

de physique et ingénierie

Université de Strasbourg

Towards multi-messenger measurements at ultra-high energy with GRAND

Nathan LEBAS

Supervised by O. Martineau

18/06/2025

(Álvarez-Muñiz et al. 2019)

Extensive air shower

Artist's impression of an air shower over a particle detector at the Pierre Auger Observatory, seen against a starry sky. (A. Chantelauze, S. Staffi, L. Bret) Zilles, A. (2017). Introduction to cosmic rays and extensive air showers.

Geomagnetic & Askaryan effect

At MHz–GHz frequencies, air-shower radio signals arise from the coherent superposition of a dominant, Lorentz-force-aligned geomagnetic emission and a radially polarized Askaryan emission, giving constructive or destructive interference.

Detection method

• The aim of GRAND:

Build a giant detector **covering** 200,000 km² with 200,000 antennas. Such a large-scale detector suppresses the background from isotropic sources and provides good resolution characteristics. This is why radio detection is promising.

• Earth-skimming vt channel:

vτ interacts inside a mountain or the Earth's crust, producing a τ lepton that escapes into the atmosphere and decays, initiating an extensive air shower.

GRAND detection principle, illustrated for one of the 10 000-antenna GRAND10k arrays.

GP300 Overview

Main Objectives

- Validate the **self-triggering radio detection** concept in real conditions.
- Study the **background noise** and **radio environment**.

- Test and refine **reconstruction algorithms** for extensive air showers (EAS).
- Establish procedures for data acquisition, storage, and calibration.

Left: Selected site of the GRANDProto300 radio array in Xiao Dushan (Gansu province, China).

Right: Antenna layout of GRANDProto300. A hexagonal grid was chosen with a sparse array (1 km-step) and a denser infill (577 m-step) (Chiche, S. ⁶ (2024). GRANDProto300: Status, science case, and Prospects)

Detector details

GP300 status

Foundation box

The first antennas were deployed in February 2023, and the last deployment took place in April 2025. Currently, 67 antennas deployed.

My objective during my internship

Commissioning

Tools to check the status of the detector

Detector qualification Use well known background sources, to characterise the detector (trigger efficiency, timing accuracy, livetime) and reconstruction methods (PWF, SWF)

Beacon

No physics without a good understanding of the detector !

Tools developed for monitoring

Allows to know the status of the antennas and understand the environment !

11

rate

Tools developed for monitoring : Power spectrum density (PSD)

Reconstruction

- The aim is to reconstruct the **direction of cosmic** rays.
- PWF and SWF use the trigger time in their reconstruction algorithms, so it's important to determine it with high precision. It's crucial to have a sub-degree resolution.

PWF : Ferrière, A. et al. "Analytical planar wavefront reconstruction and error estimates for radio detection of extensive air showers." SWF : V. Niess (2009)

1- Beacon reconstruction

Using : 20250309_235256_RUN10070

Beacon characteristic : Sine wave (A=1V, f=100MHz) with 20 periods and repetition rate between 1 and 100Hz.

ADC (a.u.)

1- Beacon analysis

TREND - SWF Beacon 50Hz Pairplot with threshold times (N=571 events)

2- Transformer mine

Using : 20250309_235256_RUN10070

- Few events are reconstructed very far from the transformer mine **but in the right direction**

2- Transformer mine

- Coherent sigmas
- Some interrogation about the mean offset (true propagation speed,

2- Transformer mine

Characterize the detector angular resolution.

Northing [m]

reconstructed position

 \star antenas

 \times barycenter

Summary

- Measurement of the experimental (relative) timing precision using beacon + mine trigger times. It results a
 mean standard deviation of < 4 ns.
- Determine the experimental angular resolution by reconstructing known source positions (e.g., transformer-mine runs) and comparing the mean reconstructed direction to the given source, yielding an angular azimuth resolution < 0.2°.

Outlook

- The next step is to pursue this work by studying plane sources. Access to high-precision ADS-B system of their locations will allow us to better characterize the detector.
- Study the temporal evolution of these sources in order to evaluate the detector's stability over time.
- Continue the analysis to gain a deeper understanding of the trigger pattern and its footprint.
- Investigating inclined extensive air showers to study cosmic rays.

Easting [m]

cosmic ray candidates & PhD work

- In parallel, GRAND has detected its first cosmic rays.

- Then, during my PhD, I will be responsible for continuing the search for cosmic rays, with a particular focus on highly inclined candidates.

Thanks for your attention !

Backup

5 random event (298.7° < φ < 299.2°)

20 periods and repetition rate between 1 and 100Hz.

ADC Samples [2ns]

Km3net event

