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The Standard Model is a quantum field theory describing the known fundamental
particles and their interactions:
• built from strong symmetry principles
• tested to high precision but with persistent open questions, among them:

Dark matter Strong CP problem
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The Standard Model is a quantum field theory describing the known fundamental
particles and their interactions:
• built from strong symmetry principles
• tested to high precision but with persistent open questions, among them:

Dark matter Strong CP problem

1 What is the axion?

2 What are the so-called axion cosmic strings?

3 What is their possible cosmological role?

4 How can they emerge from a higher-dimensional framework?
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Nature violates CP symmetry significantly in weak interactions but there is an-
other contribution:
• Yukawas from the weak sector: θy = arg(det(Mq))
• topological term in the strong sector: ∼ θ G a

µνG̃
aµν , a = 1...8

physical parameter: θ̄ = θ + θy
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Nature violates CP symmetry significantly in weak interactions but there is an-
other contribution:
• Yukawas from the weak sector: θy = arg(det(Mq))
• topological term in the strong sector: ∼ θ G a

µνG̃
aµν , a = 1...8

physical parameter: θ̄ = θ + θy︸ ︷︷ ︸
experimentally θ̄ < 10−10

→ Strong CP problem: θ̄ comes from both strong and weak interactions!
— Why is θ̄ so small in the absence of any symmetry enforcing it?

→ θ̄ = 0 should come from symmetry considerations
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→ introduce a new global ����U(1)PQ symmetry: ψ → e iαγ
5
ψ, ϕ→ e iαϕ

→ introduce a complex scalar field ϕ(x) charged under U(1)PQ

ϕ(x) =
fa + ρ(x)√

2
e ia(x)/fa

ρ(x): radial mode, a(x): angular mode, fa: symmetry breaking scale
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→ introduce a new global ����U(1)PQ symmetry: ψ → e iαγ
5
ψ, ϕ→ e iαϕ

→ introduce a complex scalar field ϕ(x) charged under U(1)PQ

ϕ(x) =
fa + ρ(x)√

2
e ia(x)/fa

ρ(x): radial mode, a(x): angular mode, fa: symmetry breaking scale

QCD dynamics generate an effective potential for a(x):

Veff ∝ cos
(
θ̄ + ξ

a

fa

)
, with minimum for θ̄ = −ξ ⟨a⟩

fa
← axion

→ the axion dynamically resolves the strong CP problem!
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As the early universe expanded and cooled, it underwent phase transitions

T ∼ fa =⇒
(((((((((((
Peccei–Quinn symmetry

→ gave birth to the axion field which began to settle into its vacuum state...
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As the early universe expanded and cooled, it underwent phase transitions

T ∼ fa =⇒
(((((((((((
Peccei–Quinn symmetry

→ gave birth to the axion field which began to settle into its vacuum state...

...which consists of degenerate vacua!

Figure: Simulation of the phase map
before PQ phase transition...

−π

a

π

Figure: ...and simulation of the phase map
after PQ phase transition
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Topological defects appear in regions where mismatches in the phase cannot be
smoothed out. What is the appropriate probe?

0π

π/2

3π/2

Figure: Phase values in the vacuum state

Cosmic strings appear when there are
non-contractible loops

• formally, this is homotopy theory

• related to symmetry breaking

. . .
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Topological defects appear in regions where mismatches in the phase cannot be
smoothed out. What is the appropriate probe?

0π

π/2

3π/2

Figure: Phase values in the vacuum state

Cosmic strings appear when there are
non-contractible loops

• formally, this is homotopy theory

• related to symmetry breaking

. . .

→ protected by a topological charge

1
2πfa

∮
L

∇a · dℓ⃗ = n, n ∈ Z (winding number)
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Topological defects appear in regions where mismatches in the phase cannot be
smoothed out. What is the appropriate probe?

Figure: Cosmic string in 3D space

Cosmic strings appear when there are
non-contractible loops

• formally, this is homotopy theory

• related to symmetry breaking

. . .

→ protected by a topological charge

1
2πfa

∮
L

∇a · dℓ⃗ = n, n ∈ Z (winding number)
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These strings form a complex network with its own dynamics and interactions:

Figure: Simulation in a slice of universe of the evolution of a string network
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These strings form a complex network with its own dynamics and interactions:

Figure: Simulation in a slice of universe of the evolution of a string network

→ string interactions
→ decay
→ emission of axions

.

