

Search for a light Higgs boson at DØ

Samuel Calvet

CPPM - March 20th 2009

Search for light Higgs boson at DØ

Outline

- Constraints on the Higgs mass
- DØ detector
- Common tools
 - B-tagging
 - (Boosted) Decision Tree
 - Matrix Element Discriminant
- Low mass Higgs searches
- Prospective

Introduction

- So far, the Standard Model is successful
- Higgs Mechanism:
 - Scalar field in a potential...

- ... breaks the EW symmetry
- ► → massive gauge bosons
- ► → massive fermions (Yukawa couplings)
- \rightarrow a massive Higgs boson
- But not yet observed

Search for light Higgs boson at $\mathsf{D} \varnothing$

Indirect constraints

 Direct measurements of top and W masses point to a light Higgs boson

Indirect constraints

 Direct measurements of top and W masses point to a light Higgs boson

Global fit

Global electroweak fits indicate a low mass Higgs :
 m_H=80⁺³⁰-23 GeV

Global fit

- Global electroweak fits indicate a low mass Higgs :
 m_H=80⁺³⁰₋₂₃ GeV
- If one includes direct searches from LEP (m_µ>114.4 GeV) and Tevatron (m_µ≠170 GeV) :

Strategy @ Tevatron

- ◆ High mass (m_{H} >135 GeV) searches can look for gg→H→WW production
- Low mass: $gg \rightarrow H \rightarrow bb$ has too much QCD background
- \rightarrow search for associated productions

Samuel Calvet

Strategy @ Tevatron

Low mass Higgs searched in 3 main topologies:

Detector & analysis data sets

Search for light Higgs boson at DØ

Detector & analysis data sets

Background/signal simulation

- W+jets, Z+jets, tt contributions
 - are evaluated using the **alpgen** generator (interfaced with **pythia**)
- WW, WZ, ZZ, WH, ZH

are produced with pythia

- Single-top events
 - are generated with comphep (interfaced with pythia)

Background/signal simulation

- W+jets, Z+jets, tt contributions
 - are evaluated using the **alpgen** generator (interfaced with **pythia**)
- WW, WZ, ZZ, WH, ZH are produced with pythia
- Single-top events
 - are generated with comphep (interfaced with pythia)

Instrumental background (multijet events):

→ Estimated from the data

Tools

B-tagging

(Boosted) Decision Tree

Matrix Element Discriminant

b-tagging

Use long lifetime of b-quarks to improve the sensitivity

- Neural Network using outputs from other taggers:
 - Jet Lifetime Impact Parameter
 - Counting Signed Impact Parameter
 - Secondary Vertex Tagger

Multivariate techniques: Decision Tree

- Use a set of discriminant variables, and train a DT on signal and background samples
 - At each node, algorithm chooses the best variable, and the best cut to apply

At the end: leaves

- When there is too few events (<~100)
- Purity is high enough
- In the analysis, discriminant output=purity of the leave

Boosted Decision Tree

- Goal: want to get back the signal events falling in "background-like" leaves
- Idea:
 - a) Train one tree
 - b) Boost the weights of misclassified events
 - c) Re-train the tree
- Iterate N times...
- ... and combine the N trees
 in 1 output

Build a discriminant using LO matrix element (ME)

$$d\sigma(\vec{x}) = \sum_{i,j} \int d\vec{y} \left[f_i(q_1, Q^2) dq_1 \times f_j(q_2, Q^2) dq_2 \times \frac{d\sigma_{hs,ij}(\vec{y})}{d\vec{y}} \times W(\vec{x}, \vec{y}) \times \Theta_{Parton}(\vec{y}) \right]$$

Observed State at state parton level

Differential cross-section to observe the state \vec{x} from the parton level state \vec{y}

Build a discriminant using LO matrix element (ME)

Differential cross-section to observe the state \vec{x} from the parton level state \vec{y}

Build a discriminant using LO matrix element (ME)

◆ → Probability density functions $P(\vec{x})$: $P_{\text{signal}}(\vec{x})$, $P_{\text{bckgrd}}(\vec{x})$

Build a discriminant using LO matrix element (ME)

◆ → Probability density functions $P(\vec{x})$: $P_{signal}(\vec{x})$, $P_{bckgrd}(\vec{x})$

