

Science, Status, and AI enhanced reco. at the CEPC

Manqi RUAN(IHEP, Beijing)

Seminar@LLR

The Higgs field, heart of the SM

Seminar@LLR

The SM: predicts and interprets almost all the experimental data at accelerator experiments

Seminar@LLR

Status: October 2023

The challenges to the SM

- Inflation
- Mass hierarchy
- Neutrino Mass
- Matter-Anti matter asymmetry
- Stability of the Universe: depends on the Particle Mass
- Dark Matter: nature & origin of mass...
- Dark Energy, Inflation: nature...

The challenges to the SM

- Inflation
- Mass hierarchy
- Neutrino Mass
- Matter-Anti matter asymmetry
- Stability of the Universe: depends on the Particle Mass
- Dark Matter: nature & origin of mass...
- Dark Energy, Inflation: nature...

→ Origin of matter → Higgs portal to DM

increasing time

increasing time

6

Higgs discovery to precision measurements

Global Consensus on Higgs Factories

The scientific importance and strategical value of e⁺e⁻ Higgs factories is clearly identified.

JAHEP Japan

China

Europe

2013, 2016: China Xiangshan Science Conference concluded that **CEPC is the best approach** and a major historical opportunity for the national development of accelerator-based high-energy physics program.

2017: Japan Association of High Energy Physicists (JAHEP) proposes to construct A **250 GeV center** of mass ILC promptly as a Higgs factory.

2020: European Strategy for Particle Physics, **An electron-positron Higgs factory is the highest priority next collider.** For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy.

2022, ICFA "reconfirmed the international consensus on the importance of a Higgs factory as the highest priority for realizing the scientific goals of particle physics", and expressed support for the above-mentioned Higgs factory proposals@LLR

P5 report, USA, 2023

Recommendation 6

Convene a targeted panel with broad membership across particle physics later this decade that makes decisions on the US accelerator-based program at the time when major decisions concerning an off-shore Higgs factory are expected, and/or significant adjustments within the accelerator-based R&D portfolio are likely to be needed. A plan for the Fermilab accelerator complex consistent with the long-term vision in this report should also be reviewed.

The panel would consider the following:

 The level and nature of US contribution in a specific Higgs factory including an evaluation of the associated schedule, budget, and risks once crucial information becomes available.

2.Mid- and large-scale test and demonstrator facilities in the accelerator and collider R&D portfolios.

3.A plan for the evolution of the Fermilab accelerator complex consistent with the longterm vision in this report, which may commence construction in the event of a more favorable budget situation.

Comparison of Higgs factories: Circular vs Linear

CEPC has strong advantages among mature e⁺e⁻ Higgs factories (design report delivered)

Versus FCC-ee

- Earlier data: collisions expected in 2030s (vs. ~ 2040s)
- Large tunnel cross section (ee & pp coexistence)
- Lower construction cost

Versus Linear Colliders

- Higher luminosity / precision for Higgs & Z
- Potential upgrade for pp collider

A brief introduction to CEPC

- CEPC: an e⁺e⁻ Higgs factory producing H and W/ Z bosons and top quarks aims at discovering new physics beyond the Standard Model
 - CEPC + SppC complex proposed in 2012 right after the Higgs discovery
 - Conceptual Design Report delivered in Nov. 2018, 1st for circular ee Higgs factory
 - R&D reaching maturity, accelerator TDR published at 2023, high-impact innovations
- Proposed to commence the construction in ~2026 to deliver Higgs data in 2030s

CEPC Major Milestones

Public release: November 2018

CEPC Accelerator TDR Review June 12-16, 2023, Hong Kong

CEPC Accelerator TDR Cost Review Sept. 11-15, 2023, Hong Kong

Domestic Civil Engineering Cost Review, June 26, 2023, IHEP

9th CEPC IAC 2023 Meeting Oct. 30-31, 2023, IHEP

CEPC Major Milestones

CEPC Accelerator TDR released in December, 2023

> IHEP-CEPC-DR-2023-01 IHEP-AC-2023-01

CEPC Technical Design Report

Accelerator

arXiv:2312.14363 1114 authors 278 institutes (159 foreign institutes) 38 countries 1090 pages

> The CEPC Study Group December 2023

> > Seminar@LLF

Distribution of CEPC Project TDR cost of 36.4B RMB (~4.6B Euro)

Table 12.1.2: CEPC project cost breakdown, (Unit: 100,000,000 yuan)

Total	364	100%
Project management	3	0.8%
Accelerator	190	52%
Conventional facilities	101	28%
Gamma-ray beam lines	3	0.8%
Experiments	40	11%
Contingency (8%)	27	7.4%

CEPC Physics Program

- Measurements of Higgs, EW, flavor physics & QCD at unprecedented precision
- BSM physics (e.g. dark matter, EWPT, LLP, ...) up to ~ 10 TeV scale