We can interpret the relic abundance
of axions as a dark matter candidate

fa ∼ 109−10 GeV

.
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Investigate axion cosmic strings emerging from extra-dimensional defects

Existence of extra space dimensions beyond the familiar three?
To escape experimental detection, they could be:
• Compact: curled up into tiny circles
• Large but hidden: with Standard Model confined to a 4D surface
• Warped: certain regions are effectively hidden from low-energy physics
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Investigate axion cosmic strings emerging from extra-dimensional defects

Existence of extra space dimensions beyond the familiar three?
To escape experimental detection, they could be:
• Compact: curled up into tiny circles
• Large but hidden: with Standard Model confined to a 4D surface
• Warped: certain regions are effectively hidden from low-energy physics

Example: Kaluza-Klein model for compact 5th dimension

S1

M4

Figure: Four-dimensional spacetime with
one compact extra dimension
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The model we consider is a spontaneously broken SU(2) gauge theory, including
a gauge field Aa

M coupled to a real scalar field ϕa valued in su(2). This lives on
a 5D spacetime compactified as M4 × S1:

SO(1, 4) − compactification→ SO(1, 3)︸ ︷︷ ︸
Lorentz in 4D

M = [0, 3] ∪ {5}, a = 1, 2, 3 (Lie algebra index), AM = Aa
Mta (generators)

Simon Beaudoin 8/19

Extra-dimensional axion

Simon Beaudoin 8/19



The model we consider is a spontaneously broken SU(2) gauge theory, including
a gauge field Aa

M coupled to a real scalar field ϕa valued in su(2). This lives on
a 5D spacetime compactified as M4 × S1:

SO(1, 4) − compactification→ SO(1, 3)︸ ︷︷ ︸
Lorentz in 4D

In 5D, fields have additional dimensions in which they can live: A0

A⃗
A5

 }
4D gauge field (4 components)

←− behaves like a 4D scalar

5th component of a higher-dimensional gauge field = candidate for the axion

M = [0, 3] ∪ {5}, a = 1, 2, 3 (Lie algebra index), AM = Aa
Mta (generators)
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Then what is the cosmic string equivalent in this framework?
• V (ϕ) = λ

4 (1− |ϕ|
2)2 so that ϕ develops a vacuum expectation value

• SU(2) is broken to U(1)

→ topological magnetic monopoles
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Then what is the cosmic string equivalent in this framework?
• V (ϕ) = λ

4 (1− |ϕ|
2)2 so that ϕ develops a vacuum expectation value

• SU(2) is broken to U(1)

→ topological magnetic monopoles

4D solution: ’t Hooft and Polyakov (1974)

L =
1
8
Tr{FµνF

µν} − 1
4
Tr{DµϕD

µϕ} − λ

4
(
1− |ϕ|2

)2

with Fµν = ∂[µAν] + [Aµ,Aν ] and Dµ = ∂µϕ+ [Aµ, ϕ]

Varying the action with respect to the fields:

D iDiϕ = −λ
(
1− |ϕ|2

)
ϕ D iFij = −[Djϕ, ϕ]
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Setting A0 = 0, the most general ansatz is: (r =
√
|x ixi |)

ϕ = H(r)
xa

r
ta Ai>0 = −[1−K (r)]ϵija

x j

2r2 t
a H(0,∞) = 0, 1 = 1−K (0,∞)
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Setting A0 = 0, the most general ansatz is: (r =
√
|x ixi |)

ϕ = H(r)
xa

r
ta Ai>0 = −[1−K (r)]ϵija

x j

2r2 t
a H(0,∞) = 0, 1 = 1−K (0,∞)

Solving the equations of motion:

H(r)

K (r)

r

Figure: Profile functions in 4D

• topological magnetic charge

• analytic solution only for λ→ 0

...along with more exotic properties:

Bi + Diϕ = 0 (Bogomol’nyi bound)

.
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In 4D, Fµν = ∂[µAν] has 6 components
(
F̃µν = 1

2ϵµνρσF
ρσ
)
:

• 3 for the electric field (vector)

∂µFµν = Jelec
ν

• 3 for the magnetic field (vector)

