## R&D on Monolithic CMOS sensors and DRD3 projects Workshop DI2I, March 4 - 2025

A. Besson (IPHC), M. Barbero (CPPM), M. Bomben (APC), G. Calderini (LPNHE), D. Contardo (IP2I)

### Contributions to DRD3 WP1 - overview

- Participating institutes: APC, CPPM, IPHC, IPI2I, LPNHE
- Responsibilities in DRD3 (solid state detectors) and related in DRD7 (electronics)
  - J. Baudot co-convener of WG1//WP1 « Monolithic CMOS »
  - J. Baudot member of the DRD7 steering committee (elected) ∫ between DRD3 & DRD7
  - G. Calderini co-convener of WP4/WG7 « Interconnection »
  - M. Barbero co-convener of DRD7 WP6 « Complex imaging ASICs and technologies »
- Scientific contributions target the FCC-ee project
  - > 4 projects in WP1 on MCMOS for Vertex Detector, Tracking and Particle Identification layers
  - Technology TPSCo 65 nm



DRD3 Work Packages\* and Working Grourps organization

icc

ensuring good interface

2

### Contributions to DRD3 - overview continued

- Projects are spanning DRD3 and DRD7
  - DRD3 WP1 developing the sensors and readout architectures
  - DRD7 WP2 « Virtual Electronic System Prototyping » modelling from particle interaction to digital readout, WP3 « 4D and 5D techniques » preparing shared IP blocks, WP6 « complex imaging ASICs and technologies » providing access to foundries (PDK)\*, design and characterization methodologies, investigating 3D interconnection techniques (see M. Barbero)
  - > The present projects cover a 1<sup>st</sup> DRD phase of  $\approx$  3 4 years (approved by the CERN Research Board)
    - Technologies evaluation that should collapse in a 2<sup>nd</sup> phase to more specific processes and designs, possibly implementing new techniques brought by DRD7
- Status of preparation of MoU resource agreements (personnel and finding allocated to WPs\*\*)
  - DRD3 still preparing list of deliverables, expected to converge by end of March
    - assumed to be formulated in foundry submissions (where the funding will go)
  - DRD7 collecting initial proposal for resources (see M. Barbero)
  - Ongoing discussion between DRDs/FAs/CERN management on fees/Common Fund

\* C4PI IPHC provides community access to TJ 180nm Multi Project Runs, this is part of GRAM and DRD7 WP6 (see M. Barbero) \*\* WPs contain the deliverables with allocated resources (subject to MoUs), matériel (components/systems), modelling and/or characterization tools available to the community, design simulations & characterization of components/systems; not include in MoUs local equipment & running budgets

### Contribution to DRD3 WP1 - « Octopus » D. Dannheim S. Spannagel

APC, Bonn Uni., CERN, CPPM, DESY, ETH, FNSPE, GSI, HEPHY, IPHC, Oxford Uni. Zurich Uni.\*

Goal to develop « Optimized CMOS Technology fOr Precision in Ultra-thin Silicon » for FCC-ee application - TJ TPSCo 65 nm process

| a                                           | 2                                              |                                      |
|---------------------------------------------|------------------------------------------------|--------------------------------------|
| Spatial resolution per layer                | $\simeq 3$                                     | $\mu m$                              |
| Pixel pitch                                 | 14-20                                          | $\mu m^{-1}$                         |
| read-out time                               | $\simeq 500$                                   | $ns^2$                               |
| Power dissipation                           | $\simeq 20 - 50$                               | $mW/cm^2$                            |
| Sensor thickness                            | 40 - 50                                        | $\mu m$ $^3$                         |
| Safety factor on particle rate              | 3                                              | 4                                    |
| Maximum Hit rate                            | 75 / 25                                        | $MHz/cm^{2-5}$                       |
| Maximum Hit rate                            | $22.5 \times 10^{-3^{'}} / 7.5 \times 10^{-3}$ | $hits/mm^2/BX$ <sup>5</sup>          |
| Assumed cluster multiplicity                | 5                                              |                                      |
| Fired pixel rate                            | 375 / 125                                      | $MHz/cm^{2-5}$                       |
| Fired pixel rate                            | $0.33 \ / \ 0.11$                              | fired pixels/ $mm^2/BX$ <sup>5</sup> |
| Occupancy/pixel/read-out                    | $3.45\times 10^{-3}\ /\ 1.15\times 10^{-3}$    | /pixel/readout <sup>5</sup>          |
| Ionising radiation $(1^{st} \text{ layer})$ | 30 / 10                                        | MRad/year <sup>5</sup> <sup>6</sup>  |
| Corresponding Fluence                       | $\simeq 1.8\times 10^{14}~/~6\times 10^{13}$   | $n_{eq(1 MeV)}/year$ 5 7             |
|                                             |                                                |                                      |

 $^1$  Depending on charge sharing/encoding

 $^2$  Compromise between power dissipation and pile-up at  $\sqrt{s}=91\;GeV$ 

<sup>3</sup> To allow bending

<sup>4</sup> due to beam background uncertainties estimates

 $^5$  With / without safety factor

<sup>6</sup> assuming beam running 180 days/year, and average incident angle of  $\simeq 70^{\circ}$ .

