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% Aims of the internship

The Standard Model is a quantum field theory describing the known fundamental
particles and their interactions:

® built from strong symmetry principles

® tested to high precision but with persistent open questions, among them:

Strong CP problem

Simon Beaudoin 1/19




% Aims of the internship

The Standard Model is a quantum field theory describing the known fundamental
particles and their interactions:

® built from strong symmetry principles

® tested to high precision but with persistent open questions, among them:

Strong CP problem

® What is the axion?
® What are the so-called axion cosmic strings?
® What is their possible cosmological role?

® How can they emerge from a higher-dimensional framework?
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% Axion and strong CP problem

Nature violates CP symmetry significantly in weak interactions but there is an-
other contribution:

® Yukawas from the weak sector: 6, = arg(det(Mg))

® topological term in the strong sector: ~ 6 G?,, G, 2=1.8

physical parameter: 6 =6 + 0,
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% Axion and strong CP problem

Nature violates CP symmetry significantly in weak interactions but there is an-
other contribution:

® Yukawas from the weak sector: 6, = arg(det(Mg))

® topological term in the strong sector: ~ 6 G?,, G, 2=1.8

physical parameter: 6 =6 + 0,

experimentally 8 < 1071°

— Strong CP problem: 6 comes from both strong and weak interactions!
Why is 6 so small in the absence of any symmetry enforcing it?

— 6 = 0 should come from symmetry considerations
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% Axion and strong CP problem

— introduce a new global U{1)pq symmetry: ¢ — eio‘751/1, b — e

— introduce a complex scalar field ¢(x) charged under U(1)pq

b(x) = f JZ//%(X) oia(3)/fi

p(x): radial mode, a(x): angular mode, f,: symmetry breaking scale
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% Axion and strong CP problem

— introduce a new global U{1)pq symmetry: ¢ — ei”‘751/1, b — e

— introduce a complex scalar field ¢(x) charged under U(1)pq

P(x) = fatf’;(x)efa(x)/ﬂ

p(x): radial mode, a(x): angular mode, f,: symmetry breaking scale

QCD dynamics generate an effective potential for a(x):

Viesf o< cos (0_—1— 5;) , with minimum for | § = —£2°X | « axion

— the axion dynamically resolves the strong CP problem!
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% Axion cosmic strings

As the early universe expanded and cooled, it underwent phase transitions

T~f, =  Peccei-Quinnsymmetry

— gave birth to the axion field which began to settle into its vacuum state...
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@ Axion cosmic strings

As the early universe expanded and cooled, it underwent phase transitions

TNQ:W

— gave birth to the axion field which began to settle into its vacuum state...

| ™
a
—T

Figure: Simulation of the phase map Figure: ...and simulation of the phase map
before PQ phase transition... after PQ phase transition

...which consists of degenerate vacua!
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% Axion cosmic strings

Topological defects appear in regions where mismatches in the phase cannot be
smoothed out. What is the appropriate probe?

Cosmic strings appear when there are
non-contractible loops

e formally, this is homotopy theory

® related to symmetry breaking

Figure: Phase values in the vacuum state
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% Axion cosmic strings

Topological defects appear in regions where mismatches in the phase cannot be
smoothed out. What is the appropriate probe?

Cosmic strings appear when there are
non-contractible loops

e formally, this is homotopy theory

® related to symmetry breaking

Figure: Phase values in the vacuum state

— protected by a topological charge

1
27 f,

%Va .df=n, neZ  (winding number)
L
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% Axion cosmic strings

Topological defects appear in regions where mismatches in the phase cannot be
smoothed out. What is the appropriate probe?