∂µF̃µν = Jmag
ν

In 4D, the electromagnetic charge carriers must be point-like
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In 4D, Fµν = ∂[µAν] has 6 components
(
F̃µν = 1

2ϵµνρσF
ρσ
)
:

• 3 for the electric field (vector)

∂µFµν = Jelec
ν

• 3 for the magnetic field (vector)

∂µF̃µν = Jmag
ν

In 4D, the electromagnetic charge carriers must be point-like

In 5D, FMN = ∂[MAN] has 10 components
(
F̃PQR = 1

2ϵMNPQRF
MN

)
:

• 4 for the electric field (vector)

∂MFMN = Jelec
N

• 6 for the magnetic field (tensor)

∂P F̃PQR = Jmag
QR

In 5D, the magnetic charge carriers must be string-like
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As we add extra dimensions, the monopole gains a spatial extension:

point-like
↓

←− line-like

R3

R

− add one dimension→

Figure: Relative extension of a monopole depending on spacetime dimension
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As we add extra dimensions, the monopole gains a spatial extension:

point-like
↓

←− line-like

R3

R

− add one dimension→

Figure: Relative extension of a monopole depending on spacetime dimension

5D magnetic monopole = candidate for the cosmic string

We can localize it along different spatial directions, we considered 2 cases:
• extended along x5: monopole loop
• extended along x3: monopole string
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The first case we consider is the
monopole loop in the extra dimension:

∂M F̃MN0 = qm δN5δ
(3)(x⊥)

↙ ↘
∂M F̃Mµ0 = 0 ∂M F̃M50 = qm δ(3)(x⊥)
.

S1

M4

M4
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The first case we consider is the
monopole loop in the extra dimension:

∂M F̃MN0 = qm δN5δ
(3)(x⊥)

↙ ↘
∂M F̃Mµ0 = 0 ∂M F̃M50 = qm δ(3)(x⊥)
.

S1

M4

M4

→ effective point-like monopole in 4D

Adding an extra dimension introduces new contributions to the equations of mo-
tion, embedded in:

F5i = −∂iA5 + [A5,Ai ] D5ϕ = [A5, ϕ]

→ let us do some developments!
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We recover the usual ’t Hooft-Polyakov monopole’s equations setting A0,5 = 0
• the mass is now interpreted as a tension
• the total mass is integrated over the extra dimension

Benchmark: the effective 4D theory describes the usual magnetic monopole!
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We recover the usual ’t Hooft-Polyakov monopole’s equations setting A0,5 = 0
• the mass is now interpreted as a tension
• the total mass is integrated over the extra dimension

Benchmark: the effective 4D theory describes the usual magnetic monopole!

...but we can consider a non-zero A5! We propose the following ansatz:

ϕ = H(r)
xa

r
ta Ai>0 = −[1− K (r)]ϵija

x j

2r2 t
a︸ ︷︷ ︸

’t Hooft-Polyakov monopole

A5 = S(r)
xa

r
ta︸ ︷︷ ︸

new scalar field

S(0) = 0, S(∞) = 1
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Solving the equations of motion, we obtain the following profiles:

H(r)

K (r)

S(r)

r

Figure: Profile function for a 5D magnetic
monopole with additional scalar

• proof of existence
• monopole with an additional scalar

scalar-dressed monopoleTM

.

But magnetic monopoles have some pretty exotic properties!
→ can we reproduce them with this new object?

Simon Beaudoin 14/19
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Solving the equations of motion, we obtain the following profiles:

H(r)

K (r)

S(r)

r

Figure: Profile function for a 5D magnetic
monopole with additional scalar

• proof of existence
• monopole with an additional scalar

scalar-dressed monopoleTM

.

But magnetic monopoles have some pretty exotic properties!
→ can we reproduce them with this new object?

→ yes: define a complex adjoint triplet: Φ = ϕ+ iA5

Bi + e iαDiΦ = 0, ∀α (generalized Bogomol’nyi bound)
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Then we consider a monopole string
extended along a non-compact direction:

∂M F̃MN0 = qm δN3δ
(3)(x⊥)

.
S1

M4

M4
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Then we consider a monopole string
extended along a non-compact direction:

∂M F̃MN0 = qm δN3δ
(3)(x⊥)

.
S1

M4

M4

→ effective string-like monopole in 4D

∆ We must be extremely careful about topological obstructions when adding
compact extra dimensions!