 $^7$  assuming NIEL factor of  $5\times 10^{-2}$ 



\* IP2I and LPNHE considering possible contributions respectively to common aspect in redout architecture design and characterization of samples

### « Octopus » project description application SEED EoI for Vertex Detector at FCC-ee

### Master Projet GRAM (Auguste Besson)



### Octopus Work Packages and tasks



Proposed leading commitments:

- WP2 ASIC design conveners F. Guezzi. S. Senyukov
- WP4 Testing and Characterization

### « Octopus » technical proposal

- Challenges
  - Accommodate high density for spatial resolution (small pitch) & read-out architecture footprint
  - Power optimization for gas flow cooling
  - Data flow / radiation tolerance not negligible at FCCee
- > Versatile architecture which can adapt to different data flows/time resolution/power consumption
  - Asynchronous readout: priority arbiters already explored by C4PI through SPARC
  - SPARC to be submitted in ER2 (ALICE ITS3 run imminent)
- > Possibly decouple pitch & spatial resolution with charge encoding over few bits for charge sharing
  - Explored in CE\_65 chips (PICSEL+C4PI and collab.)



#### Cascade of asynchronous arbiters



### « Octopus » project planning

| Number     | Deliverable/Milestone<br>Title                                  | WP project<br># | Lead   | Туре              | Dissemination<br>Level                    | Due Date              |
|------------|-----------------------------------------------------------------|-----------------|--------|-------------------|-------------------------------------------|-----------------------|
| M1         | Report on Demonstrators                                         | 4               | DESY   | Report            | DRD3 report                               | Month 9<br>(Q1 2025)  |
| D1<br>MPR2 | Beam Telescope<br>Demonstrator Matrix<br>Submission <b>3 µm</b> | 1, 2            | ІРНС ( | Prototype<br>Full | Manual /<br>Presentation<br>column height | Month 24<br>(Q2 2026) |
| M2         | Report on Demonstrator<br>Matrix Characterization               | 3, 4            | DESY   | Report            | Publication                               | Month 36<br>(Q2 2027) |
| D2<br>MPR3 | Full Beam Telescope Sensor<br>Submission                        | 2, 3            | ІРНС ( | Prototype         | Manual /<br>Presentation                  | Month 48<br>(Q2 2028) |
| М3         | Report on Beam Telescope<br>Sensor Performance                  | 3, 4            | DESY   | Report            | Publication                               | Month 60<br>(Q2 2029) |
| D3<br>ER   | LC Vertex Sensor<br>Demonstrator Submission                     | 1, 2            | ІРНС ( | Prototype         | Manual /<br>Presentation                  | Month 66<br>(Q4 2029) |
| M4         | Report on LC Vertex Sensor<br>Demonstrator Performance          | 3, 4            | DESY   | Report            | Month 78<br>(Q4 2030)                     |                       |

MPR2 - MPR3 are common submissions to all projects cycles of 18 months schedule to be consolidated ER is part of 2<sup>nd</sup> phase of DRD3

WP2 MPR2 typical workflow for ASIC design it aplies to other projects presented in this talk





