Exploring new long-lived particles at the LHC: signatures by charge and mass.

Madre Xavier Supervisor : Chabert Éric

Madre

Université de Strasbourg

19 June 2025

CMS Experiment

- Compact Muon Solenoid
- Large Hadron Collider
- proton-proton collisions
- International collaboration
- Scientific objective:
 - Standard Model
 - Higgs Physics
 - New Physics ★

Run 1	Run 2	Run 3
2009-2013	2015-2018	2022-In progress
7 and 8 TeV	13 TeV	13,6 TeV
5 and 18.8 fb ⁻¹	163.6 fb ⁻¹	>201.9 fb ⁻¹

Madre

Scientific Motivation

Standard

Model

Objective :

-Proposed a new **analysis strategy** based on Run 2 and 3 data

New

Particles

Experimental signature

- $\beta \gamma = \frac{P}{M}$
- Heavy particle -> low β
- Ionization $\propto \frac{Q^2}{\beta^2}$; $\beta = \frac{V}{c}$
- Tracker -> dE/dx
- Velocity measurement (β)
 - Ecal _____
 - Muon chamber

Tracker

- Semi-conductor sensor
- 22 strips layers
 - 10 layers in the barrel
 - 12 layers in the endap
- Reconstruction:
 - Track
 - dE/dx
- Track \rightarrow 14 clusters on average

• $R_{curvature} \propto p_T/Q$

• Algorithm for Q=1e

Electromagnetic calorimeter

- Scintillator made of PbWO₄
- Surrounding the tracker
- Measure of:
 - Energy
 - Time
- Design for :
 - Electron
 - Photon

Crystals in a Preshower 10.1088/1748-0221/3/08/S08004 supermodule Supercrystals Dee Modules Preshower End-cap crystals

Measure of the timing

State of art

CMS RUN 1 HSCP analysis (2013) arXiv:1305.0491v2

- Energy = 7 and 8 TeV Energy = 13 TeV ٠
- Luminosity = 5 and 18.8 fb⁻¹ Luminosity = 139 fb⁻¹ •
- Signal selection: ٠
 - Tracker
 - Track quality
 - Isolation
 - Ionization
 - Muon chamber •
 - Track quality
 - ß

ATLAS RUN 2 MCP analysis (2023) arXiv:2303.13613v2

- - Signal selection:
 - Tracker
 - Track quality ٠
 - Isolation •
 - Ionization
 - Muon chamber
 - Ionization ٠

10.1088/1742-6596/623/1/012024

State of art

CMS RUN 1 HSCP analysis (2013) arXiv:1305.0491v2

- Energie = 7 et 8 TeV ٠
- Luminosity = 5 and 18,8 fb⁻¹ Luminosity = 139 fb⁻¹
- Signal efficency :
 - M=800GeV
 - Q= 2e \rightarrow 56%
 - Q= 7e \rightarrow 9.9%

ATLAS RUN 2 MCP analysis (2023) arXiv:2303.13613v2

- Energie = 13 TeV
- Signal efficency :
 - M=1100GeV
 - $Q = 2e \rightarrow 29.1\%$
 - Q= 7e \rightarrow 7.6%

10.1088/1742-6596/623/1/012024

Current limits:

Q=2 e M>1060 GeV Q ∈ [3;7] e M>1390 à 1600 GeV

Analysis with low background \rightarrow expected background <2 event

Madre

My work

- Use of **simulations** generating multi-charged particles
- **Data analysis** : CMS internal software : C++; ROOT; python
- Characterization the experimental signature of multi-charged particles using :
 - Tracker
 - Electromagnetic calorimeter (ECAL)
- Implementation of a **new analysis** strategy for Run 2 and Run 3

lonization inside the tracker

- Ionization $\propto \frac{Q^2}{B^2} \rightarrow$ Saturation
 - Reading electronics -> 8 bits
- Saturation ratio per track :

 $R_{sat} = \frac{\# \ saturated \ clusters}{\# \ clusters}$

• Standard model background: $\beta \approx 1$

Saturation ratio for Q=1

- Q= 1:
 - Low β : High saturation (Beth-Bloch)
 - High β : Decrease in saturation

Ionization inside the tracker

•

•

Selection strategy

- Trigger muon
- Reconstruct as a muon
- Track selection
 - p_T
 - Compatibility with primary vertex
 - Muon chamber acceptance
 - Track validity
- Ionization selection
 - R_{sat}>0,75
- Region of interest:
 - Q>1
 - M>800GeV

Efficiency of selection

Comparison with ATLAS Run 2:

- Q=7e :
 - ATLAS M=1100GeV → Eff=7.6%
 - Here M=1200GeV → Eff= 8.49% ★

Trigger Muon

What limits Efficiency ?