—–[Beaudoin, Delafosse (2025)]
In a spacetime with compact extra dimensions admitting a factorizable scalar
charge density, any charge localized in the compact space must be paired
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First step: investigate the possible topological obstructions
• what is the behaviour of the higher-dimensional magnetic field?

x50 2π

x3 F̃µ03

.
Figure: Magnetic field propagation along

the extra dimension

→ the field wraps around S1

→ no topological obstruction
.
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First step: investigate the possible topological obstructions
• what is the behaviour of the higher-dimensional magnetic field?

x50 2π

x3 F̃µ03

.
Figure: Magnetic field propagation along

the extra dimension

→ the field wraps around S1

→ no topological obstruction
.

Second step: unify scalars and strings

• what is the topological charge?

• how to formalize it?

.
Simon Beaudoin 16/19
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Q ∝
∮
S1
φ

dℓi ∂i

[∫
S1
x5

dx5 Tr
{
ϕ̂(x i , x5)A5(x

i , x5)
}]

i = 1, 2

ϕ̂: orientation of ϕ far from the core, S1
x5 × S1

φ: torus around the string
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Q ∝
∮
S1
φ

dℓi ∂i

[∫
S1
x5

dx5 Tr
{
ϕ̂(x i , x5)A5(x

i , x5)
}]

i = 1, 2

ϕ̂: orientation of ϕ far from the core, S1
x5 × S1

φ: torus around the string

The model now has:
• axion: 5th component of a higher-dimensional gauge field
• cosmic string: extended magnetic monopole string

→ phase value

Figure: Winding around a cosmic string

.
→ acquires a winding around the core
of the monopole string

→ mimics the behavior of an axion field
circling a cosmic string

.

.
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Extra-dimensional
axion cosmic strings

Topology
homotopy groups,
extra dimensions

Axion Physics
anomalies, QCD

vacuum, instantons

Cosmology
topological defects,

dark matter

Field Theory
renormalization,

dim regularization
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Extra-dimensional
axion cosmic strings

Topology
homotopy groups,
extra dimensions

Axion Physics
anomalies, QCD

vacuum, instantons

Cosmology
topological defects,

dark matter

Field Theory
renormalization,

dim regularization

Open questions:
• What are the properties of this particular axion?
• What signals could we expect from such objects?
• How can we study the dynamics of topological defects? (Ongoing article

with L. Delafosse: "A sheaf-theoretic approach to path integrals with
applications to topological solitons and anomalies")
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The neutron is a composite particle made of quarks and gluons, the CP-violating
QCD term distorts the spatial distribution of charge in the neutron, creating a
permanent electric dipole moment: dn ∼ θ̄ · 10−16 e·cm.

→ use ultracold neutrons in an electromagnetic field:

ω ≡ 2πf︸ ︷︷ ︸
precession frequency

∼ 2µnB︸ ︷︷ ︸
magnetic precession

± 2dnE︸ ︷︷ ︸
electric contribution

→ reversing the direction of E⃗ while keeping B⃗ fixed allows to measure the change
in precession frequency that is attributed to dn alone!

u

d d

←− sea quarks

Figure: Valence quark content (and sea)
of a neutron

Simon Beaudoin 19/19

Neutron EDM

Simon Beaudoin 19/19



Figure: Cosmic history (Source: ESA)

• Inflationary: 1015 − 1016 GeV

• Peccei-Quinn: 109 − 1012 GeV

• Electroweak: 100 GeV

• QCD chiral: 200 MeV

• Neutrino decoupling: 1 MeV

• Recombination: 0.3 eV

Simon Beaudoin 19/19

Cosmic history of the universe

Simon Beaudoin 19/19



Figure: U(1) symmetry breaking of a
complex scalar field produces cosmic

strings (Source: Kibble, 1980)

• (a) Patches with true vacuum
energies start growing as the
symmetry is broken. Gray regions
represent false vacua;

• (b) As the patches with true
vacua merge, false vacuum
regions are squeezed and form
topological defects.

vacuum manifold ∼= S1
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L ⊃ 1
2
∂µa∂

