

DATA ANALYSIS FROM KASCADE EXPERIMENT WITH EPOS LHC-R

Preliminary evaluation : Data analysis from RIVET with EPOS LHC-R

Collider Physics

Cosmic rays Physics

Theoretical Model Construction How do we verify it ?

Event Generator (?)

- Code that simulates a particle collision
- Based on a theoretical model

Motivation

- **EPOS LHC-R : event generator**
- **Updated** version of EPOS LHC for cosmic rays
 - 1. Evaluate performance of the model on **collider physics**
 - 2. Evaluate performance on cosmic rays (attenuation of muon puzzle ?)

5

• Yet to be done

EPOS Model

Stands for :

Energy conserving quantum mechanical approach, based on Partons, parton ladders, strings,

Off-shell remnants, and

Saturation of parton ladders

Based on a mix between parton model and Gribov-Regge Theory :

6

- Parton based Gribov-Regge Theory
- **EPOS LHC** tuning with LHC data
- **EPOS LHC-R** updated with recent data for cosmic ray physics

EPOS Core-Corona Structure

- Core-Corona Structure :
 - Corona : low density area
 - ► Core : high density area → collective effects (hydrodynamic contribution)

Models to be compared with

EPOS configurations	Informations
EPOS LHC	
EPOS LHC-R	
EPOS LHC-R_no_rescattering	No hadronic rescattering
EPOS LHC-R_no_rescattering_no_fusion	No Core-Corona

Other models	
QGSJETII	
QGSJETIII	
SIBYLL	

8

Data

- Use of a public toolkit : RIVET
 - Regroup ~2000 analyses
 - Covers a large angle of physics
 - Jet Production and properties
 - Underlying event
 - Top and heavy flavour physics
 - And many more ... (BSM , EW, not studied here)

9

Data for simulations

Choice of 154 analyses from several experiment :

- ▶ LEP : ALEPH, DELPHI, L3
- ► SLAC : PEP (TPC)
- ▶ SPS : UA1, UA5
- ► RHIC : STAR
- ▶ LHC : ALICE, ATLAS, CMS, LHCb, LHCf, TOTEM

• Choice of several collision : e^+e^- , $\overline{p}p$, pp, pPb at different energies.

Beam	Number of collision simulated
e^+e^-	100 000
$\overline{p}p$	100 000
pp	100 000
pPb	10 000

Statistical evaluation

Criteria :

Relative Error

$$RE = \frac{\sum_{i} |y_{i}^{model} - y_{i}^{data}| \cdot |y_{i}^{data}| \cdot |\Delta x_{i}^{model}|}{\sum_{i} |y_{i}^{data}| \cdot |\Delta x_{i}^{data}|}$$

$$\triangleright \chi^2$$

$$\chi^{2} = \frac{1}{N} \sum_{i} \frac{\left(y_{i}^{\text{data}} - y_{i}^{\text{model}}\right)^{2}}{\left(\sigma_{i}^{\text{data}}\right)^{2} + \left(\sigma_{i}^{\text{model}}\right)^{2}}$$

12

Results : χ^2

Results : *Relative Error*

Results : Overall performance EPOS models Other model Superposed χ^2 Distributions ($\chi^2 < 20$) Superposed χ^2 Distributions ($\chi^2 < 20$) 0.45 EPOS LHC R no scattering 0.45 EPOS_LHC_R_no_scattering_no_fusion EPOS LHC R 0.40 SIBYLL EPOS LHC 0.40 QGSJETIII QGSJETII 0.35 0.35 0.30 0.30 0.25 Neusity 0.20 Density 0.25 0.20 0.15 0.15 0.10 0.10 0.05 0.05 0.00 0.00 2.5 10.0 12.5 15.0 17.5 20.0 0.0 5.0 7.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Overall : EPOS outperforms the other models

Delassoud Kamil | 18/06/2024

Chi²

Chi²

Comparison between models

Comparison between models

17

Conclusion

- ► EPOS LHC-R OVERALL performs better than QGSJETII, QGSJETIII and SIBYLL
- ► The differences between EPOS LHC-R and EPOS LHC are negligible
- Some phenomenon are less well described by EPOS
- ► To check for specific studies on collider physics
- There's now to see the performance of EPOS LHC for cosmic rays with KASCADE-Grande

(yet to come)

Annexes

EPOS Description

Energy conserving quantum mechanical approach, based on Partons, parton ladders, strings Off-shell remnants, and

 ${f S}$ aturation of parton ladders

- Parton Ladders
- Modelised by the exchange by an object called **Pomeron**.

Treatment of Off-shell remnants

()

Strings models

Results : Overall performance on full range

Overall : EPOS outperformes the other models

Delassoud Kamil | 18/06/2024

Big χ^2 differences in favor of SIBYLL

Big χ^2 differences in favor of EPOS

-2.0 $\log_{10} \xi$

Big χ^2 differences in favor of QGSJETII