0	peration mode	ZH	Z	W+M-	tī
	\sqrt{s} [GeV]	~240	~91	~160	~360
R	un Time [years]	10	2	1	~5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
30 MW	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	13	60	4.2	0.6
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
50 MW	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	22	100	6.9	1
	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

CEPC: Higgs Properties

> CEPC has significantly better precision on Higgs properties than that of HL-LHC

	$240{\rm GeV},20~{\rm ab}^{-1}$		360	ab^{-1}	
	ZH vvH		\mathbf{ZH}	vvH	eeH
inclusive	0.26%		1.40%	\	\
$H \rightarrow bb$	0.14%	1.59%	0.90%	1.10%	4.30%
$H \rightarrow cc$	2.02%		8.80%	16%	20%
H→gg	0.81%		3.40%	4.50%	12%
H→WW	0.53%		2.80%	4.40%	6.50%
H→ZZ	4.17%		20%	21%	
$H \rightarrow \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H \rightarrow \gamma \gamma$	3.02%		11%	16%	
$H ightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$Br_{upper}(H \to inv.)$	0.07%				
Γ_H	1.65%			1.10%	

《Precision Higgs Physics at CEPC》 Chinese Physics C, 43 (2019) 043002

CEPC: Electroweak Measurements

> CEPC has better EW precisions than current value by 1-2 order of magnitude

	W, Z and Top		
Observable	Current Precision	CEPC Precision	
M_W	9 MeV	0.5 MeV	
Γ_W	49 MeV	2 MeV	
M_{top}	760 MeV	O(10) MeV	
M_Z	2.1 MeV	0.1 MeV	
Γ_Z	2.3 MeV	0.025 MeV	LEP combination
R_b	3×10^{-3}	2×10^{-4}	D0 PBI 108 (2012) 151804
R_c	1.7×10^{-2}	1×10^{-3}	CDF Science 376 (2022) 6589
R_{μ}	2×10^{-3}	1×10^{-4}	LHCb JHEP 01 (2022) 036
R_{τ}	1.7×10^{-2}	1×10^{-4}	ATLAS arxiv:2403.15085, subm. t
A_{μ}	1.5×10^{-2}	3.5×10^{-5}	CMS This Work
A_{τ}	4.3×10^{-3}	7.0×10^{-5}	
A_b	2×10^{-2}	2×10^{-4}	
N_{ν}	2.5×10^{-3}	2×10^{-4}	

CDF (2022) : 80433.5 ± 9.4 MeV CMS(2024) : 80360.2 ± 9.9 MeV SM Prediction : 80354 ± 7 MeV

> CEPC: expected W mass resolution < 1MeV</p>

CEPC: Flavor Physics

See the non-seen: i.e, $Bc \rightarrow tauv$, $Bs \rightarrow Phivv$ Orders of magnitudes improvements (1 – 2.5 orders...). Access New Physics with energy scale of 10 TeV, or even above LLR

CEPC: BSM Physics

Seminar@LLR

CEPC has significantly better detection sensitivity for DM than HL-LHC
 Complementary to direct DM search experiments for mass below 10 GeV

Seminar@LLR

Higgs: EW Phase Transition

→ CEPC can study EWPT via hZZ coupling measurement which may help to understand the matter-antimatter asymmetry, its detection sensitivity is about one order of magnitude better than that of the HL-LHC.

Design of experimental facility and technical requirements

- Circular collider: Higher luminosity than a linear collider
- 100km circumference: Optimum total cost, good also for SppC
- Shared tunnel: Accommodate CEPC booster &collider and SppC
- Switchable operation: Higgs, W/Z, top

D. Wang et al 2022 JINST 17 P10018

in Parameters: High				
ninosity as a Higgs Factory	Higgs	W	Z	ttbar
Number of IPs			2	
Circumference [km]		10	0.00	
SR power per beam [MW]		:	50	
Energy [GeV]	120	80	45.5	180
Bunch number	415	2161	19918	59
Emittance (ɛx/ɛy) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7
Beam size at IP ($\sigma x/\sigma y$) [um/nm]	15/36	13/42	6/35	39/113
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9
Beam-beam parameters (ξx/ξy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1
RF frequency [MHz]		6	550	
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	27	192	0.83

Seminar@LLR

Status and maturities of the CEPC technologies

Efficient alignment scheme + instrumentation R&D to guarantee the installation within 4 years

Seminar@LLR

CEPC R&D: High Q SRF Cavities

- 1.3 GHz 9-cell SRF cavity for booster: Q₀ = 3.4E10 @ 26.5 MV/m >
- 650 MHz 2-cell SRF cavity for collider ring: Q₀ = 6.0E10 @ 22.0 MV/m
- 650 MHz 1-cell SRF cavity for collider ring: Q₀ = 6.0E10 @ 31.0 MV/m

baking

CEPC R&D: 8 × 9-cell High Q Cryomodule

CEPC Booster 1.3 GHz SRF R&D and industrialization in synergy with CW FEL projects