## « Octopus » project personnel

### APC, CPPM, IPHC : ~ 160(IT) + 30(Phy) ETP.mois (2027-2028) - ~ 8 IT with significant involvement

| Drénom Nom              |               |                                                               | Tâch ca dana la nuciat | ETP.mois | ETP.mois | ETP.mois | ETP.mois | ETP.mois | DRD3_WP1_D1      | DRD3_WP1_D2      |
|-------------------------|---------------|---------------------------------------------------------------|------------------------|----------|----------|----------|----------|----------|------------------|------------------|
| Prenom Nom              | Statut/Wetler | expertise/competence                                          | raches dans le projet  | 2025     | 2026     | 2027     | 2028     | total    | ETP.mois (total) | ETP.mois (total) |
| J. Baudot               | PR            | coordination scientifique                                     | WP1                    | 0,6      | 0,6      | 0,6      | 0,6      | 2,4      | 1,2              | 1,2              |
| A. Besson               | MCF           | coordination scientifique                                     | WP1                    | 0,6      | 0,6      | 0,6      | 0,6      | 2,4      | 1,2              | 1,2              |
| M. Bomben               | MCF           | simulations                                                   | WP1.2                  | 0,6      | 0,6      | 0,6      | 0,6      | 2,4      | 1,2              | 1,2              |
| M. Barbero              | PR            | coordination scientifique                                     | WP1                    | 0,6      | 0,6      | 0,6      | 0,6      | 2,4      | 1,2              | 1,2              |
| tbd/tbc                 | post-doc      | analyses tests                                                | WP1.3                  |          | 3        | 10       | 7        | 20       | 3                | 17               |
| total physiciens (FTE)  |               |                                                               |                        | 2,4      | 5,4      | 12,4     | 9,4      | 29,6     | 7,8              | 21,8             |
| total physiciens (nb)   |               |                                                               |                        | 5        | 5        | 5        | 5        |          |                  |                  |
| Fadoua Guezzi           | IR            | ASIC desig, Responsable Technique,<br>convener WP2 in octopus | WP1.1                  | 10       | 10       | 10       | 10       | 40       | 20               | 20               |
| Serhiy Senyukov         | IR            | Responsable Technique, convener<br>WP2 in octopus             | WP1.1, WP1.3           | 5        | 5        | 5        | 5        | 20       | 10               | 10               |
| Frédéric Morel          | IR            | ASIC design, coord technique                                  | WP1.1                  | 1,2      | 1,2      | 1,2      | 1,2      | 4,8      | 2,4              | 2,4              |
| Andrei Dorokhov         | IR            | ASIC design                                                   | WP1.1                  | 4        | 4        | 4        | 4        | 16       | 8                | 8                |
| Isabelle Valin          | IR            | ASIC design                                                   | WP1.1                  | 3        | 4        | 4        | 4        | 15       | 7                | 8                |
| Gregory Bertolone       | IR            | ASIC design                                                   | WP1.1                  | 4        | 4        | 4        | 4        | 16       | 8                | 8                |
| Liana Wassouf           | IR            | ASIC design                                                   | WP1.1                  | 3        | 7        | 7        | 7        | 24       | 10               | 14               |
| Olivier Clausse         | AI            | microtech.                                                    | WP1.3                  | 0        | 0,05     | 0,1      |          | 0,15     | 0,05             | 0,1              |
| Christophe Wabnitz      | AI            | microtech.                                                    | WP1.3                  | 0        | 0,3      | 0,3      |          | 0,6      | 0,3              | 0,3              |
| Gilles Claus            | IR            | test/caracterisation                                          | WP1.3                  | 0        | 0,75     | 0        |          | 0,75     | 0,75             | 0                |
| Mathieu Goffe           | IE            | test/caracterisation                                          | WP1.3                  | 0        | 0,75     | 0        |          | 0,75     | 0,75             | 0                |
| Kimmo Jaaskelainen      | IE            | test/caracterisation                                          | WP1.3                  | 0        | 0,75     | 0        |          | 0,75     | 0,75             | 0                |
| Matthieu Specht         | IE            | test/caracterisation                                          | WP1.3                  | 0        | 3        | 0,75     |          | 3,75     | 3                | 0,75             |
| Mohsine Menouni         | IR            | ASIC design                                                   | WP1.1                  | 2        | 2        | 2        |          | 6        | 4                | 2                |
| Pierre Barrillon        | IR            | test/caracterisation                                          | WP1.3                  | 1        | 1        | 1        |          | 3        | 2                | 1                |
| D. Fougeron/P. Breugnon | IR            | test/caracterisation                                          | WP1.3                  | 2        | 2        | 2        |          | 6        | 4                | 2                |
| Patrick Pangaud         | IR            | ASIC design                                                   | WP1.1                  | 1        | 1        | 1        |          | 3        | 2                | 1                |
| total IT (FTE)          |               |                                                               |                        | 36,2     | 46,8     | 42,35    | 35,2     | 160,55   | 83               | 77,55            |
| total IT (nb)           |               |                                                               |                        | 12       | 12       | 12       | 12       | 12       | 12               | 12               |

## R&D « amont » IPHC - contributions to DRD7

on going activities, TCAD simulation, prospective for new developments, access to TJ 180 nm IPHC :  $\simeq 60(IT) + \simeq 70(Phy)$  ETP.mois (2027-2028) strongly supported by PhDs

