

Tracking with ML

11th December 2024

Jeremy Couthures

Reconstructed high-level features

• Assumption:

the model is using high-level features in the output latent space (12 neurons)

• Approach:

 Information theory: conditional entropy of high-level features conditioned on the output latent space → gives how much of the high-level feature can be predicted from the latent space alone

Entropy

Some properties of entropy

- H(X) is an expected value, only cares about probabilities
- H(X) is maximum when X follows a uniform law
- max(H(X), H(Y)) \leq H(X,Y) \leq H(X) + H(Y)
- $H(Y|X) \leq H(Y)$
- I(X;X) = H(X)
- $0 \leq I(X;Y) \leq min(H(X), H(Y))$
- Equalities when:
 - X=Y
 - X and Y are independent

Proficiency

Proficiency

Computing entropy

• Discrete (Shannon):

$$H[X] = -\sum_{i=1}^{n} P(x_i) \log P(x_i)$$
$$H(\mathbf{y}) = -\int f(\mathbf{y}) \log f(\mathbf{y}) d\mathbf{y}$$

Continuous (Shannon):

• Continuous (Edwin Thompson Jaynes): Limiting density of discrete points

$$\lim_{N o\infty} H_N(X) = \log(N) - \int p(x) \log rac{p(x)}{m(x)}\, dx.$$

Computing entropy: continuous issue

• Continuous (Shannon): $H(\mathbf{y}) = -\int f(\mathbf{y}) \log f(\mathbf{y}) d\mathbf{y}$

- not invariant under a change of variables (Ex: H(y) != H(2*y))
- can become negative (Ex: uniform between 0 and ½)
- not dimensionally correct ([f(y)] = [1/dy] → log([f(y)]) = log([1/dy]))

• Quantization:

continuous function f discretised into bins of size Δ Shannon entropy of the discretised density H_{Δ}

$$H_{\Delta} := -\sum_{i=-\infty}^{\infty} \Delta f(x_i) \log(f(x_i)) - \sum_{i=-\infty}^{\infty} \Delta f(x_i) \log(\Delta)$$
$$\lim_{\Delta \to 0} H_{\Delta} = \underbrace{-\int_{-\infty}^{\infty} f(x) \log(f(x)) dx}_{\text{differential entropy}} \underbrace{-\log(0)}_{\text{infinity offset}} \underbrace{-\int_{-\infty}^{\infty} f(x) \log(f(x)) dx}_{h(X)} = -\lim_{\Delta \to 0} \sum_{i=-\infty}^{\infty} \Delta f(x_i) \log(f(x_i)) = \mathsf{H}_{\Delta} + \mathsf{log}(\Delta)$$

Implementation tests

• Multivariate normal distributions: 10 000 points Analytical solution: $h(x) = \frac{n}{2}\ln(2\pi) + \frac{1}{2}\ln|\Sigma| + \frac{1}{2}n$ Bias

n is the dimension

Ν	Theory	Histogram	KDE + Histogram
3	3.91	3.82	4.02
4	5.09	4.43	5.21
5	6.26	4.30	6.30
6	7.41	3.68	7.23
13	18.45	-3.21	18.43

KDE + Histogram:

KDE Fit the points (**gaussian** kernel) $\rightarrow 10^{10}$ samples from KDE Histogram from the 10^{10} samples

= Histogram(KDE(10 000), 10¹⁰)

20 bins are use for histograms

Computing entropy: continuous fix

• Continuous (Edwin Thompson Jaynes): Limiting density of discrete points

 $\lim_{N o \infty} rac{1}{N} ext{ (number of points in } a < x < b) = \int_a^b m(x) \, dx$

$$\lim_{N o\infty} H_N(X) = \log(N) - \int p(x)\lograc{p(x)}{m(x)}\,dx.$$

- Invariant with change of variables
- Positive
- Dimensionally correct

Relative entropy:
$$D(p \parallel m) = \int p(x) \log rac{p(x)}{m(x)} \, dx$$

KNN estimation

Estimate mutual information

$$||z - z'|| = \max\{||x - x'||, ||y - y'||\}$$

 $\langle \dots \rangle = N^{-1} \sum_{i=1}^{N} \mathsf{E}[\dots(i)]$

$$I^{(1)}(X,Y) = \psi(k) - \langle \psi(n_x + 1) + \psi(n_y + 1) \rangle + \psi(N)$$

Here, $\psi(x)$ is the digamma function, $\psi(x) = \Gamma(x)^{-1} d\Gamma(x)/dx$. It satisfies the recursion $\psi(x+1) = \psi(x) + 1/x$ and $\psi(1) = -C$ where C = 0.5772156...

Used by scikit-learn

12/11/24

Let us denote by $\epsilon(i)/2$ the distance from z_i to its k-th neighbour, and by $\epsilon_x(i)/2$ and $\epsilon_y(i)/2$ the distances between the same points projected into the X and Y subspaces. Obviously, $\epsilon(i) = \max\{\epsilon_x(i), \epsilon_y(i)\}$. In the first algorithm, we count the number $n_x(i)$ of points x_j whose distance from x_i is strictly less than $\epsilon(i)/2$, and similarly for y instead of x.

High-level variables single neuron

From Scikit-learn Mutual information calculation

12/11/24

High-level variables single neuron

Change of variable impact

High-level variables single neuron

1 event: 14183 hits

F

12/11/24

Random variables single neuron: uniform

From Scikit-learn Mutual information calculation

12/11/24

Random variables single neuron: normal

From Scikit-learn Mutual information calculation

12/11/24

Random variables single neuron: poisson

1 event: 14183 hits

F

12/11/24

Layer proficiency

Scikit-learn do only single dimensional X and Y

Theory: To estimate the joint MI between $\{X_1, X_2, ..., X_m\}$ and *Y*, the highdimensional variables $\{X_1, X_2, ..., X_m\}$ should be treated as a whole and n_x would be defined as the number of points in the *m*-dimensional space.

12/11/24

Goodness of fit

• Sample from the fit KDE

Conditional entropy

$$H(Y|X) = -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)}$$

Conditional entropy

Conditional entropy

12/11/24

Kernel Density Estimation

Need to have the probability distribution

Kernel density estimation:

- Fit parameter: h
- Put a Kernel function K(x,h)
 in each point and sum them
 to get the density estimation
 - Gaussian kernel (kernel = 'gaussian') $K(x;h) \propto \exp(-rac{x^2}{2h^2})$

GNN Metric Learning

Architecture

Performance

