

Tracking with Hashing

11/20/24

Jeremy Couthures

Interpretability

Goal: Understand the model with physics

- Ideal: from black box (ML) to algorithm (physics)

• *How* is the prediction done?:

- What are the steps taken?

• Need to know *What* it predicts:

- Objective (loss function): group hits of **same particle**
 - But not necessarily what is done (poorly trained / untrained vs trained)
- Performance plots: How good are the predictions with respect to the objective
- Constraints: Hit by hit application \rightarrow no curvature (q, pT) information

11/20/24

Interpretability

• Extracting information:

 Assume the model is building an **algorithm** internally: *mechanistic interpretability*

• Approach:

- identify parts of this algorithm (relevant pieces)
- identify known high-level features built internally

Identifying parts of the algorithm

• Approach:

- Interpret relevant neurons as formulas

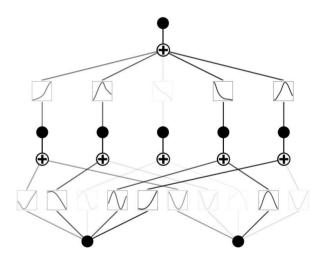
• Steps:

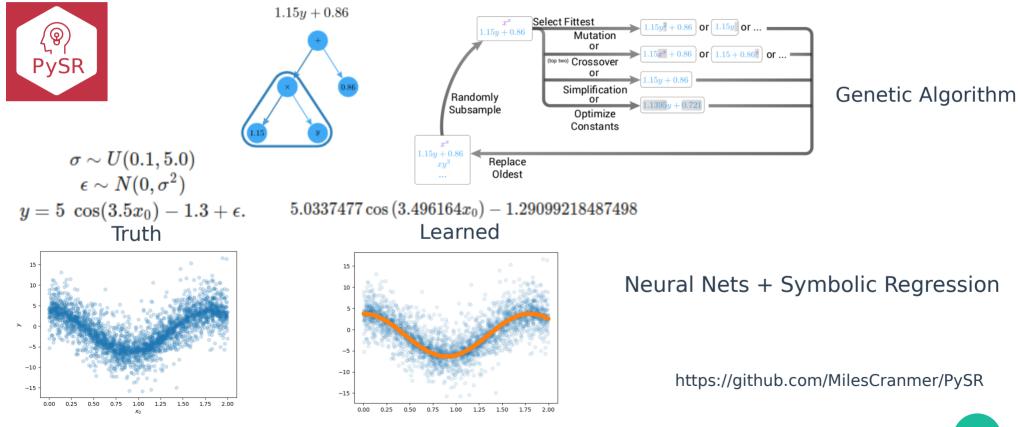
- 1) Identify relevant neurons
- 2) Symbolic regression to obtain a formula of the quantity approximated
- 3) Identify relevant parts of the equation
- 4) Compare with known physics high-level variables

Training Didn't converge

Step 0

- Didn't improved after first batch
- Playing with hyper-parameters didn't helped



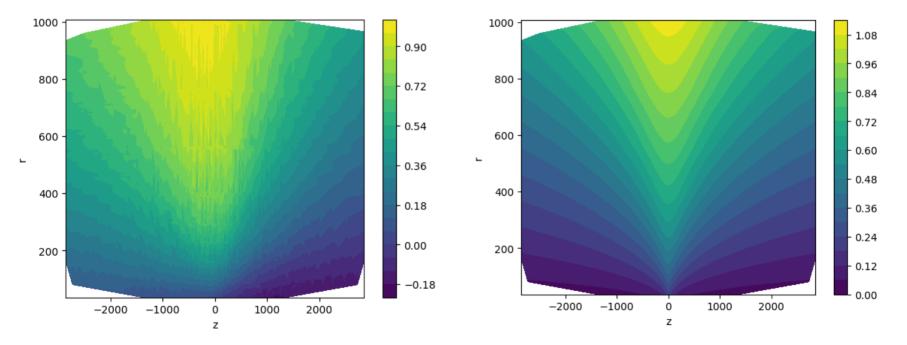


1.05 1000 1000 0.90 - 0.90 800 800 0.72 - 0.75 - 0.54 600 600 - 0.60 5 5 - 0.36 - 0.45 400 400 - 0.18 - 0.30 - 0.00 200 200 -- 0.15 -0.18 0.00 -2000 -1000 0 1000 2000 -2000 -10000 1000 2000 z z