Davamatavs	Horizontal test	CEPC Booster	LCLS-II, SHINE	LCLS-II-HE
I al alletel s	results	Higgs Spec	Spec	Spec
Average usable CW <i>E</i> _{acc} (MV/m)	23.1	3.0×10 ¹⁰ @	2.7×10 ¹⁰ @	2.7×10 ¹⁰ @
Average Q ₀ @ 21.8 MV/m	3.4×10 ¹⁰	21.8 MV/m	16 MV/m	20.8 MV/m

CEPC R&D: High Efficiency Klystrons

- **The 1st Klystron prototype, achieved efficiency ~ 62%**
- □ The 2nd Klystron prototype was tested in Feb. 2024, achieved efficiency ~ 77.2%
- □ The 3rd Klystron prototype (MBK) with manufacture underway, design efficiency is ~ 80.5%
- High efficiency Klystron helps to reduce electricity consumption

The 1st Klystron (tested)

The 3rd multi-beam Klystron (MBK) under fabrication

CEPC R&D: Accelerator Key Technologies

Key technologies R&D span over all components listed in CDR.
 About 10% remaining (eg. RF power source, control, alignment, SC magnets, machine integration) to be completed by 2026.

✓ Specification Met

Prototype Manufactured

Accelerator	Fraction
✓ Magnets	27.3%
✓ Vacuum	18.3%
RF power source	9.1%
✓ Mechanics	7.6%
✓ Magnet power supplies	7.0%
✓ SC RF	7.1%
✓ Cryogenics	6.5%
✓ Linac and sources	5.5%
✓ Instrumentation	5.3%
✓ Control	2.4%
Survey and alignment	2.4%
✓ Radiation protection	1.0%
✓ SC magnets	0.4%
✓ Damping ring	0.2%

High Energy Photon Source (HEPS)

To be completed in 2025, great training and preparation for CEPC → towards a green accelerator

Solar panel on the roof of HEPS

Experience at HEPS

- Solar panel:10 MW → 10% saving
- Permanent magnet: 5.6 GWh saving/year
- Hot water (13 MW @ 42 ⁰C) for heating

CEPC Accelerator EDR

CEPC Accelerator EDR tasks start with 35 WGs aiming for key issues.

Semina

CEPC Accelerator Main EDR Development: SRF

The collider Higgs mode for 30 MW SR power per beam will use 32 units of 11 m-long collider cryomodules will contain six 650 MHz 2-cell cavities, and therefore, a full size 650 MHz cryomodule will be developed in EDR

CEPC Magnets' Automatic Production Lines in EDR

To reduce the fabrication cost of the magnets of CEPC, automatic magnet production lines will be demonstrated in EDR and used during construction

Jan.-Sept. 2024 : Complete the CEPC booster magnet automatic fabrication facility design. Oct. 2024-Jun. 2025 : Complete the small scale demonstration facility for booster iron core fabrication.

CEPC Accelerator Main EDR Development: Klystrons

CEPC Accelerator EDR

CEPC Alignment and Installation Plan in EDR

CEPC MDI in EDR

CEPC Tunnel Mockup for Installation in EDR

A 60 m long tunnel mockup, including parts of arc section and part of RF section

To demonstrate the inside tunnel alignment and installation, especially for booster installation on the roof of the tunnel

Seminar@LLR

Iron Based High T Super Conducting Magnet

SPPC R&D: HTS SC Magnet

- > 2023: SC dipole magnet, field reached 14T @ 4.2K
- > 2024: aiming for 16T @ 4.2K (the world record)

16T dipole (LTS+HTS)

Completion of SC magnet (2023.8)

CEPC Accelerator: Plasma Injector

CEPC Plasma Injector Scheme From 10 GeV \rightarrow 30 GeV \rightarrow TR >2

Simulation results show that it works on paper with reasonable error tolerances for both electron & positron beams injected to booster

4 nC / 12 nC

Beam polarization prospects and R&D efforts

Prospects of beam polarization at CEPC

- Beam energy calibration @ Z & W w/ resonant depolarization (~ 1e-6)
- 50%-70% longitudinal polarization for e- beam is a resonable goal @ Z & W
- Polarized e+ source: flux requirement ~ 1/60 of ILC, revisit of the Compton Ring scheme under way
- Attaining useful polarization level is challenging but possible @ Higgs.

Key technology R&D items

Aspects	Figure of merit	R&D goal	Milestone
Polarized electron source	polarization > 85%	a 400kV polarized DC gun @ PAPS, polarization > 85%	2027
Compton polarimeter	3D measurements~ 0.1%	vertical measurement @ BEPCII longitudinal measurement @ LPA-Ring TF, ~1%	2025 2028
Resonant depolarization	~1e-6 for Z & W	demonstration @ BEPCII	2026
Spin rotator for longitudinal polarization	Solenid integral field ~ 1000 T.m per IP @ Z	HTS solenoid, B ~ 12 T, BL > 10 T.m , attain longitudinal polarization @ LPA-Ring TF	2027 2028

CEPC New Detector Design

Goal: with PFA calorimeters to improve boson mass resolution (BMR) from 4% → 3%.