µa︸ ︷︷ ︸
kinetic term

+Lint

(
∂µ

a

fa
, ψ

)
︸ ︷︷ ︸

interaction term

+
a

fa
ξ

g2

32π2G
aµνG̃ a

µν︸ ︷︷ ︸
topological coupling

This anomalous coupling modifies the effective θ̄-parameter: θ̄eff = θ̄+ξ a
fa
, and

since QCD dynamics generate a potential that depends periodically on θ̄eff, the
resulting effective potential for the axion takes the form:

Veff ∝ cos
(
θ̄ + ξ

a

fa

)
, with minimum for ⟨a⟩ = − fa

ξ
θ̄

which dynamically cancels the CP-violating term and ensures θ̄eff = 0 in the vac-
uum. Thus, defining the physical axion field as aphys = a−⟨a⟩, the Lagrangian
becomes manifestly CP-conserving.
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The 5D metric can be written as:

g
(5)
MN = ϕ−1/3

(
gµν − ϕAµAν ϕAµ

ϕAν −ϕ

)
The 5D Einstein equations are obtained from:

S =

∫
d4x

√
|g |

[
− R

16πG
− 1

4
ϕFµνFµν +

1
6κ2ϕ2 ∂µϕ∂

µϕ

]
Compactifying the extra dimension on a circle S1 of radius R, any quantity inherits
a periodic dependence on x5 and the fields can be Fourrier expanded:

ϕ(xµ, x5) =
∑
n

ϕ(n)(xµ)e in
x5
R

If □(5)ϕ = 0, the Fourier modes ϕ(n)(xµ) satisfy □ϕ(n) = (n/R)2ϕ(n), where the
righthand side can be looked on as an effective mass term m 2

n = (n/R)2.
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ds2 ≡ g
(5)
MNdxMdxN = e−2σ(x5)ηµνdxµdxν + (dx5)2

x5 = 0 x5 = πR

UV-brane IR-brane

warp factor

Figure: Representation of the AdS5

setup. The fifth dimension is bounded by
the UV- and IR-branes, where the warp
factor is largest and smallest respectively

mIR = mUV · e−kπR

→ geometric interpretation of couplings in terms of wavefunction overlaps
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An orbifold is a topological space that is locally modeled on the quotient of
Euclidean space by a finite group action:

0 πR
−πR

y

−y

Figure: Line segment obtained by
identification of opposite points on S1

Hence, topologically, the orbifold
S1/Z2 is a closed interval [0, πR], but
with additional structure at the end-
points inherited from the original circle
and the group action.

→ fields defined on S1/Z2 must satisfy specific boundary conditions compatible
with the orbifold symmetry (ex: parity)
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The presence of magnetic fields raises the question of interactions between several
monopoles and can be investigated from the mass in the λ→ 0 limit:

m = −1
4

∫
d3x

[
Tr

{
B iBi

}
+ Tr

{
D iϕDiϕ

}]
= −1

4

∫
d3x

[
Tr

{
(Bi + Diϕ)

2}]+
1
2

∫
d3x

[
∂i Tr

{
B iϕ

}]
= −1

4

∫
d3x

[
Tr

{
(Bi + Diϕ)

2}]+
1
2

∮
S2
∞

[
Tr {Biϕ}dS i

]
︸ ︷︷ ︸

−
∮
S2
∞

BidS i≡−qm

→ Bi + Diϕ = 0, known as the Bogomol’nyi equation. The emerging idea is
that if N well-separated monopoles each satisfy this equation, their total energy
is just the sum of individual energies without interaction.
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Property:
In a spacetime of the form R × Np × Sq, where R denotes time, Np is a p-
dimensional Euclidean type space and Sq is a q-dimensional sphere, and with a
factorizable scalar charge density, the presence of any charge on the compact space
necessarily implies the presence of an associated anticharge of same magnitude.

Factorization hypothesis:
We restrict ourselves to a fixed-time slice of spacetime Σ = Np × Sq and define
ρ(x , y) a scalar charge density function defined on Σ, where x ∈ Np and y ∈ Sq.
The total charge in a region of Σ is obtained by integrating ρ(x , y) over that
region. Assume that the charge density comes from the divergence of some
vector field, in analogy with Gauss’s law. More precisely, we suppose that there
exist a vector field A(x) defined on Np, B(y) defined on Sq such that the charge
density completely factorizes:

ρ(x , y) = ∇xA(x)∇yB(y)
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