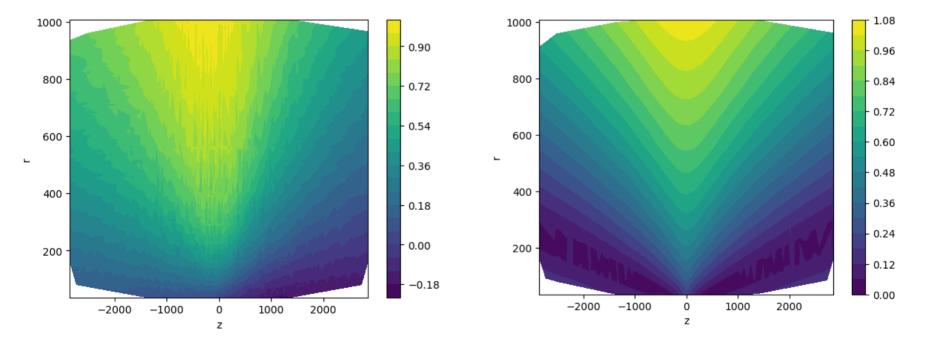
np.sin(df["theta"])*df["r"]/1000

11/20/24

np.sin(df["theta"]) * 0.03505834 * np.sqrt(df["rho"])



np.sqrt(0.0007077842 * (1 + np.cos(df["eta"])) * df["r"])



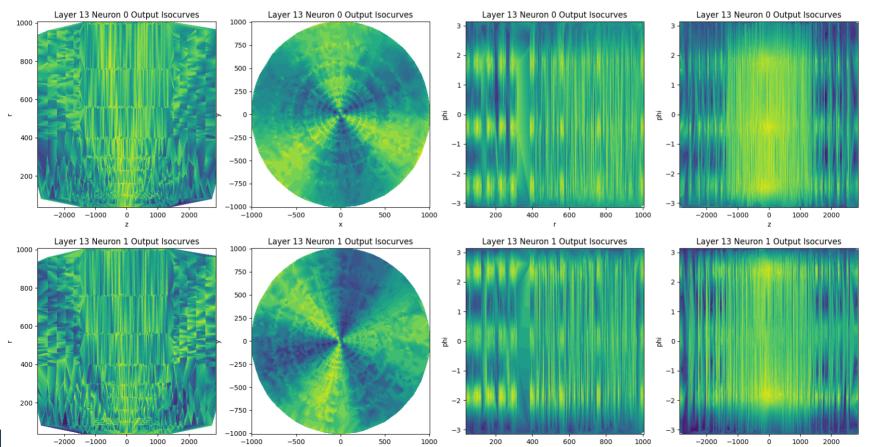
Interpretability

• *How* is the prediction done?:

- What are the steps taken?
- Does it predict track features (q/pT, eta, phi, d0, z0)?