Calorimeter	World-class	New design	
PFA ECAL	\sim 15-20% / VE	\sim 3% / ve	
PFA HCAL	\sim 50-60% / VE	\sim 40% / vE	

Silicon tracker with TPC / DC:

to improve track reconstruction & PID

> PFA ECAL with crystal:

to improve π^0 , γ energy resolution

> PFA HCAL with scintillating glass:

to improve hadron energy resolution

CEPC Detector R&D: Silicon, TPC, DC Prototypes

- 2nd testbeam: April 11-23 2023 DESY test beam in Germany (4-6 GeV electron)
- Vertex detector prototype testbeam
- 1st testbeam: Dec 12-22 2022 DESY test beam in Germany (4-6 GeV electron)
- TaichuPix Beam Telescope testbeam

2023 DESY test

Excellent collaboration with DESY testbeam team

IHEP and Italian INFN groups have close collaboration and regular meetings. IHEP joined the TB (led by INFN group) in 2021 and 2022

Test of Prototype TPC

GEM-MM cathode TPC Prototype + UV laser beams

Low power FEE ASIC

Challenge: Ion backflow (IBF) affects the resolution. It can be corrected by a laser calibration at low luminosity, but difficult at high luminosity Z-pole.

Seminar@LLR

CEPC Detector R&D: Calorimeter Prototypes

CEPC Reference Detector TDR

Det	Technology	De	t Technology
×	JadePix		Crystal ECAL
irte	TaichuPix		Stereo Crystal ECAL
I Ve	CPV(SOI)		Scint+W ECAL
ixe	Stitching	lete	Si+W ECAL
ш	Arcadia	rim	Scint+Fe AHCAL
_	CEPCPix	Calo	ScintGlass AHCAL
DIG	Silicon Strip		RPC SDHCAL
ъ М	TPC		MPGD SDHCAL
cke	Drift chamber		DR Calorimeter
Tra	PID drift chamber	c	Scintillation Bar
	LGAD ToF	Inol	RPC
m	SiTrk+Crystal ECAL	2	^μ -Rwell
Lu	SiTrk+SiW ECAL		HTS / LTS Magnet
	CEPC SW		MDI & Integration
	TDAQ		

- Large number of detector technology options and R&D projects on-going, they are not at similar level of maturity.
- Need to converge technology options towards a CEPC reference detector TDR
 - Start preparation in Jan. 2024
 - ✤ A draft version of TDR in Dec. 2024
 - Official release of ref-TDR in Jun. 2025

> Intl. detector collaborative efforts

- DRD collaboration (DRD1-8), more than 130 colleagues from 11 Chinese institutes joined so far.
- HL-LHC detector R&D efforts help to prepare teams for CEPC detectors.

Industrial Partners and Suppliers Worldwide

Seminar@LLR

CEPC International Collaboration

CEPC attracts significant International participation

- > Both CDR and TDR have significant intl. contributions
- > 20+ MoUs signed with Intl. institutions and universities
- Intl. collaborative efforts: DRD & HL-LHC detector R&D
- CEPC International Workshop since 2014
- > Annual working month at HKUST-IAS since 2015
- EU-US versions of CEPC Workshop since 2018

CEPC Planning and Development

- CAS is planning for the 15th 5-year plan for large science projects, and a steering committee has been established, chaired by the president of CAS.
- > High energy physics and nuclear physics is one of eight groups (fields).
- > CEPC is ranked No. 1, by every committee (2 domestic and 1 international).
- A final report was submitted to CAS for consideration, this process is within CAS, and the following national selection process will be decisive.

3/2/25

CEPC Planning and Schedule

2012.9	2015.3	2018.11	2023.12	2025.6	2027	15 th five year plan (2026-2030)
proposed	Pre-CDR	CDR	Acc. TDR	Det. TDR	EDR	Start of construction

CEPC EDR Phase: 2024-2027

- CEPC Accelerator EDR starts with 35 WGs in 2024, to be completed in 2027
- CEPC Reference Detector TDR will be released by June, 2025
- CEPC proposal will be submitted to the Chinese government for approval in 2025
- Upon approval, establish at least two international collaborations on experiments
- CEPC construction starts during the 15th five-year plan (2026-2030, e.g. 2027)
- CEPC construction complete around 2035, at the end of the 16th five-year plan

nature > news > article

NEWS | 17 June 2024 | Correction <u>18 June 2024</u>

China could start building world's biggest particle collider in 2027

The US\$5 billion facility would be cheaper, bigger and faster to build than a similar one nar@LLR proposed by European scientists.