Cosmic strings appear when there are
non-contractible loops

1
| e formally, this is homotopy theory

/ ® related to symmetry breaking

Figure: Cosmic string in 3D space

— protected by a topological charge

%Va dl=n, neZ (winding number)
27Tf:—; L
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@ Axion cosmic strings

These strings form a complex network with its own dynamics and interactions:

Figure: Simulation in a slice of universe of the evolution of a string network
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@ Axion cosmic strings

These strings form a complex network with its own dynamics and interactions:
Figure: Simulation in a slice of universe of the evolution of a string network

— string interactions We can interpret the relic abundance
— decay of axions as a dark matter candidate

— emission of axions 5 10
fo ~ 1077 GeV
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% Extra dimensions

‘ Investigate axion cosmic strings emerging from extra-dimensional defects ‘

Existence of extra space dimensions beyond the familiar three?
To escape experimental detection, they could be:

® Compact: curled up into tiny circles
¢ Large but hidden: with Standard Model confined to a 4D surface
® Warped: certain regions are effectively hidden from low-energy physics
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% Extra dimensions

‘ Investigate axion cosmic strings emerging from extra-dimensional defects ‘

Existence of extra space dimensions beyond the familiar three?
To escape experimental detection, they could be:

® Compact: curled up into tiny circles
¢ Large but hidden: with Standard Model confined to a 4D surface
® Warped: certain regions are effectively hidden from low-energy physics

Example: Kaluza-Klein model for compact 5 dimension

\ r
7 Figure: Four-dimensional spacetime with
S one compact extra dimension
My
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% Extra-dimensional axion

The model we consider is a spontaneously broken SU(2) gauge theory, including
a gauge field A?), coupled to a real scalar field ¢* valued in su(2). This lives on
a 5D spacetime compactified as My x S*:

SO(1,4) — compactification — SO(1,3)
——
Lorentz in 4D

M =10,3]U {5}, a=1,2,3 (Lie algebra index), Ay = A®,t* (generators)
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% Extra-dimensional axion

The model we consider is a spontaneously broken SU(2) gauge theory, including
a gauge field A?), coupled to a real scalar field ¢* valued in su(2). This lives on
a 5D spacetime compactified as My x S*:

SO(1,4) — compactification — SO(1,3)
——
Lorentz in 4D

In 5D, fields have additional dimensions in which they can live:

A .
[\»0 4D gauge field (4 components)
As +— behaves like a 4D scalar

5% component of a higher-dimensional gauge field = candidate for the axion

M =10,3]U {5}, a=1,2,3 (Lie algebra index), Ay = A%,t* (generators)
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% Extra-dimensional string?

Then what is the cosmic string equivalent in this framework?
* V(¢) = 2(1 — [¢/|?)? so that ¢ develops a vacuum expectation value
® SU(2) is broken to U(1)

‘ — topological magnetic monopoles
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% Extra-dimensional string?

Then what is the cosmic string equivalent in this framework?
* V(¢) = 2(1 — [¢/|?)? so that ¢ develops a vacuum expectation value
® SU(2) is broken to U(1)

‘ — topological magnetic monopoles

4D solution: 't Hooft and Polyakov (1974)
1 1 A
L= gTr{Fm,F‘“’} - ZTF{D;L¢D”¢} 17 (1- |¢>|2)2
with Fuy = 9, A, + [Au, Al and Dy, = 9,0 + [Ay, 6]

Varying the action with respect to the fields:

D'Di¢=-X(1—-1[¢°)¢  D'F;=—[Djo,¢|
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% Extra-dimensional string?

Setting Ag = 0, the most general ansatz is: (r=+/I|x'x])

a J
0 =H(N=t  Apo=—[1-K(Nlejay 5t H(0,50) =0,1=1-K(0, )
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% Extra-dimensional string?

(= Vi)

H(0,00) = 0,1 = 1-K(0, c0)

Setting Ag = 0, the most general ansatz is:

x? x/
¢: H(r)Tta A[>0:_[1_K(r)]€ijaﬁta

Solving the equations of motion:

® topological magnetic charge
H(r) polog g g
® analytic solution only for A — 0
...along with more exotic properties:
K(r
() Bi+ Di¢ =0 (Bogomol'nyi bound)
T

Figure: Profile functions in 4D
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% Maxwell's equations

In 4D, F,, = 0|, A, has 6 components (F' GMVPUFPG'):
e 3 for the electric field (vector) ® 3 for the magnetic field (vector)
5“/'—;“/ — Jelec oL ,’fm/ — JLnag