| task                      | name                     |      | 2024 |      |      |      | 20   | 25   |      |      | 202  | 26  |     | 2027 |     |     |     | 2028 |     |     |     | total ETP (mois) |
|---------------------------|--------------------------|------|------|------|------|------|------|------|------|------|------|-----|-----|------|-----|-----|-----|------|-----|-----|-----|------------------|
|                           |                          | Q1   | Q2   | Q3   | Q4   | Q1   | Q2   | Q3   | Q4   | Q1   | Q2   | Q3  | Q4  | Q1   | Q2  | Q3  | Q4  | Q1   | Q2  | Q3  | Q4  |                  |
|                           |                          |      |      |      |      |      |      |      |      |      |      |     |     |      |     |     |     |      |     |     |     |                  |
| Coordination scientifique | Jérôme Baudot            | 5%   | 5%   | 5%   | 5%   | 5%   | 5%   | 5%   | 5%   | 5%   | 5%   | 5%  | 5%  | 5%   | 5%  | 5%  | 5%  | 5%   | 5%  | 5%  | 5%  | 3                |
| Coordination technique    | Frédéric Morel           | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10% | 10% | 10%  | 10% | 10% | 10% | 10%  | 10% | 10% | 10% | 6                |
| Coordination technique    | Andrei Dorhokov          | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10% | 10% | 10%  | 10% | 10% | 10% | 10%  | 10% | 10% | 10% | 6                |
| Coordination technique    | Maciej Kachel            | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10% | 10% | 10%  | 10% | 10% | 10% | 10%  | 10% | 10% | 10% | 6                |
|                           |                          |      |      |      |      |      |      |      |      |      |      |     |     |      |     |     |     |      |     |     |     |                  |
| R & D amont               | Andrei Dorhokov          | 5%   | 5%   | 5%   | 5%   | 5%   | 5%   | 5%   | 5%   | 5%   | 5%   | 5%  | 5%  | 5%   | 5%  | 5%  | 5%  | 5%   | 5%  | 5%  | 5%  | 3                |
|                           | Luca Federici            | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10% | 10% | 10%  | 10% | 10% | 10% | 10%  | 10% | 10% | 10% | 6                |
|                           | Hung Pham                | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10% | 10% | 10%  | 10% | 10% | 10% | 10%  | 10% | 10% | 10% | 6                |
|                           | Abdelkader Himmi         | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10% | 10% | 10%  | 10% | 10% | 10% | 10%  | 10% | 10% | 10% | 6                |
|                           | Rachid Sefri             | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10% | 10% | 10%  | 10% | 10% | 10% | 10%  | 10% | 10% | 10% | 6                |
| PhD                       | Jean Soudier             | 100% | 100% |      |      |      |      |      |      |      |      |     |     |      |     |     |     |      |     |     |     | 6                |
| PhD                       | Elio Sacchetti           | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |     |     |      |     |     |     |      |     |     |     | 30               |
| PhD                       | Hasan Shamas             | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |     |     |      |     |     |     |      |     |     |     | 30               |
|                           |                          |      |      |      |      |      |      |      |      |      |      |     |     |      |     |     |     |      |     |     |     |                  |
| fabrication (ER2)         | <b>Gregory Bertolone</b> |      |      |      |      | 10%  |      |      |      |      |      |     |     |      |     |     |     |      |     |     |     | 0,3              |
|                           |                          |      |      |      |      |      |      |      |      |      |      |     |     |      |     |     |     |      |     |     |     |                  |
| sparc microtec            | Christophe Wabnitz       |      |      |      |      |      |      |      | 10%  |      |      |     |     |      |     |     |     |      |     |     |     | 0,3              |
| РСВ                       | Matthieu Specht          |      |      |      |      |      |      | 30%  |      |      |      |     |     |      |     |     |     |      |     |     |     | 0,9              |
|                           |                          |      |      |      |      |      |      |      |      |      |      |     |     |      |     |     |     |      |     |     |     |                  |
| test SPARC                | Gilles Claus             |      |      |      |      | 10%  | 10%  |      | 10%  |      |      |     |     |      |     |     |     |      |     |     |     | 0,9              |
|                           | Mathieu Goffe            |      |      |      |      |      |      |      | 30%  |      |      |     |     |      |     |     |     |      |     |     |     | 0,9              |
|                           | Kimmo Jaaskelainen       |      |      |      |      |      |      |      |      |      |      |     |     |      |     |     |     |      |     |     |     | 0                |
|                           | Matthieu Specht          |      |      |      |      | 20%  | 20%  |      | 10%  |      |      |     |     |      |     |     |     |      |     |     |     | 1,5              |
|                           | Willy Perrin             |      |      |      |      | 100% | 100% |      | 100% |      |      |     |     |      |     |     |     |      |     |     |     | 9                |
|                           |                          |      |      |      |      |      |      |      |      |      |      |     |     |      |     |     |     |      |     |     |     |                  |
| TOTAL                     |                          | 380% | 380% | 280% | 280% | 420% | 410% | 310% | 440% | 280% | 280% | 80% | 80% | 80%  | 80% | 80% | 80% | 80%  | 80% | 80% | 80% | 127.80           |

## Contribution to DRD3 WP1

### « A versatile pixel matrix in TPSCo 65 nm for future trackers » J. Baudot

### CPPM, Bergamo, GSI, Heidelberg, IFIC, IGFAE, IPHC, IP2I, IRFU, HEPHY, LPNHE, Munich, Pavia\*

Goal to develop a readout architecture for tracking systems with configurability and ability to accommodate performance requirements of several applications

|                                 | ALICE3 OT | Belle II trk       | CBM <u>trk</u>       | LHCb UT            | FCCee trk          |
|---------------------------------|-----------|--------------------|----------------------|--------------------|--------------------|
| Position resolution             | ~10 µm    | <15 µm             | ~10 µm               | <10 µm             | <10 µm             |
| Pixel pitch (µm)                | 50        | 50                 | ~30                  | 50                 | 50                 |
| Hit rate (MHz/cm <sup>2</sup> ) | 0.05 to 2 | <1                 | 60/180               | 160                | <10                |
| Data rate (Gb/s)                |           |                    | 8                    | 20                 |                    |
| Time figure (ns)                | 100       | ~1                 | 25                   | ~1 (<25)           | 20 to 1000         |
| Triggering                      | no        | yes                | no                   | no                 | ?                  |
| Power                           | ~20       | <50                | ~50                  | <100               | ~20?               |
| TID (kGy)                       | 50        | 10?                | ~10                  | 2400               | 10?                |
| NIEL                            | 1014      | 10 <sup>11</sup> ? | few 10 <sup>14</sup> | 3x10 <sup>15</sup> | 10 <sup>11</sup> ? |