Latent space

z



r

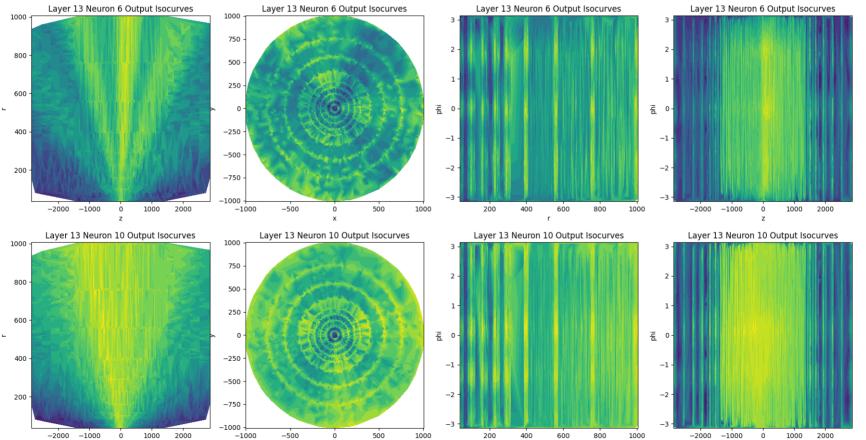
z

х

11

Latent space

z



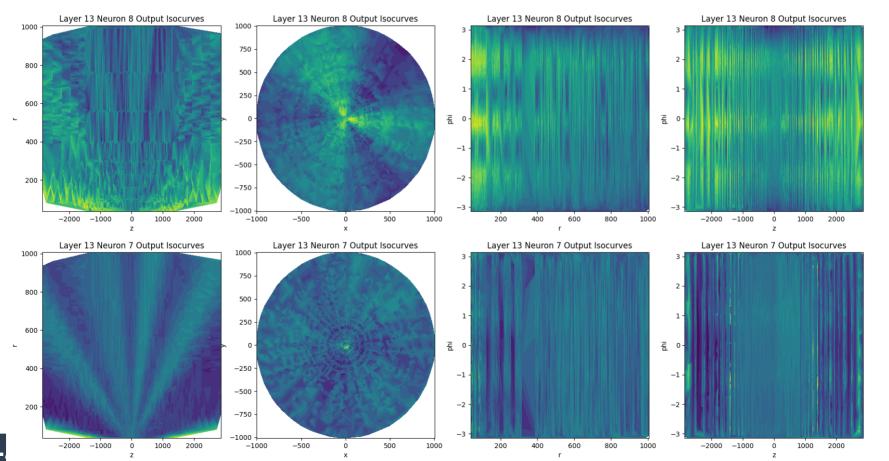
r

х

12

z

Latent space



13

Known high-level features

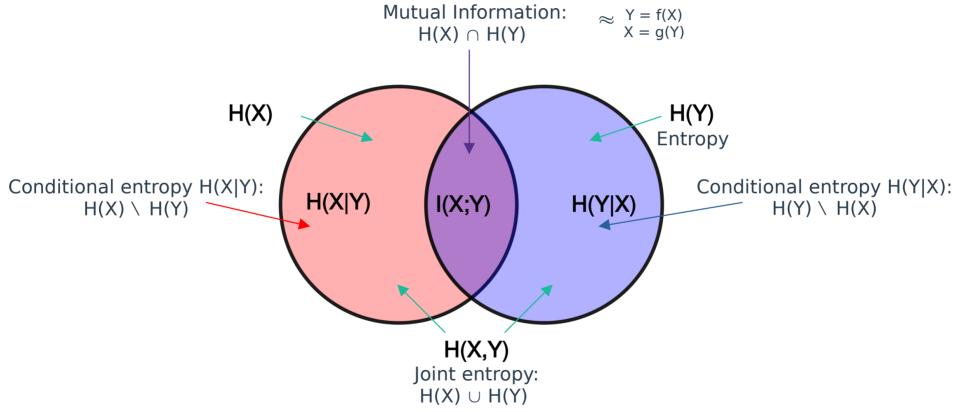
• Assumption:

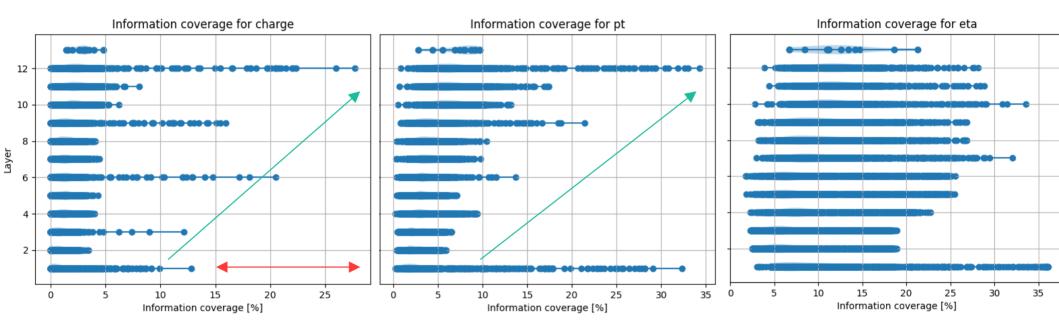
the model is using high-level features in the output latent space (12 neurons)