• Discriminant : $D(\vec{x}) = \frac{P_{\text{signal}}(\vec{x})}{P_{\text{signal}}(\vec{x}) + P_{\text{bckgrd}}(\vec{x})}$

relative probability for an event to come from signal or background

Build a discriminant using LO matrix element (ME)

◆ → Probability density functions $P(\vec{x})$: $P_{signal}(\vec{x})$, $P_{bckgrd}(\vec{x})$

• Discriminant : $D(\vec{x}) = \frac{P_{signal}(\vec{x})}{P_{signal}(\vec{x}) + P_{bckgrd}(\vec{x})}$

relative probability for an event to come from signal or background

Need huge CPU power

$W(\rightarrow I_V)H(\rightarrow b\overline{b})$

$W(\rightarrow I_V)H(\rightarrow bb)$

- Clear signature:
 - Isolated lepton
 - e or μ
 - MET
 - 2 b-quarks

$W(\rightarrow I_V)H(\rightarrow bb)$

- Clear signature:
 - Isolated lepton
 - e or μ
 - MET
 - 2 b-quarks

Analysis uses
 2.7 fb⁻¹ of data,

divided into 2 parts :

- Run IIa (~1.1 fb⁻¹)
- Run IIb (~1.6 fb⁻¹)

Samuel Calvet

Apr-02

Search for light Higgs boson at DØ

Instrumental background

Instrumental background (multijet events):

- Jet can fake an isolated electron
- μ from a semi-leptonic heavy quark decay appears as isolated
- Estimated from the data:
 - Probability for a lepton coming from a jet to be seen as isolated

Selection

- e channel
 - Exactly one isolated electron :
 - pT>15 GeV, $|\eta_{e}|$ <1.5 or 1.5< $|\eta_{e}|$ <2.5
 - MET>20 GeV (25 GeV if $1.5 < |\eta_e|$)
- μ channel
 - Exactly one isolated μ :
 - pT>15 GeV, |η_μ|<2.0
 - MET>20 GeV

- Both channels :
 - Divide the analysis into 2 parts

depending whether there are 2 or 3 jets (pT>20 GeV)

- Σ pT(jet) > 60 (90) GeV in the 2 (3) jet sample
- ► Cut against multijet background: M_T^W>40-0.5xMET
 - M_T^{W} : W transverse mass

Samuel Calvet

Good agreement after selection

b-tagging

Use long lifetime of b-quarks to improve the sensitivity

- Form 2 exclusive samples:
 - 2 loose b-tagged jets
 - 1 tight and 0 loose b-tagged jet

Good agreement after b-tagging

Multivariate techniques (1)

Matrix-element based discriminant (for the 2-jet sample)

$$d\sigma(\vec{x}) = \sum_{i,j} \int d\vec{y} \left[f_i(q_1, Q^2) dq_1 \times f_j(q_2, Q^2) dq_2 \times \frac{d\sigma_{hs,ij}(\vec{y})}{d\vec{y}} \times W(\vec{x}, \vec{y}) \times \Theta_{\text{Parton}}(\vec{y}) \right]$$

→ relative probability for an event to come from WH decay or background

Multivariate techniques (2)

- Increase the sensitivity in the 2-jet sample with a neural network (NN) using as inputs:
 - Matrix element discriminant
 - pT's, ΔR , $\Delta \varphi$, invariant mass of the 2 leading jets
 - pT of the dijet system
- Iterained NN's: electron/muon X 1-/2- tags samples X Runlla/Runllb
 → Gain of 20% of sensitivity wrt M(jet1, jet2) only

Systematics uncertainties

- Main uncertainties
 - Cross sections: 11-20%
 - Shape of the Wjj dijet invariant mass: 10%
 - Shape of the Wbb dijet invariant mass: 5-10%
 - Lepton reconstruction/identification: 5-6%
 - Jet identification/calibration: 2-6%
 - Jet fragmentation: 5%
 - Trigger efficiencies : 3-5%
 - b-tagging efficiency:
 - 2-5% (per heavy quark jet)
 - 25% (per light quark jet)

Results

- No excess of events observed → set limits using...
 - the NN output (2-jet samples)
 - di-jet invariant mass (3-jet samples)
- … for the 16 individual analysis
 - electron/muon X 1-/2- tags samples X Runlla/Runllb X 2/3 jets
- at 95% of CL, modified frequentist CL_s approach
- using the *log-likelihood ratio* (of Signal+Background [S+B] vs Background [B] hypotheses) as test statistic