J. Baudot - Versatile pixel matrix in TPSCo 65 nm - Vertex detector discussion meeting - DRD3 week, 17-21 June 2024, CERN

\* Other potential interests in Japan and US

## « A versatile pixel matrix in TPSCo 65 nm for future trackers » Project description : versatility/configurability



- Fabrication process variants:
  - Standard process: more q-sharing
  - Modified process: faster collection

#### • Pixel front-end:

- Tunable main bias current: speed vs power
- Two stages for pixel grouping:
  - excellent detection efficiency
  - power-saving



## « A versatile pixel matrix in TPSCo 65 nm for future trackers » Technical proposal

#### Digital architecture (same logic in matrix as in octopus) Front-End Asynchronous logic Pixel grouping use front-end with two stages -cascade of N:1 arbiters - see Doi: 10.1016/j.nima.2024.169663 Standard situation - Pre-amplify signals with FE1 for each diode -1st prototype SPARC submitted in (ITS3-)ER2 - sum up N nodes into FE2 for discrimination - timestamping 25-100 ns doable • Analogue pixel power = n\*FE1 + FE2 - std situation = single FE with power P 512:1 15 ns 63 ns 1 mW/cm<sup>2</sup> 17 ns > 100 m - assuming $P \sim P_{FE1} + P_{FE2} = P_1 (1 + P_2/P_1)$ Implementation for tracker sensor 1024 pixels - power density with grouping = $P_{FE1} + P_{FE2}/N$ Pixel grouping Assuming column length ~24 mm (reticule height) => 1024 pixels of 23.4 µm Status Possible cascade for double-column - Mix 512:1 & 4:1 controllers • First ideas implemented in TJ 180 nm Possible prototype size In translation to TPSCo 65 nm - pitch 23.4 µm and one full functional region ~ 128 columns X 1024 rows ~ 0.3 x 2.4 cm2 1024 pixels

J. Baudot - Versatile pixel matrix in TPSCo 65 nm - Vertex detector discussion meeting - DRD3 week, 17-21 June 2024, CERN

## « A versatile pixel matrix in TPSCo 65 nm for future trackers » Project planning

MPR2 and MPR3 common timeline foreseen for submissions in TPSCo 65 nm detailed task sharing to be developped with partners



J. Baudot - Versatile pixel matrix in TPSCo 65 nm - Vertex detector discussion meeting - DRD3 week, 17-21 June 2024, CERN

### « A versatile pixel matrix in TPSCo 65 nm for future trackers » project personnel IPHC : $\simeq$ 55(IT) + $\simeq$ 10(Phy) ETP.mois (2027-2028)

| task TRACKER              | name               |    | 202 | 24 |    |      | 2025 |      |      |      | 2026 |      |      |      | 2027 |      |      |      | 20   | 28   | total ETP (mois) |       |
|---------------------------|--------------------|----|-----|----|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------------------|-------|
|                           |                    | Q1 | Q2  | Q3 | Q4 | Q1   | Q2   | Q3   | Q4   | Q1   | Q2   | Q3   | Q4   | Q1   | Q2   | Q3   | Q4   | Q1   | Q2   | Q3   | Q4               |       |
| Coordination scientifique | Jérôme Baudot      | 0% | 0%  | 0% | 5% | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%              | 4,95  |
| Coordination technique    | tbd                |    |     |    | 0% | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%              | 4,80  |
| Coordination technique    |                    |    |     |    | 0% | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%               | 0,00  |
| design tracking           | Xia Chao           |    |     |    |    | 50%  | 50%  | 50%  | 50%  | 50%  | 50%  | 50%  | 50%  | 50%  | 50%  | 50%  | 50%  | 50%  | 50%  | 50%  | 50%              | 24,00 |
|                           | Luca Federici      |    |     |    |    | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%              | 4,80  |
|                           | Andrei Dorokhov    |    |     |    |    | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%  | 10%              | 4,80  |
|                           | Isabelle Valin     |    |     |    |    | 20%  | 20%  | 20%  | 20%  | 20%  | 20%  | 20%  | 20%  | 20%  | 20%  | 20%  | 20%  | 20%  | 20%  | 20%  | 20%              | 9,60  |
|                           |                    |    |     |    | -  | -    | -    |      |      |      |      |      |      |      |      |      |      | -    | -    | -    |                  |       |
| fabrication (MPR2)        | Gregory Bertolone  |    |     |    |    |      |      |      |      |      |      | 10%  | 10%  |      |      |      |      |      |      |      |                  | 0,60  |
| microtec.                 | Olivier Clausse    |    |     |    |    |      |      |      |      |      |      |      |      | 10%  |      |      |      |      |      |      |                  | 0,30  |
|                           | Christophe Wabnitz |    |     |    |    |      |      |      |      |      |      |      |      | 10%  |      |      |      |      |      |      |                  | 0,30  |
| Tests                     | Mathieu Goffe      |    |     |    |    |      |      |      |      |      |      |      |      | 5%   |      |      |      |      |      |      |                  | 0,15  |
|                           | Matthieu Specht    |    |     |    |    |      |      |      |      |      |      |      |      | 5%   |      |      |      |      |      |      |                  | 0,15  |
|                           | Gilles Claus       |    |     |    |    |      |      |      |      |      |      |      |      | 5%   |      |      |      |      |      |      |                  | 0,15  |
|                           | Kimmo Jaaskelainen |    |     |    |    |      |      |      |      |      |      |      |      | 5%   |      |      |      |      |      |      |                  | 0,15  |
|                           |                    |    |     |    |    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |                  |       |
| TOTAL                     |                    | 0% | 0%  | 0% | 5% | 110% | 110% | 110% | 110% | 110% | 110% | 120% | 120% | 150% | 110% | 110% | 110% | 110% | 110% | 110% | 110%             | 54,75 |