In 4D, the electromagnetic charge carriers must be point-like ‘
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% Maxwell's equations

In 4D, F,, = 0|, A, has 6 components (F' GMVPUFPG'):
e 3 for the electric field (vector) ® 3 for the magnetic field (vector)
5“/'—;“/ — Jelec oL ,Em/ — JLnag

In 4D, the electromagnetic charge carriers must be point-like ‘

In 5D, Fyn = 8[MAN] has 10 components (:EPQR = %EMNPQRFMN):

® 4 for the electric field (vector) ® 6 for the magnetic field (tensor)
M Fun = Jf* 9" Fror = Joi*

In 5D, the magnetic charge carriers must be string-like ‘
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% pole string

As we add extra dimensions, the monopole gains a spatial extension:

poirlt—like R

/ e \. — add one dimension — «— line-like

R ©

Figure: Relative extension of a monopole depending on spacetime dimension
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% Monopole string

As we add extra dimensions, the monopole gains a spatial extension:

poirlt—like R

/ e \. — add one dimension — «— line-like

R ©

Figure: Relative extension of a monopole depending on spacetime dimension

5D magnetic monopole = candidate for the cosmic string

We can localize it along different spatial directions, we considered 2 cases:
e extended along x®: monopole loop

e extended along x3: monopole string
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% Monopole string along x>

The first case we consider is the M

monopole loop in the extra dimension: My |_|
e p

omEMHO = 0 mFM® = g, 63(x,) st
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% Monopole string along x>

The first case we consider is the M

monopole loop in the extra dimension: My |_|
e p

omEMHO = 0 mFM® = g, 63(x,) st

‘ — effective point-like monopole in 4D ‘

Adding an extra dimension introduces new contributions to the equations of mo-
tion, embedded in:

Fsi = —0;As + [As, A] Ds¢ = [4s, 0]

— let us do some developments!
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% Monopole string along x>

We recover the usual 't Hooft-Polyakov monopole’s equations setting Aps =0
® the mass is now interpreted as a tension

® the total mass is integrated over the extra dimension

Benchmark: the effective 4D theory describes the usual magnetic monopole!
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% Monopole string along x>

We recover the usual 't Hooft-Polyakov monopole’s equations setting Aps =0
® the mass is now interpreted as a tension

® the total mass is integrated over the extra dimension

Benchmark: the effective 4D theory describes the usual magnetic monopole!

...but we can consider a non-zero As! We propose the following ansatz:

a

X x/ x?
¢:H(r)7ta A,’>0:_[1_K(r)]€,'jaﬁta A5:5(r)?ta

't Hooft-Polyakov monopole new scalar field

5(0) =0, S(c0) =1
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% Scalar-dressed monopole

Solving the equations of motion, we obtain the following profiles:

Figure: Profile function for a 5D magnetic
monopole with additional scalar

® proof of existence

® monopole with an additional scalar

‘ scalar-dressed monopole™

But magnetic monopoles have some pretty exotic properties!
— can we reproduce them with this new object?

Simon Beaudoin 14/19




% Scalar-dressed monopole

Solving the equations of motion, we obtain the following profiles:

Figure: Profile function for a 5D magnetic
monopole with additional scalar

® proof of existence

® monopole with an additional scalar

‘ scalar-dressed monopole™

But magnetic monopoles have some pretty exotic properties!
— can we reproduce them with this new object?

— yes: define a complex adjoint triplet: ® = ¢ + iAg
Bi + e “D;® =0, Va (generalized Bogomol'nyi bound)
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% Monopole string along x3

Then we consider a monopole string M
extended along a non-compact direction: 4 | |

8/\//F_MNO =dm 5,\:’),(5(3)(XL)
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% Monopole string along x3

Then we consider a monopole string M
extended along a non-compact direction: 4 | |

8/\//F_MNO =dm 5’%(5(3)(XL)

‘ — effective string-like monopole in 4D ‘

A We must be extremely careful about topological obstructions when adding
compact extra dimensions!

