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Interpretability

● Goal: Understand the model with physics
– Ideal: from black box (ML) to algorithm (physics)

● How is the prediction done?:
– What are the steps taken?

● Need to know What it predicts:
– Objective (loss function): group hits of same particle

● But not necessarily what is done (poorly trained / untrained vs trained)
– Performance plots: How good are the predictions with respect to the 

objective
– Constraints: Hit by hit application → no curvature (q, pT) information
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Interpretability

● Extracting information: 
– Assume the model is building an algorithm internally: 

mechanistic interpretability 
● Approach: 

– identify parts of this algorithm (relevant pieces)
– identify known high-level features built internally
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Identifying parts of the algorithm

● Approach: 
– Interpret relevant neurons as formulas

● Steps:
1) Identify relevant neurons
2) Symbolic regression to obtain a formula of the quantity 

approximated
3) Identify relevant parts of the equation
4) Compare with known physics high-level variables
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KAN

● Training Didn’t converge
● Didn’t improved after first batch
● Playing with hyper-parameters 

didn’t helped
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Symbolic regression

https://github.com/MilesCranmer/PySR

PySR

Truth Learned

Genetic Algorithm

Neural Nets + Symbolic Regression
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Symbolic regression

np.sin(df["theta"])*df["r"]/1000
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Symbolic regression

np.sin(df["theta"]) * 0.03505834 * np.sqrt(df["rho"])
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Symbolic regression

np.sqrt(0.0007077842 * (1 + np.cos(df["eta"])) * df["r"])
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Interpretability

● How is the prediction done?:
– What are the steps taken?
– Does it predict track features (q/pT, eta, phi, d0, z0)?
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Latent space
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Latent space
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Latent space
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Known high-level features

● Assumption:
 the model is using high-level features in the output latent space 
(12 neurons)

● Approach: 
– Information theory: conditional entropy of high-level features 

conditioned on the output latent space → gives how much of the 
high-level feature can be predicted from the latent space alone
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Entropy

Joint entropy:
H(X) ∪ H(Y) 

Mutual Information:
H(X) ∩ H(Y) 

Conditional entropy H(Y|X):
H(Y) ∖ H(X)

Conditional entropy H(X|Y):
H(X) ∖ H(Y)

Entropy 

Y = f(X)
X = g(Y)≈
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Same
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BrokenLearned to isolate some particles
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Same
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BACKUP
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● Plots en fonction de r-phi-z = pas la bonne 
approche

● Cherche à faciliter la reconstruction des traces → 
ce que les points d’une même trace ont en commun 
→ doit regarder en fonction des paramètres des 
traces et comparer pour différentes traces



11/20/24  23

GNN Metric Learning
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Architecture

r,φ,z

4 blocks of layers

1024 → 

Linear

1024 → 

Layer 
Norm

1024 →

Tanh

12 →

Linear

1024 → 

Linear

1024 → 

Layer 
Norm

1024 → 

Tanh

Hinge Loss
r

loss

Weights:
3x1024

Weights:
1024²

Weights:
1024x12

Latent 
space:

12 
variables



Interpretability
● study the internal 

representation of the 
problem by the model

Identify High Level variables

f(x,y,z)=(x+y)z+zyx

Software implementation
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Neuron identification: Permutation loss

● 3 promising neurons:
– 2 on layer 1 (Linear with input 

layer)
– 1 on layer 4 (More complex)

● Normalization Layers (3n-1)  
not perturbed by 
permutation → Information 
is shared among neurons
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Neuron specificities
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Activations

4 2 0 2 4
Activation

0

100

200

300

400

500

600

700

Co
un

t

layer_0_Linear Neurons Activation Histogram
44
86



11/20/24  29

Activations r-z neuron 44



11/20/24  30

Activations r-z neuron 86
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Neuron 44 vs neuron 86

Neuron 44 Neuron 86



11/20/24  32

Activations r-z neuron 935
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Combinatorial problem

Combinatorial Kalman Filter:
– Several possibilities of expanding the seeds 

at each layer → need to test them all
– Number of combinations increases 

exponentially with the number of layers
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Model

● Example 2
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Performance
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