- Filter applied to the selection
- Efficiency trigger muon
- $Eff = \frac{\# Event after cuts + trigger muon}{\# Event after cuts}$

Efficiency of selection

High masses \rightarrow low $\beta \rightarrow$ loss of muon chamber information \rightarrow low efficiency in region of interest

Madre

Particle Flow

- Particle Flow (PF) algorithm
 - ECAL
 - HCAL
 - Muon chamber
 - Tracker
- PF reconstruction
 - Charged hadron
 - Electron
 - Muon
 - Photon
 - Neutral hadron
- Proportion:
 - Low charge \rightarrow muon
 - High charge \rightarrow Charged hadron

Madre

Université de Strasbourg

Timing measurement in the ECAL

- Relative time of flight
 - difference with particle $\beta=1$
- add Electromagnetic calorimeter
 - Upstream in the detector

$$\beta \gamma = \frac{P}{M}$$
 Mass>> Delay increase

Theoritical delay in the ECAL

Université de Strasbourg

15

Timing measurement in the ECAL

- Relative time of flight
 - difference with particle $\beta=1$
- add Electromagnetic calorimeter
 - Upstream in the detector
- Deposit energy in the calorimeter (ECAL)

$$\beta \gamma = \frac{P}{M}$$
 Bethe-Bloch $E_{deposit} \propto \frac{Q^2}{\beta^2} \longrightarrow E_{muon} < 1 \text{GeV}$

Selection strategy

- Trigger tau
- Reconstruct as a charged hadron
- Track selection
 - p_T
 - Compatibility with primary vertex
 - Muon chamber acceptance
 - Track validity
- Ionization selection
 - R_{sat}>0,75
- Velocity selection (ECAL)
 - E_{deposit}>3 GeV
 - t>2 ns

Efficiency of the Tau analysis

- Comparison with ATLAS Run 2:
- Q=7e :
 - ATLAS M=1100GeV → Eff=4.1%
 - Here M=1200GeV → Eff=22.5% ★

Selection combination

Muon + Charged hadron

- ATLAS Run 2 efficiency :
 - Q= 2e and M=1100GeV :
 - ATLAS → 29.1%
 - Here → **53.1**%
 - Q= 4e and M=1100GeV :
 - ATLAS → 33.1%
 - Here \rightarrow 30.8%
 - Q= 7e and M=1100GeV :
 - ATLAS \rightarrow 7.6%
 - Here → **31.0**%

Efficiency of the combinaison analysis

Encouraging efficiency compared to ATLAS Run 2 analysis

Gain with combination

- Gain combinaison of two analysis
- $Gain = \frac{Eff_{Muon} + Eff_{Charged hadron}}{Max(Eff_{Muon}; Eff_{Charged hadron})}$
- Double the efficiency at the center

Gain of the combinaison analysis

Université de Strasbourg

Backup

ad	re
	· •
	ad

LHC curve

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPubli cResults#Full_summary_proton_proton_colli

Madre

Section efficace MCP

MCP model

Type II seesaw :

 $\Delta^{++} \to \mu^{+} \mu^{+}, ee, \tau\tau$ $\Delta^{++} \to H^{+} H^{+}$

https://slideplayer.com/sli de/13852635/

Neutrinos masses

Super-string :

arXiv:2204.01165v1

PT Reconstruction

EXO workshop London 2025 Rafey Hashmi

Université de Strasbourg

State of art selection

CMS preselection :

Trajectographe :

	Q < 1e	tracker+TOF	tracker-only	Q > 1e		
η	<2.1					
$p_{\rm T}$ (GeV/c)		>4	15			
d_z and d_{xy} (cm)		<0	.5			
$\sigma_{p_{\rm T}}/p_{\rm T}$		<0.	25			
Track χ^2/n_d		<	5			
# Pixel hits		>	1			
# Tracker hits	>7					
Frac. Valid hits	>0.8					
$\Sigma p_{\rm T}^{\rm trk}(\Delta R < 0.3)$ (GeV/c)	<50					
# dE/dx measurements	>5					
dE/dx strip shape test	yes no					
$E_{\rm cal}(\Delta R < 0.3)/p$	<0.3 –			<0.3		—
I_h (MeV/cm)	<2.8 >3.0					
ΔR to another track	$ < \pi - 0.3 $ –					

