

Structure of heavy nuclei near ²¹⁸U

Nathan MEYER

Under the supervision of Araceli Lopez-Martens

Outline

- I. Physics Motivations
- II. Experimental setup
- III. Results
- IV. Conclusion and perspectives

Experimental setup

GABRIELA detection system Support frame Copper cooling frame -Degrader foil

16-strip Si stop detector

Position-sensitive Si-detector array (recoils,alpha,fission fragments and electrons) Recoil flight path 4-strip Si tunnel detector TOF Recoils Ge-detectors with BGO-shields

GABRIELA detection system Support frame Copper cooling frame -Degrader foil Position-sensitive Si-detector array (recoils,alpha,fission fragments and electrons) Recoil flight path 4-strip Si tunnel detector 16-strip Si stop detector TOF • TOF \rightarrow velocity Recoils Ge-detectors with BGO-shields

GABRIELA detection system Support frame Copper cooling frame -Degrader foil **Position-sensitive** Recoil flight path Si-detector array (recoils,alpha,fission fragments and electrons) 4-strip Si tunnel detector 16-strip Si stop detector TOF TOF \rightarrow velocity ٠ Si stop detector \rightarrow recoils and alpha particle energies ٠ Recoils Si tunnel detector \rightarrow escaping charged particles energies ٠ Ge-detectors

.

with BGO-shields

Position in the stop detector

 $E_{\alpha} + T_{1/2}$ + literature =

Identification of the most intense evaporation residues

Transmission efficiency of VASSILISSA and excitation energy of 221Pa

$\varepsilon = \frac{\textit{Number of detected nuclei}}{\textit{Number of produced nuclei}}$

 $\varepsilon = 3.4^{+1.0}_{-0.4}\%$

Recoils-photons correlations

Which nuclei do these photons belong to ?

Alpha of the ²¹⁶Th ground state

 $T_{1/2} = 128 \pm 8 \ \mu s \
ightarrow$ Isomeric state of 216 Th in the literature

072501 (2001).

- Internal conversion electrons allow us to directly infer the type of transition from which they originate
- $\alpha = \frac{Number \ of \ electrons}{Number \ of \ photons} \rightarrow BRICC \ conversion \ coefficient \ calculator$

Type of transition	Ехр	E1	E2	E3	M1
$\alpha(E_{\gamma}=199 \ keV)$	0.993 <u>+</u> 0.108	0.095	0.67	7.44	2.64

Isomeric state of ²¹⁷Th: $T_{1/2} = 8.20 \pm 0.60 \ \mu s \neq T_{1/2} = 67^{+17}_{-11} \ \mu s \rightarrow$ In the literature

More transitions than in the literature

P. Kuusiniemi, et al., Eur. Phys. J. A 25, 397–404 (2005).

• $\frac{N_{309 \ keV}}{N_{673 \ keV}} = 0.40 \pm 0.03 \neq 1$

• The 309 keV transition isn't an E2 but an E3 \rightarrow longer half-life expected

What about 217Pa?

F.P. Heßberger, et al., Eur. Phys. J. A 15, 335–342 (2002).

What about 217Pa?

F.P. Heßberger, et al., Eur. Phys. J. A 15, 335–342 (2002).

What remains to be done during the last month of internship

Conclusion

Conclusion

Perspectives

Physics department of the Jyväskylä university