### Contribution to DRD3 WP1 « A pixel matrix for tracking and timing » D. Contardo to be merged with « versatile pixel matrix » project

Goal to develop a readout architecture with both tracking and timing for Particle ID application at FCC-ee in tracker outer layer(s)\* - possibly extending to intermediate radius

|                                 | ALICE3 OT        | Belle II trk       | CBM <u>trk</u>       | LHCb UT            | FCCee trk          | FCCee TK/PID | <u> </u>      |
|---------------------------------|------------------|--------------------|----------------------|--------------------|--------------------|--------------|---------------|
| Position resolution             | ~10 µm           | <15 µm             | ~10 µm               | <10 µm             | <10 µm             | ≲ 10 µm      | ow ra         |
| Pixel pitch (µm)                | 50               | 50                 | ~30                  | 50                 | 50                 | 25           | ates<br>onst  |
| Hit rate (MHz/cm <sup>2</sup> ) | 0.05 to 2        | <1                 | 60/180               | 160                | <10                | < 0.5        | & re<br>rain  |
| Data rate (Gb/s)                |                  |                    | 8                    | 20                 |                    |              | eduo<br>ts at |
| Time figure (ns)                | 100              | ~1                 | 25                   | ~1 (<25)           | 20 to 1000         | ≲100 ps      | ced<br>t larg |
| Triggering                      | no               | yes                | no                   | no                 | ?                  |              | pow<br>ge ra  |
| Power                           | ~20              | <50                | ~50                  | <100               | ~20?               | ?            | /er (<br>adiu |
| TID (kGy)                       | 50               | 10?                | ~10                  | 2400               | 10?                |              | s<br>X/X      |
| NIEL                            | 10 <sup>14</sup> | 10 <sup>11</sup> ? | few 10 <sup>14</sup> | 3x10 <sup>15</sup> | 10 <sup>11</sup> ? |              | 5)            |

J. Baudot - Versatile pixel matrix in TPSCo 65 nm - Vertex detector discussion meeting - DRD3 week, 17-21 June 2024, CERN

\* Expression of Interest submitted to ESSP-2025 IP2I - CEA/IFRU, layers of PID could also be deployed in a Si/W electromagnetic calorimeter

### « A pixel matrix for tracking and timing » Project description : extension of the « Versatile... » project



#### Fabrication process variants:

- Standard process: more q-sharing
- Modified process: faster collection

#### Pixel front-end:

- Tunable main bias current: speed vs power
- Two stages for pixel grouping:
  - excellent detection efficiency
  - power-saving
- Pixel digital part
  - Implement precise TDC

## « A pixel matrix for tracking and timing » Technical proposal



## « A pixel matrix for tracking and timing » Project planning

to be merged with « versatile pixel matrix » project

- MPR2 1<sup>st</sup> high precision timing digital implementation in 128 x 128 pixel matrix
- MPR3 high precision demonstrator reticule size
  - implementing analog (sensor and FE) part with targeted timing performance\*
  - CASSIA considered for analog part (see next slides)
  - CACTUS in LF150 nm (CEA IRFU, P. Schwemling) can also evolve to TPSCo 65 nm
  - power consumption optimization
- > 2<sup>eme</sup> R&D phase (not covered in the FP)
  - large size demonstrator (« stitching » technique)
  - possibly 3D interconnexion « Wafer Stacking »
  - other improved IP blocks through DRD7