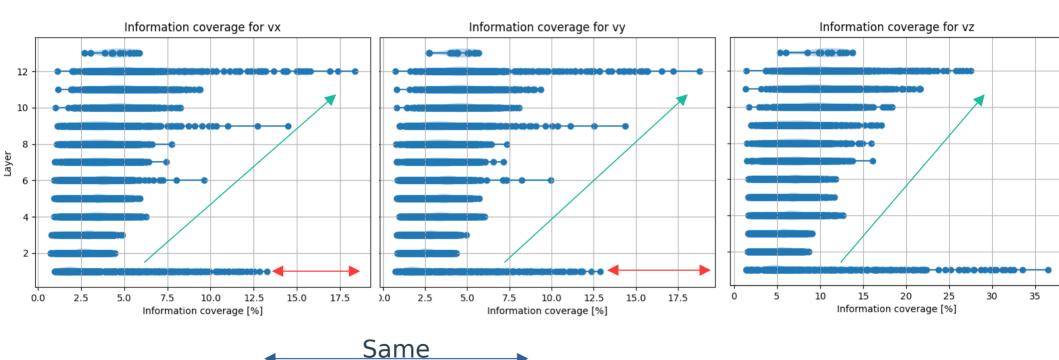
• Approach:

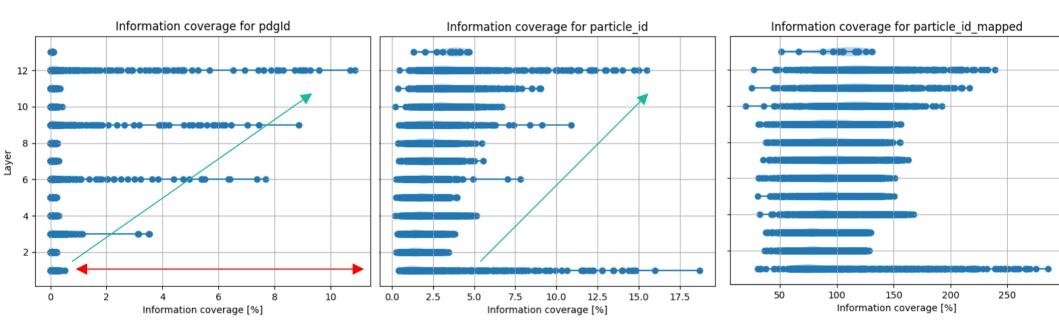
 Information theory: conditional entropy of high-level features conditioned on the output latent space → gives how much of the high-level feature can be predicted from the latent space alone

