_4} - \frac{9}{50}\vec{K_5} + \frac{2}{55}\vec{K_6}\right) \\ \epsilon &= \left\|\vec{\beta_4} - \vec{\beta_5}\right\| \\ \vec{x_{new}} &= \vec{x} + h\vec{\beta} \end{aligned}$$

Propagator.

- Based on RK and Energy loss.
- MC-based observable.
 - All information is known (A, Z, p).
- Reconstructed deducted observable.
 - Deduce A-Z (cf Slide 7.)
 - Momentum.

$$p = \sqrt{E^2 + 2mAE}$$

- Propagator.
 - 3rd pixel sensor in VTX detector.
 - Clusters association.
 - Residuals. Res = $\vec{Pos}_{Out} \vec{Pos}_{Extrpl}$

Global reconstruction by detector planes. Image taken from Ch. FINCK propagator presentation.

Results.

Results: VTX-IT propagator.

MC-based hits.

- X-coordinate positional residuals.
- Protons, Alpha particles and Carbon ions.
- Residuals are centered on 0.
 - \circ Residuals mean $\mu \simeq$ -11 , 0.1 and -4.3 $\mu m.$
- \rightarrow Model seems to work.

- X-coordinate momentum residuals.
- Protons, Alpha Particles and Carbon ions.
- Residuals are centered on 0.
 - Residuals mean is about few MeV/c
 - $\mu \simeq 0.013$, 0.37 and 1.245 MeV/c.

Results: VTX-IT propagator.

Data-Like mass assumption.

- X-coordinate positional residuals.
- All the species.
- Residuals centered around 0.
 - Scattering processes in protons.
 - Less scattering for heavier q/p ratio.
- Few dozen µm deviation.
 - Good initial propagation model.

Results: VTX-IT-MSD-TW.

Faculté de physique et ingénierie Université de Strasbourg

-0.4176

1853 / 135

-0.08288

365.5 / 107

∆Pos cm

0.8

222.7 ± 2.5

1.031

MC-based hits.

- Residual mean value deviation under cm magnitude order. (For Z=6: μ = -0.51 cm)
- Scattering.
 - Lighter species, mean value is closer to 0, but Ο having a larger distribution.
- Time-of-Flight Resolution.

$$\sigma_{TW} = \frac{2}{\sqrt{12}} \approx 0.56 \,\mathrm{cm}$$

Ζ	Mean (μ) [cm]	Std. Dev. (σ) [cm]
1	-0.266	1.988
2	-0.489 ± 0.003	1.109 ± 0.002
3	-0.388 ± 0.008	0.859 ± 0.006
4	-0.40 ± 0.01	0.783 ± 0.008
5	-0.13 ± 0.01	0.731 ± 0.007
6	-0.51 ± 0.01	0.766 ± 0.009

∆Pos cm

∆Pos cm

Results: VTX-IT-MSD-TW.

Data-Like mass assumption.

- TW reconstruction is just few deviated than MC-based. (For Z=6: μ=-1.15 cm)
- Not enough data to conclude satisfactory for Z=3, Z=4 and Z=5.
- Mass and momentum estimation \rightarrow Remains a good estimation.
- Biased ?

Z	Mean (μ) [cm]	Std. Dev. (σ) [cm]
1	-0.291	1.707
2	-0.699 ± 0.005	1.082 ± 0.004
3	-0.24 ± 0.02	1.09 ± 0.01
4	-1.87 ± 0.03	0.90 ± 0.03
5	-0.39 ± 0.03	0.98 ± 0.02
6	-1.15 ± 0.02	0.76 ± 0.01

Conclusion.

Conclusion.

- Simple propagator model works correctly (Assess with MC data).
- Model has a good performance to propagate to the TW detector, magnitude order of centimeters (With real-like data) \rightarrow Propagation along ~170cm.
- Fast propagator to check displacement of detectors.
- Implementation to go further.
 - Diffusion consideration on cluster's association.
 - Taking into account residuals alignment.

Bibliography.

[1] Ch Finck. Cross-section measurements for hadrontherapy with the foot experiment.

[2] FOOT collaboration. the foot (fragmentation of target) experiment, 2025.