——[Beaudoin, Delafosse (2025)]
In a spacetime with compact extra dimensions admitting a factorizable scalar
charge density, any charge localized in the compact space must be paired
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% Monopole string along x3

First step: investigate the possible topological obstructions

® what is the behaviour of the higher-dimensional magnetic field?

Figure: Magnetic field propagation along
F103 the extra dimension

Il
i

— the field wraps around S?!

— no topological obstruction

o
3]

2

3
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% Monopole string along x3

First step: investigate the possible topological obstructions
® what is the behaviour of the higher-dimensional magnetic field?

Figure: Magnetic field propagation along
F103 the extra dimension

i
11

— the field wraps around S?!

— no topological obstruction

o
3]

2

3

Second step: unify scalars and strings

¢ what is the topological charge?

® how to formalize it? UNDER CONSTRUCTION

CONTENT WILL BE AVAILABLE SOON
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% Effective axion cosmic string

Q x de’ o, [
S

dx® Tr{é\)(x’.,xs)A5(x",x5)}] i=1,2

1
5X5

(;3: orientation of ¢ far from the core, 5)%5 X 5:,: torus around the string
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% Effective axion cosmic string

Q x de' o, [ dx® Tr{(i\)(x’.,xs)Agg(x",xs)}] i=1,2

S

5X15
(;3: orientation of ¢ far from the core, 5)%5 X 5;: torus around the string

The model now has:
® axion: 5% component of a higher-dimensional gauge field

® cosmic string: extended magnetic monopole string

— acquires a winding around the core

— phase value of the monopole string

— mimics the behavior of an axion field
circling a cosmic string

Figure: Winding around a cosmic string
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% Summary and Open Questions

Topology Axion Physics
homotopy groups, anomalies, QCD
extra dimensions vacuum, instantons

Extra-dimensional
axion cosmic strings

Field Theory Cosmology
renormalization, topological defects,
dim regularization dark matter
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% Summary and Open Questions

Topology Axion Physics
homotopy groups, anomalies, QCD
extra dimensions vacuum, instantons

Extra-dimensional
axion cosmic strings

Field Theory Cosmology
renormalization, topological defects,
dim regularization dark matter

Open questions:
e What are the properties of this particular axion?
® What signals could we expect from such objects?

® How can we study the dynamics of topological defects? (Ongoing article
with L. Delafosse: "A sheaf-theoretic approach to path integrals with
applications to topological solitons and anomalies")

Simon Beaudoin 19/19
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% Neutron EDM

The neutron is a composite particle made of quarks and gluons, the CP-violating
QCD term distorts the spatial distribution of charge in the neutron, creating a
permanent electric dipole moment: d, ~ 6 - 1071 e.cm.

— use ultracold neutrons in an electromagnetic field:

w =2rf ~ 2u,B + 2d,E
— ~—— S——

precession frequency magnetic precession electric contribution

— reversing the direction of E while keeping B fixed allows to measure the change
in precession frequency that is attributed to d, alone!

AN

d ° Figure: Valence quark content (and sea)
( L of a neutron
o sea quarks
S
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% Cosmic history of the universe

10% seconds 1second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Beginning ¢
of the

Universe

Inflation Formation of Light and matter Light and matter  Dark ages
Accslerated expansion light and matter are coupled separate i
of the Universe Dark mat - Proton and elecrons the gravity ofthe
form atoms cosmic web of dark
mater

Galaxy evolution The present Universe

ke m:
independently: it sta
clumping and forming
aweb of structures

y: it wi
Cosmic Microwave
Background (CMB]

Figure: Cosmic history (Source: ESA)

¢ Inflationary: 10'®> — 106 GeV e QCD chiral: 200 MeV
* Peccei-Quinn: 10° — 102 GeV * Neutrino decoupling: 1 MeV

® Electroweak: 100 GeV ® Recombination: 0.3 eV
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% Kibble mechanism

® (a) Patches with true vacuum
energies start growing as the
symmetry is broken. Gray regions
represent false vacua;

® (b) As the patches with true
vacua merge, false vacuum
regions are squeezed and form
topological defects.