Log-likelihood ratio (brief reminder)

- Given a set of predictions, observations and systematic uncertainties
 - We use a x²-test to describe how well the B (resp. S+B) hypothesis fits the data/pseudo-data samples

$$Q' = -2Log\left(\frac{\chi^2_{min}(\text{TEST}\vec{D})}{\chi^2_{min}(\text{NULL}\vec{D})}\right)$$

Q'=~0 → not sensitive
 |Q'| >> 1 → very sensitive

- \rightarrow Give a feeling of exclusion/discovery power of an analysis
- Allows to modify the predictions within the systematics uncertainties to better fit the data
 - \blacktriangleright \rightarrow Reduces the impact of the systematic uncertainties

Results

Search for light Higgs boson at DØ

$Z(\rightarrow_{VV})H(\rightarrow b\overline{b})$

$Z(\rightarrow_{VV})H(\rightarrow bb)$

- Signature:
 - MET (=pT of Z boson)
 - 2 b-quark jets

$Z(\rightarrow_{VV})H(\rightarrow bb)$

- Signature:
 - MET (=pT of Z boson)
 - 2 b-quark jets

Search for light Higgs boson at DØ

 $Z(\rightarrow_{VV})H(\rightarrow bb)$

$Z(\rightarrow_{VV})H(\rightarrow bb)$

- Good trigger (jets+MET) modeling is crucial
- Multijet background:
 - In analysis sample:
 - cut: $\Delta \varphi$ (calorimetric MET, MET from tracks)< $\pi/2$
 - Multijet background estimated from data with $\Delta \varphi > \pi/2$:

$Z(\rightarrow_{VV})H(\rightarrow bb)$: Selection

- $\Delta \varphi$ (calorimetric MET, MET from tracks)< $\pi/2$
- 2 or 3 jets (pT>20 GeV)
- $\Delta \varphi$ (jet1, jet2)<165°
- MET:
 - MET>50 GeV,
 - MET>80-40x $\Delta \varphi_{\min}$ (MET, jet)
- Veto on *e* and μ
- -0.1<Asymmetry<0.2

- → against multijet bckgrd
- → against multijet bckgrd

- \rightarrow against W \rightarrow I_V
- → against multijet bckgrd

Good agreement after selection

b-tagging

Jet

Boosted decision tree

- Build BDT for each data taking period
- Example of used variables:
 - MET, ΣpT_{jet} , ΣpT_{jet}
 - $\Delta \varphi_{\min}$ (MET, jets), $\Delta \varphi_{\max}$ (MET, jets)
 - Δφ(jet1, jet2), ΔR(jet1, jet2)
 - Di-jet invariant mass
 - •

ves

pT(jet1)>25 GeV

no

Mass>105 GeV

MET>50 GeV

Results

- Main systematics:
 - Cross-sections: 6% (signal), 6-16% (background)
 - Fractions of W+bb/cc in W+jets: 50%
 - Lumi: 6.1%
 - B-tagging: 6%
 - Trigger: 5.5%

No excess wrt. background expectation \rightarrow set a limit:

Samuel Calvet

Z(→II)H(→bb)

Z(→II)H(→bb)

- Clear signature
 - 2 leptons (e or μ)
 - 2 b-quark jets
- Low background...

Luminosity (/fb)

... but production rate is low -

- 4.2 fb -1 of data, divided into 2 parts:
 - Run IIa
 - Run IIb

$Z(\rightarrow II)H(\rightarrow bb)$: Selection

- ≥2 jets (pT1>20, pT2>15 GeV)
- Electron channel:
 - 2 electrons, pT>15 GeV
 - $|\eta_{det}| < 1.1 \text{ or } 1.5 < |\eta_{det}| < 2.5$
 - Shower shape criteria
 - Matched to a track
 - Or in gap : $1.1 < |\eta_{det}| < 1.5$
 - Tau NN inspired criteria
 - Di-electron mass: 70<M<110 GeV</p>