AI usage: Jet origin id

- Distinguish jets originated from 11 different kinds of colored particles: 5 quarks, 5 anti-quarks, and gluon.
- Strong impact on the physics reach:
 - Higgs rare & exotic hadronic decay up limits improved by 3 times 2 orders of magnitudes, i.e., H->ss be limited to 3 times the SM prediction.
 - EW & Flavor Physics measurements.

https://arxiv.org/abs/2310.03440

Seminar@LLR

Impact on Physics: Higgs & W

https://arxiv.org/abs/2310.03440

Impact on Physics: EW & Flavor

Validation: ... Versus different Hadronization Models

Hadronization: demon in details...

Seminar@LLR

Difference in Charge Flip Rate ω of b hadrons between Whizard and Herwig

Scaling behaviors: at different models

Comparable result with different scaling behavior

Para. Numbers: PN 360k, ParT 2.4M, BINBBT(Large Language Base Model) 150 M

More details at: https://arxiv.org/pdf/2412.00129

Seminar@LLR

AI usage: 1-1 corresponding reconstruction

• Leading confusions, i.e., PFA oriented double counting, be reduced by 1 order of magnitudes; at the cost of marginally increased miss-vetoed low-E particles.

AI usage: 1-1 corresponding reconstruction

- Holistic event reconstruction: Via innovative detector design + PFA algorithm + AI technology: ~ 95% of visible energies are mapped to reconstructed particles that reserve 1-1 correspondence mapping
- BMR improved by ~ 30%

AI usage: 1-1 corresponding reconstruction

Prospective: BMR could potentially be improved to 2.2 - 2.4%, if the origin of every reconstructed particle could be identified...

Color Singlet identification

Published for SISSA by 🖄 Springer

RECEIVED: March 11, 2022 REVISED: September 9, 2022 ACCEPTED: November 11, 2022 PUBLISHED: November 16, 2022

The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measurement at CEPC

Yongfeng Zhu, Hanhua Cui and Manqi Ruan

Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, China University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

E-mail: ruanmq@ihep.ac.cn

Z decay mode	$H \to b\bar{b}$	$H \to c \bar c$	$H \to gg$
$Z \to e^+ e^-$	1.57%	14.43%	10.31%
$Z \to \mu^+ \mu^-$	1.06%	10.16%	5.23%
$Z \to q \bar{q}$	0.35%	7.74%	3.96%
$Z\to \nu\bar\nu$	0.49%	5.75%	1.82%
$\operatorname{combination}$	0.27%	4.03%	1.56%

 Table 3. The signal strength accuracies for different channels.

- Definition: to identify the color singlet origin of every final state particle, especially in the full hadronic events (i.e., in the full hadronic ZH event, identify whether a final state particle is coming from Z or H decay, or ISR photon, etc)
- Bottleneck of measurement with full hadronic events at energy higher than Z pole... i.e., H→cc & gg measurements at qqH channel is much worse than vvH channels, despite qqH has 3.5 times more statistic

AI tool for CSI: using Particle Transformer

AI tool for CSI: Scaling behavior

Toy analysis: identify ZH signal from ZZ + WW backgrounds (Full hadronic)

- Comparison between 5 methods
 - Cut based
 - BDT
 - Classification using all the reconstructable info (1-1 correspondence/PN)
 - 1-1 correspondence with reconstructed CSI
 - 1-1 correspondence with truth level CSI
- 5.6 iab: 540k ZH + 3.1M ZZ + 47 M WW full hadronic events

Migration matrix of 1-1 cases

Perspective & Discussion

- Al tools significantly enhance the discovery power, alter the experiments design. Trilogy of the event reconstruction for future Higgs factories
 - Jet Origin ID: 'see' quark & gluon as lepton & photon
 - 1-1 correspondence, at least at Higgs factory: Should & Could
 - New paradigm for analyses: Forget about artificial variable definition feed all the reconstructable
 - Provide much more detailed info for system monitoring & systematic control
 - Color Singlet Id: decently addressed, enhance the accuracies of measurements with full hadronic final state by ~ 2 times.
- Bottleneck Shifts & Lots to be explored
 - Confusion -> Detector acceptance
 - Variables constructions & validation -> reliability of MC tool

Summary

- CEPC addresses many most pressing and critical science problems in particle physics.
- Accelerator design and technology R&D are reaching maturity, TDR completed, enters EDR phase, ready for construction in 3-5 years.
- Reference detector TDR under preparation, to be completed by the mid-2025 for the proposal of China's 15th 5-year plan.
- Any contributions from international colleagues, especially for accelerator EDR and reference detector TDR, are warmly welcome.
- CEPC schedule will follow the 15th 5-year plan, call for international collaborations and proposals once CEPC is approved.
- > CEPC will offer the worldwide HEP community an early Higgs factory.
- > Al tools: significantly boost our discovery power!