Chambres à muons :

	tracker+TOF Q	> 1e muon-	only
# TOF measurements		>7	
$\sigma_{1/\beta}$	<	0.07	
$1/\beta$		>1	
η	-	<2.	1
$p_{\rm T}$ (GeV/c)	_	>80)
d_z and d_{xy} (cm)	-	<15	5
# DT or CSC stations	-	>1	
Opp. segment $ \eta $ difference	_	>0.	1
$ \phi $	_	<1.2 OR	>1.9
$ \delta t $ to another beam crossing (ns)	—	>5	

ATLAS :

Table 1

Summary of the offline-selection requirements.

Search category	Preselection	Tight selection	Final selection
z = 2	Combined muon with:		Tightly selected candidate with:
		Preselected candidate with	
	'medium' identification criteria,	S(pixel dE/dx) > 13	S(TRT dE/dx) > 2,
	$p_{\rm T}^{\mu}/z > 50 {\rm GeV},$		S(MDT dE/dx) > 4
z>2	$p_{\rm T}/z > 10 {\rm GeV},$		Preselected candidate with:
	$ \eta < 2.0,$		
	no other particles with	-	TRT $f^{\rm HT} > 0.7$,
	$p_{\rm T}/z > 0.5 {\rm GeV}$ within $\Delta R = 0.01$		S(MDT dE/dx) > 7

CMS final :

				Number of events				
		Selection criteria		$\sqrt{s} = 7 \text{TeV}$		$\sqrt{s} = 8 \text{TeV}$		
	р _Т (GeV/c)	$I_{as}^{(\prime)}$	1/β	Mass (GeV/c ²)	Pred.	Obs.	Pred.	Obs.
		70 > 0.4		>0	7.1 ± 1.5	8	33 ± 7	41
Tracker-only >70	> 70			>100	6.0 ± 1.3	7	26 ± 5	29
	>0.4	_	>200	0.65 ± 0.14	0	3.1 ± 0.6	3	
		1		>300	0.11 ± 0.02	0	0.55 ± 0.11	1
				>400	0.030 ± 0.006	0	0.15 ± 0.03	0
Tracker+TOF >70	0 >0.125	>1.225	>0	8.5 ± 1.7	7	44 ± 9	42	
			>100	1.0 ± 0.2	3	5.6 ± 1.1	7	
			>200	0.11 ± 0.02	1	0.56 ± 0.11	0	
				>300	0.020 ± 0.004	0	0.090 ± 0.02	0
Muon-only	>230	_	>1.40	-	-	—	6 ± 3	3
Q > 1e		>0.500	>1.200	—	0.15 ± 0.04	0	0.52 ± 0.11	1
Q < 1e	>125	>0.275	-	—	0.12 ± 0.07	0	1.0 ± 0.2	0

Tracker: sensor

- Paire eletron-hole
- Electronic readout (ADC)
- Clusters

https://www.researchgate.net/publication/33714340_Developme nt_of_a_test_system_for_the_quality_assurance_of_silicon_micr ostrip_detectors_for_the_inner_tracking_system_of_the_CMS_ex periment

Madre

Université de Strasbourg

Bethe Bloch

Course M2 radiation interaction matter A.Besson

$$\left(-\frac{dE}{dx}\right) = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 W_{max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} - \frac{C}{Z}\right]$$

 $\begin{array}{ll} K & 4\pi N_A r_e^2 m_e c^2 \\ & (\text{Coefficient for } dE/dx) \end{array}$

z = charge number of incoming particle
Z,A = charge and atomic number of material

 β = v/c = incident particle velocity

m_e = electron mass

 $\gamma = 1/\sqrt{1-\beta^2}$ =Lorentz factor

 $W_{max} = T_{max}$ = maximum transfered energy in 1 collision

I = Average excitation energy

- δ = correction term: density correction factor
- C = correction term (not the speed of light !)

https://www.researchgate.net/publication/48410683_Search_for_New_Phy sics_with_ATLAS_at_LHC_-_Z'_dilepton_resonance_at_high_mass

Beta distribution

 $\beta = \frac{v}{c} = \frac{P}{E}$

Université de Strasbourg