Entropy





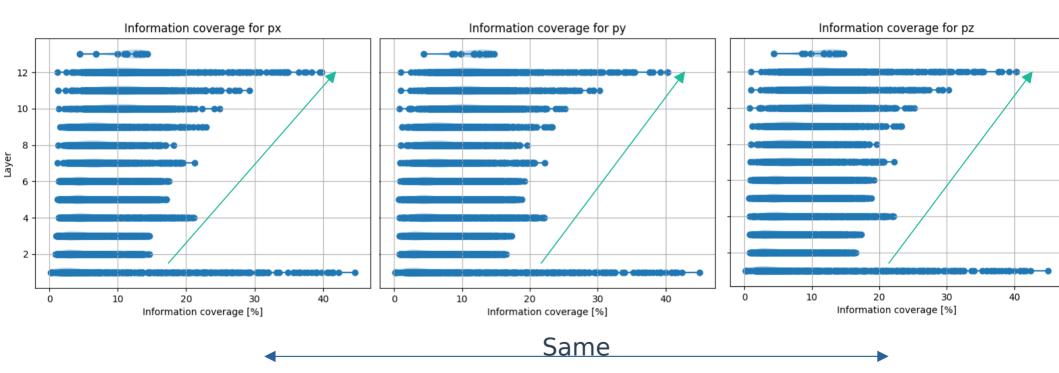


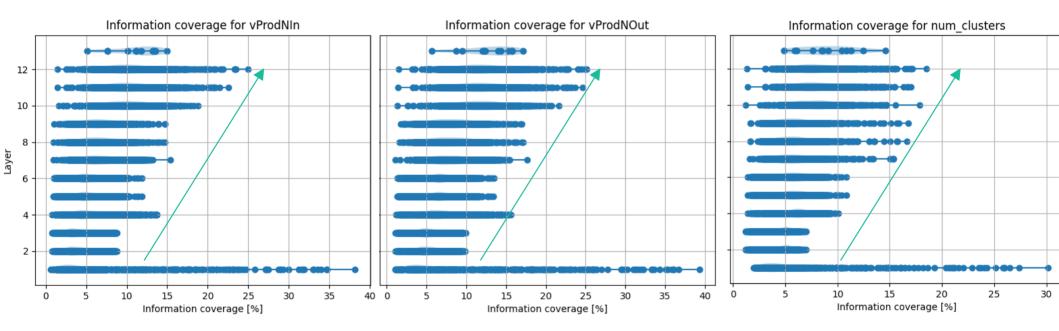


Learned to isolate some particles

Broken

11/20/24





BACKUP

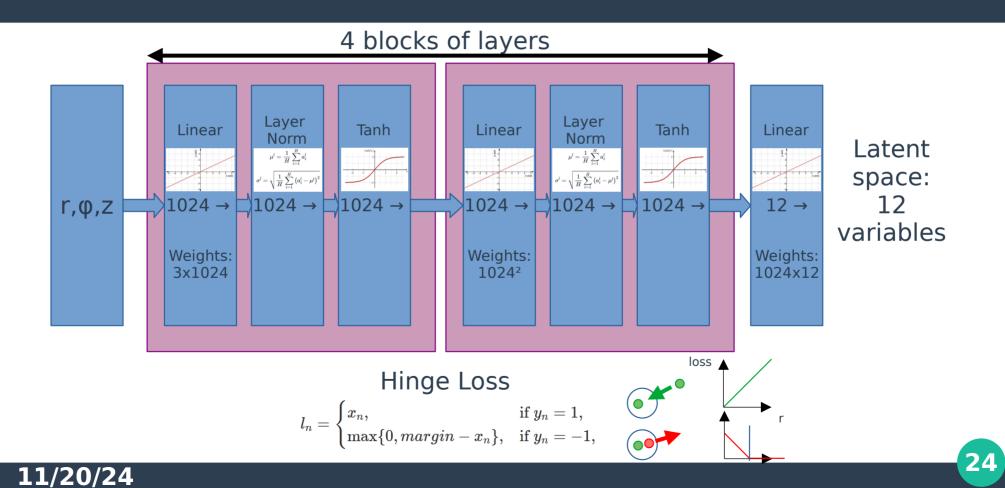
21

- Plots en fonction de r-phi-z = pas la bonne approche
- Cherche à faciliter la reconstruction des traces → ce que les points d'une même trace ont en commun → doit regarder en fonction des paramètres des traces et comparer pour différentes traces