Back up

LLP Search at CEPC

	LLP Type	Signal Signature	\sqrt{s} [GeV]	\mathcal{L} [ab ⁻¹]	Detector	Sensitivities on parameters [Assumptions]	Figs.	Refs.
	New scalar particles (X)	$\begin{split} Z(\to \mathrm{incl.}) h(\to XX), \\ X \to q\bar{q}/\nu\bar{\nu} \end{split}$	240	20	ND	$\label{eq:Br} \begin{split} & {\rm Br}(h\to XX)\sim 10^{-6} \\ & [m\in(1,50)~{\rm GeV},\tau\in(10^{-3},10^{-1})~{\rm ns}] \end{split}$	37	[80]
		$Z(\rightarrow \text{ incl.}) h(\rightarrow XX),$ $X \rightarrow \text{ incl.}$	240	5.6	ND	$\label{eq:Br} \begin{split} &\mathrm{Br}(h\to XX)\sim 3\times 10^{-6}\\ &[m=0.5~\mathrm{GeV},c\tau\sim 5\times 10^{-3}~\mathrm{m}] \end{split}$	49	[86]
					FD3	$\label{eq:Br} \begin{split} &\mathrm{Br}(h\to XX)\sim 7\times 10^{-5}\\ &[m=0.5~\mathrm{GeV},c\tau\sim 1~\mathrm{m}] \end{split}$	49	[86]
					LAYCAST	${ m Br}(h o XX) \sim 5 imes 10^{-6}$ $[m=0.5~{ m GeV},~c au \sim 10^{-1}~{ m m}]$	49	[241]
	RPV-SUSY neutralinos $(\tilde{\chi}_1^0)$	$Z ightarrow ar{\chi}_1^0 ar{\chi}_1^0,$ $ar{\chi}_1^0 ightarrow$ incl.	91.2	150	ND	$\begin{split} & \lambda'_{112}/m_{\tilde{f}}^{z} \in (2 \times 10^{-14}, 10^{-8}) \text{ GeV}^{-2} \\ & [m \sim 40 \text{ GeV}, \mathrm{Br}(Z \to \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}) = 10^{-3}] \end{split}$	43	[86]
					FD3	$\begin{split} \lambda_{112}' m_{\tilde{f}}^2 &\in (10^{-14}, \ 10^{-9}) \ {\rm GeV^{-2}} \\ [m \sim 40 \ {\rm GeV}, \ {\rm Br}(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0) = 10^{-3}] \end{split}$	50	[86]
					LAYCAST	$\begin{split} \lambda_{112}'/m_{\tilde{f}}^2 &\in (7\times 10^{-15},\ 10^{-9})\ {\rm GeV^{-2}} \\ [m\sim 40\ {\rm GeV},\ {\rm Br}(Z\to \tilde{\chi}_1^0\tilde{\chi}_1^0) = 10^{-3}] \end{split}$	50	[241]
		$Z^{(*)} \rightarrow \mu^- \mu^+ a$	91	150	ND	$f_a/C^A_{\mu\mu}\lesssim 950~{ m GeV}$	44	[85]
	ALPs (a)	$\gamma a,$ $a \rightarrow \gamma \gamma$	91.2	150	ND	$C_{\gamma\gamma}/\Lambda \sim 10^{-3}~{ m TeV^{-1}}$ $[C_{\gamma Z}=0,m\sim 2~{ m GeV}]$	51	[241]
					FD3	$C_{\gamma\gamma}/\Lambda \sim 6 imes 10^{-3} ~{ m TeV^{-1}}$ $[C_{\gamma Z}=0, ~m\sim 0.3 ~{ m GeV}]$	51	[242]
					LAYCAST	$C_{\gamma\gamma}/\Lambda\sim 2 imes 10^{-3}~{ m TeV^{-1}}$ $[C_{\gamma Z}=0,m\sim 0.7~{ m GeV}]$	51	[241]
	Hidden valley particles (π_V^0)	$Z h(\rightarrow \pi_V^0 \pi_V^0),$ $\pi_V^0 \rightarrow b \bar{b}$	350	1.0	ND	$\sigma(h) imes { m BR}(h o \pi_v^0 \pi_v^0) \sim 10^{-4} ~{ m pb}$ $[m \in (25, 50) ~{ m GeV}, ~ au \sim 10^2 ~{ m ps}]$	41	[243]
	Dark photons (γ_D)	$Z(\rightarrow q\bar{q}) h(\rightarrow \gamma_D \gamma_D),$ $\gamma_D \rightarrow \ell^- \ell^+ / q\bar{q}$	250	2.0	ND	Br $(h \rightarrow \gamma_D \gamma_D) \sim 10^{-5}$, [$m \in (5, 10)$ GeV, $\tau \sim 10^2$ ps, $\epsilon \in (10^{-6}, 10^{-7})$]	42	[83]