[3] Marco Durante and Jay S Loeffler. Charged particles in radiation oncology. Nature reviews Clinical oncology, 7(1):37–43, 2010.

[4] Jérôme Baudot, Auguste Besson, Gilles Claus, Wojciech Dulinski, Andrei Dorokhov, Mathieu Goffe, Christine Hu-Guo, Levente Molnar, Xitzel Sanchez-Castro, Serhiy Senyukov, et al. Optimization of cmos pixel sensors for high performance vertexing and tracking. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 732:480–483, 2013.

[5] Giuseppe Battistoni, Marco Toppi, and Vincenzo Patera. Measuring the impact of nuclear interaction in particle therapy and in radio protection in space: the foot experiment. Frontiers in Physics, 8:568242, 2021.

[6] Y Dong, SM Valle, G Battistoni, I Mattei, C Finck, V Patera, A Alexandrov, B Alpat, G Ambrosi, S Argirò, et al. The fluka monte carlo simulation of the magnetic spectrometer of the foot experiment. Computer Physics Communications, 307:109398, 2025.

[7] Marco Papa. Agile production in software projects for mission critical systems: wizard based product line lifecycle management carried out at national center for oncological hadrontherapy. 2020.

 PCi
 Faculté

 de physique et ingénierie
 Université de Strasbourg

[8] Francesco Vascelli. Study of the impact of out-of-target fragmentation in cross section measurements with the foot experiment.

[9] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.

[10] A Alexandrova, G Ambrosij S Argiròb, G Battistonic, N Belcarid, S Biondie, MG Bisognid, G Brunie, S Brambillac, N Camarlinghid, P Cerellob, et al. Foot conceptual design report. Simulation, 52:80, 2017.

[11] Sea Agostinelli, John Allison, K al Amako, John Apostolakis, Henrique Araujo, Pedro Arce, Makoto Asai, D Axen, Swagato Banerjee, GJNI Barrand, et al. Geant4—a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250–303, 2003.

[12] J Dudouet, D Juliani, M Labalme, D Cussol, JC Angélique, B Braunn, J Colin, Ch Finck, JM Fontbonne, H Guérin, et al. Double-differential fragmentation cross-section measurements of 95 mev/nucleon 12 c beams on thin targets for hadron therapy. Physical Review C—Nuclear Physics, 88(2):024606, 2013.

[13] I.Mandre. Non-relativistic charged particle motion in the electric and magnetic fields using the runge-kutta-nyström method, sep 2007.

[14] Jan Myrheim and Lars Bugge. A fast runge-kutta method for fitting tracks in a magnetic field. Nuclear Instruments and Methods, 160(1):43–48, 1979.

Appendices.

Appendix: Energy Loss.

 Energy Loss Calculated theoretically passing through the Graphite Layer with I=78 eV and ρ ≈ 1.99 g/cm^3.

Thickness	Species	$\langle \Delta E \rangle$ in MeV
	Z = 1	2.003
	$\mathrm{Z}=2$	8.012
x=0.25cm	$\mathrm{Z}=3$	18.028
	$\mathrm{Z}=4$	32.049
	$\mathrm{Z}=5$	50.077
x=0.5cm	Z = 6	144.222

$$E_c = E_{beam} \times A - \Delta E$$
 with $E_{beam} = 0.2 GeV/u$

Appendix: Results VTX-IT.

MC-based hits.

Z	Mean (μ) $[\mu m]$	Std. Dev. (σ) [μ m]
1	-11 ± 3	74 ± 6
2	0.1 ± 2	62 ± 2
6	-4.3 ± 0.3	47.0 ± 0.3

• X-coordinate table positional residual from MC-based hit. For species Z=1, Z=2 and Z=6.

Z	Mean (μ) [MeV/c]	Std. Dev. (σ) [MeV/c]
1	0.013 ± 0.04	1.09 ± 0.04
2	0.37 ± 0.07	2.05 ± 0.07
6	1.245 ± 3.8	6.21 ± 0.03

• X-coordinate table momentum residuals from MC-based hit. For species Z=1, Z=2 and Z=6.