| Work Packages    | Description                                                                          |    | 20 | 25 |    |    | 20 | 26 |    |    | 20 | 27 |
|------------------|--------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|
| Tâches/livrables | Description                                                                          | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 |
| WP1              | Simulation                                                                           |    |    |    |    |    |    |    |    |    |    |    |
| WP1.1            | développement software collection de charge (Allpix2)                                |    |    |    |    |    |    |    |    |    |    |    |
| WP1_D1           | performance variantes de configuration des électrodes                                |    |    |    | *  |    |    |    |    |    |    |    |
| WP1.2            | développement software numérisation signal aux conditions FCC-ee (Key4HEP)           |    |    |    |    |    |    |    |    |    |    |    |
| WP1_D2           | simulations évènements de physique, fichiers de données input électronique           |    |    |    | *  |    |    |    |    |    |    |    |
| WP2              | Architecture de lecture : PMaTT_V1 - démonstrateur numérique 128x128 pixels          |    |    |    |    |    |    |    |    |    |    |    |
| WP2.1            | choix de configurations d'électrodes <sup>1)</sup>                                   |    |    |    |    |    |    |    |    |    |    |    |
| WP2.2            | choix de l'étage de prémplification - discriminitation <sup>1)</sup>                 |    |    |    |    |    |    |    |    |    |    |    |
| WP2.3            | étude/choix des blocs d'architecture numérique dans la matrice et péripherie         |    |    |    |    |    |    |    |    |    |    |    |
| WP2.4            | description RTL de l'architecture numérique (System Verilog)                         |    |    |    |    |    |    |    |    |    |    |    |
| WP2.5            | routage/layout de composants numériques (DoT)                                        |    |    |    |    |    |    |    |    |    |    |    |
| WP2.6            | développement banc test et validation description (RTL) et post-layout (UVM)         |    |    |    |    |    |    |    |    |    |    |    |
| WP2.7            | assemblage "top level" des blocs analogiques et numériques, validation, fichiers GDS |    |    |    |    |    |    |    |    |    |    |    |
| WP2_D1           | Soumission en fonderie : PMaTT_V1                                                    |    |    |    |    |    |    | ×  |    |    |    |    |
| WP3              | Caractérisation PMaTT_V1                                                             |    |    |    |    |    |    |    |    |    |    |    |
| WP3.1            | conception cartes de test                                                            |    |    |    |    |    |    |    |    |    |    |    |
| WP3.2            | caractérisation électronique                                                         |    |    |    |    |    |    |    |    |    |    |    |
| WP3.3            | développement DAQ                                                                    |    |    |    |    |    |    |    |    |    |    |    |
| WP3.4            | caractérisation avec source ou faisceaux, performance physique du senseur            |    |    |    |    |    |    |    |    |    |    |    |
| WP3_D1           | rapport/publication PMaTT_V1                                                         |    |    |    |    |    |    |    | *  |    | *  |    |

\* ≈ 70 ps intrinsic sensor resolution was reached in TPSCo first ER submissions, CASSIA and CACTUS aim to introduce gain below the electrodes to improve signal to noise ratio for improved timing resolution, development of fast FE with low power is another challenge

# « A pixel matrix for tracking and timing » project personnel

IP2I :  $\simeq$  128(IT) +  $\simeq$  30(Phy) ETP.mois (2027-2028) -  $\simeq$  4 IT with large involvement\*

| Prénom Nom       | Statut/Métier | expertise/compétence                     | Tâches dans le projet                       | ETP.mois<br>2025 | ETP.mois<br>2026 | ETP.mois<br>2027 | ETP.mois<br>2028 | ETP.mois<br>total | DRD3_WP1_DI<br>FTP.mois (total) | DRD7_WP6_Dz<br>FTP.mois (total) |
|------------------|---------------|------------------------------------------|---------------------------------------------|------------------|------------------|------------------|------------------|-------------------|---------------------------------|---------------------------------|
| Gaelle Boudoul   | CR            | Simulation physiques                     | WP1.2                                       | 3                | 3                | 3                | 3                | 12                |                                 |                                 |
| Didier Contardo  | DR            | Responsable Scientifique                 |                                             | 6                | 6                |                  |                  | 12                | 1,5                             | 1,5                             |
| Jessy Daniel     | Postdoc       | Simulation physiques                     | WP1.2                                       | 6                | 6                |                  |                  | 12                |                                 |                                 |
| total physiciens |               |                                          |                                             | 15               | 15               | 3                | 3                | 36                | 1,5                             | 1,5                             |
| Luigi Caponetto  | IR μ-élec.    | Responsable Technique<br>Concepteur ASIC | WP2.3, WP2.5, WP2.7,<br>WP3.2, WP4.3, WP5.1 | 9                | 9                | 9                | 9                | 36                | 24                              | 12                              |
| Benedetta Nodari | IR μ-élec.    | Concepteur ASIC                          | WP2.6, WP3.2, WP4.3,<br>WP5.1.              | 9                | 9                | 9                | 9                | 36                | 24                              | 12                              |
| Mokrane Daoumane | IR μ-élec.    | Concepteur ASIC                          | WP2.3, WP2.5, WP3.2<br>WP4.3, WP5.1         | 6                | 6                | 6                | 6                | 24                | 12                              | 12                              |
| Xiushan Chen     | IR eDAQ       | Concepteur RTL                           | W2.4, WP3.2, WP4.3,<br>WP5.1                | 6                | 6                | 6                | 6                | 24                | 24                              |                                 |
| tbd              | IE eDAQ       | Concepteur PCB                           | WP3.1, WP5.1                                | 2                | 2                | 2                | 2                | 8                 | 8                               |                                 |
| total IT         |               |                                          |                                             | 32               | 32               | 32               | 32               | 128               | 92                              | 36                              |