→ CEPC has significant advantage for LLP search with small Life... → Far detector could significantly enhance the LLP search performance,

while dedicated R&D & optimization is needed

Higgs discovery to precision measurements

Discovery of Higgs boson Phys. Lett. B 716 (2012) 1-29 Phys. Lett. B 716 (2012) 30-61 Science 338 (2012) 1569-1575 Science 338 (2012) 1576-1582 2012: Higgs mechanism explains the mass origin of SM particles 2013: Nobel Prize in Physics

Seminar@LLR

Higgs Property Measurement

Nature 607, 52-59 (2022) Nature 607, 60-68 (2022)

Core team, the host institution and the existing support

International collaboration

CEPC attracts significant International participation

- Conceptual design report: 1143 authors from 221 institutes (including 140 International Institutes)
- More than 20 MoUs signed and executed
- Intensive collaboration on Physics studies
- Oversea scientists made substantial contributions to the R&D, especially the detector system
- CEPC International Workshop since 2014
- EU-US versions of CEPC WS: Next one at Marseille
- Annual working month at HKIAS (since 2015)

Seminar@LLR

Core team, the host institution and the existing support

Name	Brief introduction	Role in the CEPC team
Yifang Wang	Academician of the CAS, direc-	The leader of CEPC, chair of the SC
	tor of IHEP	
Xinchou Lou	Professor of IHEP	Project manager, member of the SC
Yuanning Gao	Academician of the CAS, head	Chair of the IB, member of the SC
	of physics school of PKU	
Jie Gao	Professor of IHEP	Convener of accelerator group, vice
		chair of the IB, member of the SC
Haijun Yang	Professor of SJTU	Deputy project manager, member of
		the SC
Jianbei Liu	Professor of USTC	Convener of detector group, mem-
Ma	nagemer	nt team
Hong any le		Convende of the two in up in inper-
		of the SC
Shan Jin	Professor of LJU	Member of the St
Meng Wang	Professor of SDC	Member of the SC
Qinghong Cao	Professor of PKU	Member of the SC
Wei Lu	Professor of CHU	Member of the SC
Joao Sin arae d C	st Poteso of HES	Convener of detector group
Jianchun Wang	Professor of IHEP	Convener of detector group
Yuhui Li	Professor of IHEP	Convener of accelerator group
Chenghui Yu	Professor of IHEP	Convener of accelerator group
Jingyu Tang	Professor of IHEP	Convener of accelerator group
Xiaogang He	Professor of SJTU	Convener of theory group
Jianping Ma	Professor of ITP	Convener of theory group

- Institution Board: 32 institutes, top universities/institutes in China
- Management team: comprehensive management experience at construction projects of BEPCII/CSNS/HEPS, and international projects of BESIII/Daya Bay/JUNO/...
- Accelerator team: fully over all disciplines with rich experiences at BEPCII, HEPS...
- Physics and Detector team: fully over all disciplines with rich experiences at BESIII, Daya Bay, JUNO, ATLAS, CMS, ...

	Table 7.3: Team	of the CEPC accelerator sys	1	Pixel Vertex	Zhijun Liang, Qun Ouyang,	CCNU, IFAE, IHEP, NJU,	~ 40	
Number	Sub-system	Convener	Team (senior staff)		Detector	Xiangming Sun , Wei Wei	NWPU, SDU, Strasbourg,	
rtunicer	Bub System		Team (Semor Starr)	2	Silicon	Harald Fox, Meng Wang,	IHEP, INFN, KIT, Lan-	~ 60
1	Accelerator physics	Chenghui Yu, Yuan Zhang	18		Tracker	Hongbo Zhu	caster, Oxford, Queen Mary,	
2	Magnets	Wen Kang, Fusan Chen	12				RAL, SDU, Tsinghua, Bris-	
3	Cryogenic system	Rui Ge, Ruixiong Han	11				tol, Edinburgh, Livepool,	
4	SC RF system	Jiyuan Zhai Peng Sha	12				USIC, warwick, Snemeid,	
	be fu system	bijdan Zhai, Peng Sha			Commente	Emana Badasahi Zhi Dana	CEA Sector DESV	20
5	Beam Instrumentation	Yanfeng Sui, Junhui Yue	7	3	Gaseous de-	Franco Bedeschi, Zhi Deng,	CEA-Saciay, DEST,	~ 50
6	SC magnets	Oingjin Xu	10		tector	Mingyi Dong, Huirong Qi	LCTPC Collab., IHEP,	
7	117 00	aglarator		data	tor	staffs a	INFN, NIKHEF, THU .	
/	Power supply	Berenator	+ 300	uelec	laine	Sted S C	UPPIENUN	10
8	Injection & extraction	Jinhui Chen	7	5	Calorimetry	Roberto Ferrari, Jianbei Liu,	CALICE Collab., IHEF,	~ 40
9	Mechannal system	Jimii-Wang-Lan D 🛛 🖉 🗖			n/1	Haim Yos, Cog Liu	INFN, SJTU, USTC	
10	Vacuum system	Haiyi Dong, Yongsneng Ma	C/ DESII	I/JOIN		Taclo Gacomen, Liang Li, Viaolong Wang	ID I HE SITE	~ 20
11	Control system	Gelei, Gang Li	6	7	Playsics	Manai Ruan, Yaquan Fang	THEP FDU SITU	~ 80
	o onnor o you on		i anr	novia		Liantao Wang Mingshui	11121,112 0,001 0,11	
12	Linac injector	Jingyi Li, Jingru Zhang	13 ap	JUVE	u	Chan wang, wingshui		
13	Radiation protection	Zhongjian Ma	3		Software	Shengseng Sun Weidong	THEP SDU FDU	~ 20
	Sum	117	0	Sounde	Li Xingto Huang	nier, 000, 100,	20	
							800	
						Sum		~ 300