$Z(\rightarrow II)H(\rightarrow bb)$: Selection

- ◆ ≥2 jets (pT1>20, pT2>15 GeV)
- Electron channel:
 - 2 electrons, pT>15 GeV
 - $|\eta_{det}| < 1.1 \text{ or } 1.5 < |\eta_{det}| < 2.5$
 - Shower shape criteria
 - Matched to a track
 - Or in gap : $1.1 < |\eta_{det}| < 1.5$
 - Tau NN inspired criteria
 - Di-electron mass: 70<M<1</p>
- Muon channel:
 - 2 muons, pT>10 GeV
 - Isolation Mu1*Isolation Mu2 < 0.03
 - Or 1 muon (pT>10 GeV) + 1 track (pT>20 GeV)
 - Isolation Mu*Isolation track < 0.01
 - Di-muon mass: 70<M<130 GeV, opposite sign</p>

In a cone centered

on the muon

muon

Isolation= $\Sigma pT_{tracks} + \Sigma E_{\tau}$ (cells in calo.)

рI

$Z(\rightarrow II)H(\rightarrow bb)$: instrumental background

- ◆ ≥2 jets (pT1>20, pT2>15 GeV)
- Electron channel:
 - 2 electrons, pT>15 GeV
 - $|\eta_{\rm det}|$ <1.1 or 1.5< $|\eta_{\rm det}|$ <2.5
 - Shower shape criteria
 - Matched to a track
 - Or in gap : $1.1 < |\eta_{det}| < 1.5$
 - Tau NN inspired criteria

Estimated from data

Electron channel:

sign

- Same sign electrons
- Invert the shower shape criteria
- Invert the NN criteria

Invert the isolation cut

Track and Mu with same

- Di-electron mass: 70<M<110 G Muon channel:</p>
- Muon channel:
 - 2 muons, pT>10 GeV
 - Isolation Mu1*Isolation Mu2
 - Or 1 muon (pT>10 GeV) + 1 track (pT>20 GeV)
 - Isolation Mu*Isolation track < 0.01
 - Di-muon mass: 70<M<130 GeV, opposite sign</p>

Good agreement after selection

Samuel Calvet

Search for light Higgs boson at DØ

B-tagging, KF, BDT

- Form 2 exclusive samples:
 - 2 loose b-tagged jets
 - 1 tight and 0 loose b-tagged jet
- Kinematic fitting
 - Allow energies and angles to fluctuate according to the detector resolution → minimize the x² under the constraints:
 - Di-lepton mass: $M_z \pm \Gamma_z$
 - Momentum in the transverse plan of HZ system: 0 \pm 7 GeV
- Boosted Decision Tree for each b-tagged sample:
 - pT, η , invariant mass of the jets
 - $\Delta\eta$ (jet1, jet2), $\Delta\varphi$ (jet1, jet2), ...
 - $\Delta R(lep1, lep2), \Delta \phi(lep1, lep2), ...$
 - Spin correlations, ...

After multivariate discriminants

Samuel Calvet Searc

Search for light Higgs boson at DØ

Results

- Main systematics:
 - Cross-sections
 - Z+jets: 10%
 - Z+bb/cc: 30%
 - Lumi: 6.1%
 - Multijet background: 20%(ee)-50%(μμ)

No excess wrt. background expectation → set a limit:

Combination

Combination

160-170 GeV exclusion !

Prospective

Exclusion potential @ Tevatron

Evidence potential @ Tevatron ... or to see a evidence of the Higgs Tevatron Projection Evidence January 15, 2009 Preliminary 0.9 0.8 Analyzed L=10 fb⁻¹/Exp õ 0.7 Analyzed L=5 fb⁻¹/Exp **Probability of 3**σ EP Exclu 0.6 0.5 Year 2011 0.4 0.3 0.2 'ear 2009 0.1 0 120 130 140 150 160 170 190 100 110 180 200 Mass (GeV/c²)

Conclusion

- Nice results
 - ► WH [2.7 fb⁻¹]
 - ► $ZH \rightarrow vvbb$ [2.1 fb⁻¹]
 - ► ZH→llbb [4.1 fb⁻¹]
- Improvements underway
 - Further improvements in lepton identification
 - Improvements in b-tagging (e.g., b/c separation)
 - **۱**...
 - Additional integrated luminosity [>5 fb⁻¹]
- Evidence of Higgs boson is possible

Backup

Combination

 $H \rightarrow \gamma \gamma$

$H \rightarrow \gamma \gamma$, fermiophobic

$WH \rightarrow \tau v bb$