Re(®)

Figure: U(1) symmetry breaking of a
complex scalar field produces cosmic
strings (Source: Kibble, 1980) vacuum manifold = S*
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% Axion potential

1 a a g2 .

_ H . M - auv ~a
£ 50,a0"a+ Line <a fa,w> 85567 G

N——

kinetic term

interaction term topological coupling

This anomalous coupling modifies the effective f-parameter: O = §+§g, and

since QCD dynamics generate a potential that depends periodically on e, the
resulting effective potential for the axion takes the form:

_ f, -
Ve o< cos (9 + §;> , with minimum for (a) = —29

which dynamically cancels the CP-violating term and ensures fe¢ = 0 in the vac-
uum. Thus, defining the physical axion field as apn,s = a— (a), the Lagrangian
becomes manifestly CP-conserving.
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@ Kaluza-Klein

The 5D metric can be written as:

R )

The 5D Einstein equations are obtained from:

= 4 _L_l unv L 1
5—/dx |g|{ o~ 0P Fuu + GO0

Compactifying the extra dimension on a circle S! of radius R, any quantity inherits
a periodic dependence on x® and the fields can be Fourrier expanded:

D(xt, ) = 37 ol (xt) e
If O®)¢p = 0, the Fourier modes ¢("(x*) satisfy o™ = (n/R)?¢("), where the
righthand side can be looked on as an effective mass term m,2 = (n/R)?.
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% Randall-Sundrum

ds® = g(,?ﬂ)NddexN = e_2”(xs)77u,,dx“dx” + (dx®)?

UV-brane IR-brane

Figure: Representation of the AdSs
setup. The fifth dimension is bounded by
the UV- and IR-branes, where the warp
factor is largest and smallest respectively

mig = myy - e <"F

— geometric interpretation of couplings in terms of wavefunction overlaps
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L S1Z, orbifold

An orbifold is a topological space that is locally modeled on the quotient of
Euclidean space by a finite group action:

y
|7 Figure: Line segment obtained by
identification of opposite points on S*
0 TR

—7R Hence, topologically, the orbifold
S'/Z, is a closed interval [0, TR], but
with additional structure at the end-
_yx_) points inherited from the original circle

and the group action.

— fields defined on S*/Z, must satisfy specific boundary conditions compatible
with the orbifold symmetry (ex: parity)
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% Bogomol'nyi monopoles

The presence of magnetic fields raises the question of interactions between several
monopoles and can be investigated from the mass in the A — 0 limit:

_%/d3x —Tr{B"B;} +TF{DI¢DI¢}:|
—%/d3 Tr{(B + Do)’ } /d3 [5 TF{B'¢}]
-1 /d3x {8+ D,-¢)2}} + ;7{_& [Tr{B,«zs} dS’}

- fsgo B,‘dS"E—qm

— B; + D;j¢p = 0, known as the Bogomol'nyi equation. The emerging idea is
that if N well-separated monopoles each satisfy this equation, their total energy
is just the sum of individual energies without interaction.
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@ Property on scalar charges

Property:

In a spacetime of the form R x NP x 59 where R denotes time, NP is a p-
dimensional Euclidean type space and S9 is a g-dimensional sphere, and with a
factorizable scalar charge density, the presence of any charge on the compact space
necessarily implies the presence of an associated anticharge of same magnitude.

Factorization hypothesis:

We restrict ourselves to a fixed-time slice of spacetime & = NP x S9 and define
p(x, y) a scalar charge density function defined on X, where x € NP and y € 59.
The total charge in a region of ¥ is obtained by integrating p(x,y) over that
region. Assume that the charge density comes from the divergence of some
vector field, in analogy with Gauss's law. More precisely, we suppose that there
exist a vector field A(x) defined on NP, B(y) defined on 59 such that the charge
density completely factorizes:

p(x,y) = VA(x)V,B(y)
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