Number Sub-system Conveners

Table 7.4: Team of the CEPC detector system

Institutions

Team (senior staff)

Core team, the host institution and the existing support

Interr	national Co	ommittees
N	lame	Affiliation

Tatsuya Nakada	EPFL	Japan
Steinar Stapnes	CERN	Norway
Rohini Godbole	CHEP, Bangalore	India
Michelangelo Mangano	CERN	Switzerland
Michael Davier	LAL	France
Lucie Linssen	CERN	Holland
Luciano Maiani	U. Rome	San Marino
Joe Lykken	Fermilab	U.S.
lan Shipsey	Oxford/DESY	U.K.
Hitoshi Murayama	IPMU/UC Berkeley	Japan
Geoffrey Taylor	U. Melbourne	Australia
Eugene Levichev	BINP	Russia
David Gross	UC Santa Barbara	U.S.
Brian Foster	Oxford	U.К
Marcel Demarteau	ORNL	USA
Barry Barish	Caltech	USA
Maria Enrica Biagini	INFN Frascati	Italy
Yuan-Hann Chang	IPAS	Taiwan, China
Akira Yamamoto	КЕК	Japan
Hongwei Zhao	Institute of Modern Physics, CAS	China
Andrew Cohen	University of Science and Techbnology	Hong Kong, China
Karl Jakobs	University of Freiburg/CERN	Germany
Beate Heinemann	DESY	Germany

Country

International Accelerator Kevlew Committee

- Phillip Bambade, LAL
- Marica Enrica Biagini (Chair), INFN
- Brian Foster, DESY/University of Hamburg & Oxford University
- In-Soo Ko, POSTTECH
- Eugene Levichev, BINP
- Katsunobu Oide, CERN & KEK
- Anatolii Sidorin, JINR
- Steinar Stapnes, CERN
- Makoto Tobiyama, KEK
- Zhentang Zhao, SINAP
- Norihito Ohuchi, KEK
- Carlo Pagani, INFN-Milano

International Detector R&D Review Committee

- Jim Brau, USA, Oregon
- Valter Bonvicini, Italy, Trieste
- Ariella Cattai, CERN, CERN
- Cristinel Diaconu, France, Marseille
- Brian Foster, UK, Oxford
- Liang Han, China, USTC
- Dave Newbold, UK, RAL (chair)
- Andreas Schopper, CERN, CERN
- Abe Seiden, USA, UCSC
- Laurent Serin, France, LAL
- Steinar Stapnes, CERN, CERN
- Roberto Tenchini, Italy, INFN
- Ivan Villa Alvarez, Spain, Santader
- Hitoshi Yamamoto, Japan, Tohoku

IAC: global renowned scientists and top laboratory or project leaders who have ample experience in project management, planning, and execution of strategies, **operating since 2015** IARC & IDRC: leading experts of this field, provide guide to the project director

Seminar@LLR

...Peter Higgs...

Particle Physics after the Higgs Discovery SM is a complete and self-consistent theory after the Higgs discovery. **But it doesn't accommodate dark matter and dark energy > New physics ?**

Upgrade capability and added values

SR power per beam upgrade to **50 MW**: High Luminosity (8E34 @ 240 GeV)

The **center-of-mass energy** can increase to **360 GeV**: top quark data

Add a super proton-proton collider (SppC) with c.m.s >100 TeV

Expandability: High energy & high flux synchrotron light source provides gamma-ray energy up to 300 MeV, critical for multi-disciplinary science

Boost the developments of multiple technologies:

Fast electronics, mechanics, vacuum, beam diagnostics, RF acceleration, cryogenic system, novel magnets, high-accuracy power supplies, control systems, big data, automation and intelligence, etc

- > Upgradable scenarios: compatibilities included in design and construction
- > Upgrades in several highly valuable ways, bring up discovery power, lifetime spans > 5 decades
- > Significant spillover effects on multidisciplinary sciences and applications