\* Approval process ongoing at IP2I

Similar to « Octopus » joining effort with « versatile pixel matrix » LPNHE considering to join by 2026,  $\simeq 2 \times 20\%$  (IT) + 10% (PHY) ETP interest for characterization & asic design in relation with WP2

## Contribution to DRD3 « CASSIA » goals

H. Pernegger (PI)

### CERN, CPPM, GSI, IPHC, IIT Madras, KEK, Athens, Bonn, Glasgow, Kyushu, Tsukuba, Zagreb

Goal to develop process for implants providing internal gain for increased pixel density and/or reduced power dissipation, also enabling high precision timing ≤ 30 ps

Description - Technical proposal

- Study depths and doping concentrations with different electrode configurations in TJ 180 nm
  - Thickness 18 µm
  - Pixel pitch 15 µm
  - DC and AC + Buffer output
- IPHC & CPPM contributions ANR APICS 2024-2027
  - TCAD/Allpix2 simulation, sensor design, irradiation, characterization in lab and in beam



## « CASSIA » Project planning and resources

Design tests in two TJ submissions in 3 years - upon success evolve to TPSCo 65 nm process

Matrix **Collection electrode** Gain layer Circuit Nwell, r=4um deep Pwell 1 AC+BUF matr deep Pwell 2 Nwell, r=4um DC p-diffusion 3 Nwell, r=2.2um DC Nwell, r=2.2um p-diffusion 4 AC+BUF

1<sup>st</sup> submission : 4 matrices, 22 x 33 pads

2<sup>nd</sup> submission : 2 matrices with n-implants, optimized FE

Resources at IPHC from ANR 75 k€ : 1 PhD, submissions, test equipment

- CPPM 30% (IT) + 30% (PHY)
- IPHC 70% (IT) + 30% (PHY)

## Overview of budget for MCMOS projects

- Budget outside of DRD MoUs
  - Equipment for tests : ≃ 20 k€ per year
    - PCB dedicated test cards and DAQ based on the CARIBOU DRD3 system  $\simeq 5 \text{ k} \in x \text{ 4}$  institutes
  - Missions :  $\simeq$  40 k $\in$  per year (10 20 k $\in$ , # of participant/institutes, responsibilities)
    - DRD3 week, Working meetings, Test beams, Workshop and conferences
- Foundry 2 submissions ≈ 160 k€ (2025-2028) in DRD MoUs
  - Mutualized for all TPSCo 65nm projects ≈ 40 k€/year eg 80 k€/submission
- More details in FPs, ventilation between DEPHY and GRAM to be defined
- Budget increase
  - New institutes (APC, IP2I) ≃ 20 k€/year, LPNHE not yet included\*
  - TPSCo submissions 40 k€/year

\* To be consolidated in relation with WP2 and WP4 activities

## Other requested information

- Inter-dependance within and across DRD3 and DRD7
  - foundry submissions are common to DRD3 and DRD7 for all projects defining planning
  - access to technologies is provided by CERN through EPSE team / DRD7
  - ensuring sharing of experience and IPs is cross-cutting to DRD3 & DRD7
  - 3D interconnection is cross-cutting to DRD3 & DRD7 (could be a game changer in a 2<sup>nd</sup> R&D phase)
- IP confidentiality
  - PDK access driven by foundry rules
  - IP bloc sharing is expected to be open to all participants
  - Discussion ongoing in MoU framework between CERN and Funding Agencies
- Risks are not specific to DRDs
  - contributors failing to deliver re-orient task sharing, descope project
  - difficulties to meet international submission schedules descope project towards next submission
  - performance target not achieved re-orient technology choices
  - ...

## Outlook

- Projects are addressing DRD goals
  - performance expressed in ECFA Detector Development roadmap
  - strategic projects applications medium and longer term identified in ESPP-2020
  - approach is coherent in coherent to consider all technology performance parameters
  - commonalities in modelling and design of sensor analog and digital variants are considered
  - gathered IN2P3 competences cover all aspects (modelling/simulation, design, characterization...)
- FPs are being updated for the KDP1 review of Apr. 23-24
  - covering 1<sup>st</sup> R&D period of 3 4 years
    - > participation in DRD3 are mostly in WPs (were resources are allocated)
  - will be grouped under the umbrellas of the DEPHY and GRAM MP
  - will include tables to match resources to tasks & deliverables within MP & DRDs
    - > this may not yet reflect final sharing of work and resources from external contributors
- Medium term funding is expected to increase with new participants and TPSCo submissions
  - Comparison with current MP fundings no yet fully available
  - Possible fees/Common Fund in DRD3 10 k€/year (for 5 institutes)
- Ramp-up of funding can be anticipated through 2<sup>nd</sup> R&D phase toward large size) prototypes
- > Continuous support for PostDocs/PhDs (part time) crucial for simulation and characterization