GNN Metric Learning



Architecture



Interpretability

 study the internal representation of the problem by the model

ait

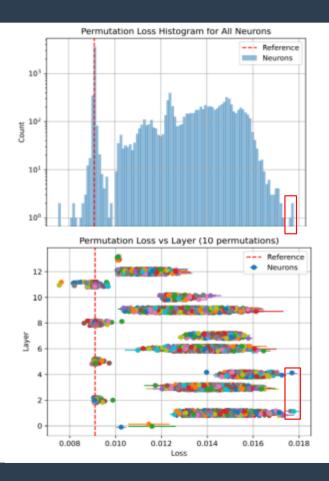
Software implementation

f(x,y,z)=(x+y)^z+zy^x

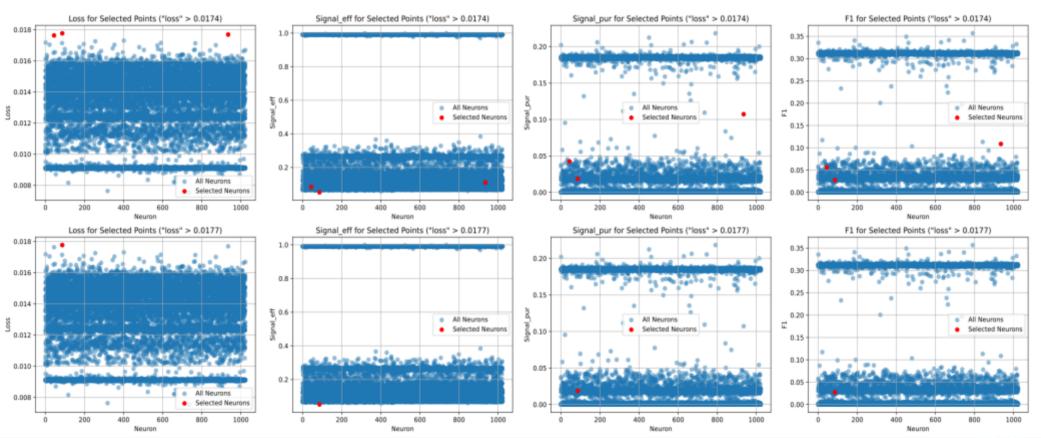
Identify High Level variables

Neuron identification: Permutation loss

- 3 promising neurons:
 - 2 on layer 1 (*Linear* with input layer)
 - 1 on layer 4 (More complex)
- Normalization Layers (3n-1) not perturbed by permutation → Information is shared among neurons