Appendix: Results VTX-IT.

de **physique** et **ingénierie** Université de Strasbourg

TW-reconstructed hits.

Z	Mean (μ) $[\mu m]$	Std. Dev. (σ) [µm]
1	64 ± 3	362 ± 7
2	23 ± 1	275 ± 1
3	37 ± 3	209 ± 3
4	80 ± 3	193 ± 3
5	132 ± 2	135 ± 1
6	180 ± 2	156 ± 2

• X-coordinate table positional residual from TW-reconstructed hit. For species all the species.

Z	Mean (μ) $[\mu m]$	Std. Dev. (σ) [μ m]
1	194 ± 2	126 ± 2
2	223 ± 1	151 ± 1
3	0.04 ± 1.8	110 ± 2
4	0.21 ± 1.2	101 ± 1
5	3 ± 1	96 ± 1
6	0.65 ± 1.3	111 ± 1

• Y-coordinate table positional residuals from TW-reconstructed hit. For species all the species.

Appendix: Results VTX-IT. Y-coordinate

TW-reconstructed hits.

- Fluka simulation.
- Y-coordinate positional residuals.
- All the species.
- Few μm deviation.

Results: IT-MSD propagator.

MC-based hits.

- X-coordinate residuals
- All the species
- Higher deviation than VTX-IT
 - Few hundred deviation for lower species.
- Problematic propagator compared to the VTX-IT?

94.45 ± 2.37

-0.03015 ±0.00120

APos cm

0.0656±0.0013

Constant

Mean

Sigma

100

180

160 F

140

Z	Mean (μ) $[\mu m]$	Std. Dev. (σ) [μ m]
1	381 ± 12	956 ± 24
2	-453 ± 5	899 ± 7
3	-407 ± 10	834 ± 12
4	-302 ± 12	656 ± 13
5	-69 ± 6	453 ± 6
6	-22 ± 7	504 ± 6

147.9±2.8

Mean -0.002244 ± 0.000739

Sigma 0.05041 ± 0.00060

Constant

Appendix: Results IT-MSD. MC-based hits.

Z	Mean (μ) $[\mu m]$	Std. Dev. (σ) [µm]
1	381 ± 12	956 ± 24
2	-453 ± 5	899 ± 7
3	-407 ± 10	834 ± 12
4	-302 ± 12	656 ± 13
5	-69 ± 6	453 ± 6
6	-22 ± 7	504 ± 6

• X-coordinate table positional residual from MC-based hit. For species all the species.

Z	Mean (μ) $[\mu m]$	Std. Dev. (σ) [μ m]
1	91 ± 4	450 ± 4
2	73 ± 3	350 ± 3
3	70 ± 6	305 ± 5
4	89 ± 9	307 ± 8
5	80 ± 6	278 ± 5
6	65 ± 7	323 ± 6

• Y-coordinate table positional residuals from MC-based hit. For species all the species.

Appendix: Results VTX-IT-MSD-TW MC-based hits. <u>TW-reconstructed hits.</u>

Z	Mean (μ) [cm]	Std. Dev. (σ) [cm]
1	-0.266	1.988
2	-0.489 ± 0.003	1.109 ± 0.002
3	-0.388 ± 0.008	0.859 ± 0.006
4	-0.40 ± 0.01	0.783 ± 0.008
5	-0.13 ± 0.01	0.731 ± 0.007
6	-0.51 ± 0.01	0.766 ± 0.009

• X-coordinate table positional residual from MC-based hit. For species all the species.

Z	Mean (μ) [cm]	Std. Dev. (σ) [cm]
1	-0.291	1.707
2	-0.699 ± 0.005	1.082 ± 0.004
3	-0.24 ± 0.02	1.09 ± 0.01
4	-1.87 ± 0.03	0.90 ± 0.03
5	-0.39 ± 0.03	0.98 ± 0.02
6	-1.15 ± 0.02	0.76 ± 0.01

 X-coordinate table positional residuals from TW-reconstructed hit. For species all the species.

Appendix: Results VTX-IT-MSD-TW_Plot

 X-coordinate positional residuals from TW-reconstructed hit. For species all the species.

TW-reconstructed hits.