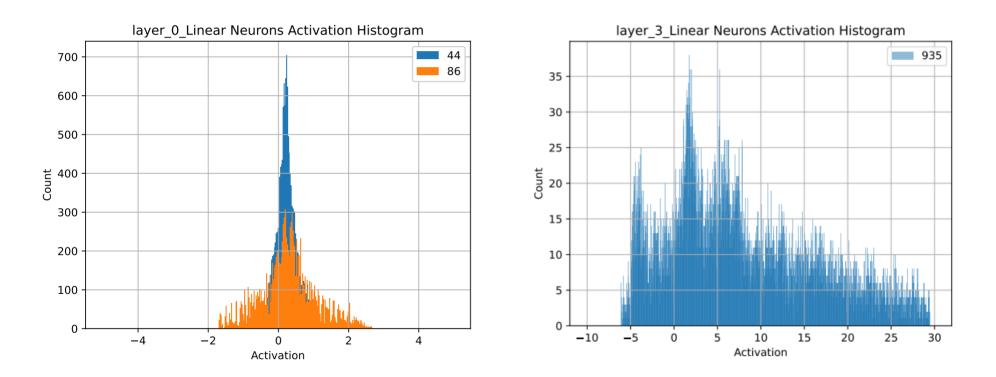


Neuron specificities

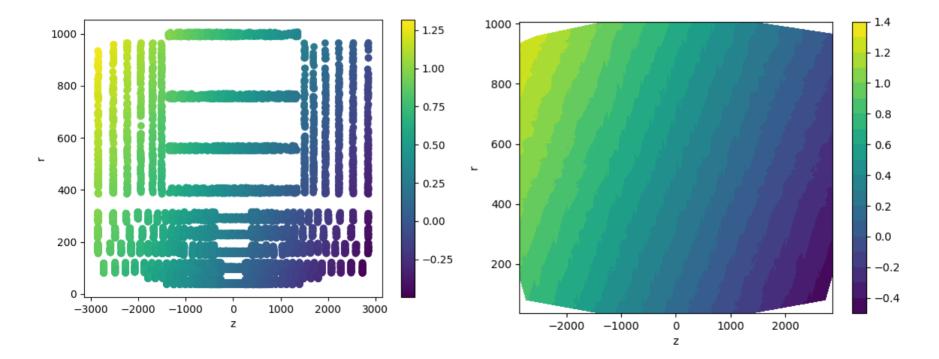


11/20/24

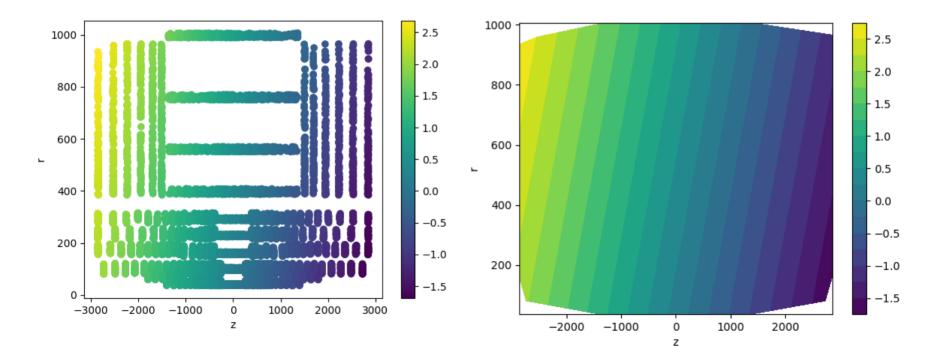
Activations



Activations r-z neuron 44

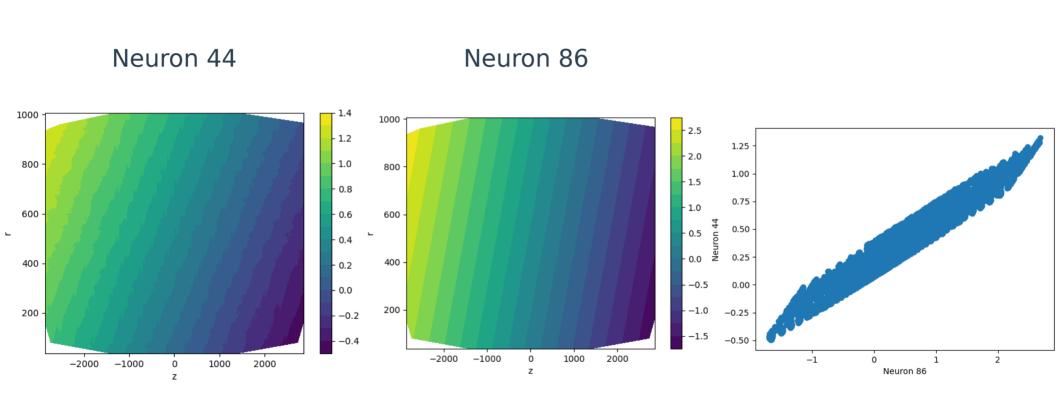


Activations r-z neuron 86



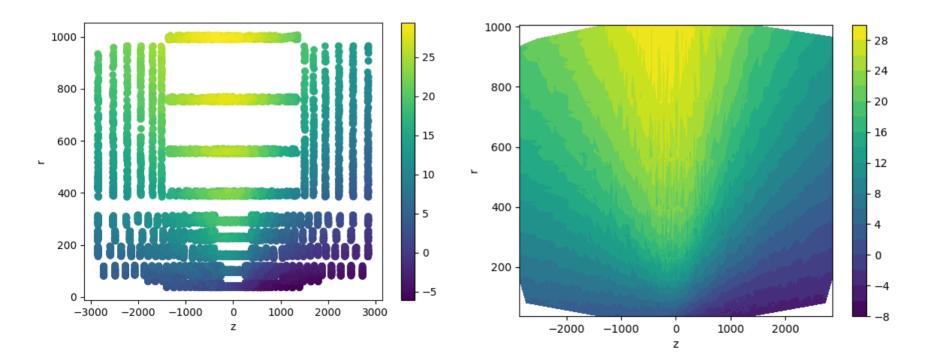
11/20/24

Neuron 44 vs neuron 86



31

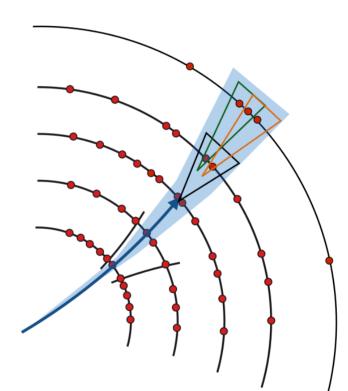
Activations r-z neuron 935



Combinatorial problem

Combinatorial Kalman Filter:

- Several possibilities of expanding the seeds at each layer → need to test them all
- Number of combinations increases exponentially with the number of layers



Model

• Example 2

1. First, we build our input data from the raw Athena events:

acorn infer data_reader.yaml

2. We start the graph construction by training the Metric Learning stage:

acorn train metric_learning_train.yaml

3. Then, we build graphs using the Metric Learning in inference:

acorn infer metric_learning_infer.yaml

Model inference parameters

r_infer: 0.1 knn_infer: 1000 hard_cuts: pt: [1000, .inf] # Model parameters undirected: True node_features: [r, phi, z] node_scales: [1000, 3.14, 1000] emb_hidden: 1024 nb_layer: 4 emb_dim: 12 activation: Tanh randomisation: 1 points_per_batch: 50000 r_train: 0.1 knn: 50 knn val: 1000

Training parameters
warmup: 5
margin: 0.1
lr: 0.01
factor: 0.7
patience: 10
max_epochs: 100
metric_to_monitor: f1
metric_mode: max

Performance

