

Étude du canal *tīH*, *H→bb̄* pour la recherche du boson de Higgs de masse 120 GeV/c² au LHC

Georges AAD Dirigé par Alexandre ROZANOV et Laurent VACAVANT

Plan

- Introduction
 - Boson de Higgs
 - Atlas
- Recherche du Higgs
 - Le canal ttH
 - Présélection des objet particules
 - Reconstruction du signal
 - Résultats
- Le détecteur à pixels
 - Introduction
 - Extraction des données de calibration et des cartes des pixels spéciaux
 - Analyse du bruit
- Conclusion et perspectives

Le boson de Higgs

Lagrangien du modèle standard: symétrie $U(1)_V \times SU(2)_L \times SU(3)_C$

> Pas de terme de masse pour les particules

Une des solutions:

>Ajout d'une doublet de champs scalaire qui est symétrique sous $U(1) \times SU(2)$

> Etat fondamental symétrique seulement sous U(1) (brisure spontanée de symétrie)

 \triangleright Couplage de Yukawa \rightarrow masse pour les fermions

≻Masse pour les boson W et Z

Masse du Higgs paramètre libre du modèle

Georges AAD

ATLAS A Toroïdal LHC ApparatuS

- LHC:
 - 27 km de circonférence
 - 14 TeV centre de masse
 - Proton-proton
 - 10³⁴ cm⁻² s⁻¹ luminosité nominale
 - Collision principale gluon-gluon

• ATLAS:

- 44 m de longueur 22 m de diamètre
 - Trajectographie interne
 - Système de calorimétrie
 - Chambres à muons avec un système d'aimants toroïdaux

Recherche du Higgs

Le canal ttH

 \overline{q}

Présélection

Différentes coupures d' identification et de qualité sont appliquées pour faire un compromis entre une grande efficacité et un petit taux de contamination

15/06/2007

Présélection:

B-tagging

15/06/2007

Georges AAD

0.8

Likelihood PDF's

Reconstruction du Higgs

Reconstruction du Higgs à partir des deux jets b qui restent.

Le likelihood donne de meilleures performances:

-Même efficacité: gain 8% pureté

-Même pureté: gain 22% efficacité

-Meilleure résolution sur la masse du Higgs

-Surtout moins de queues dans la distribution de masse

Plus de signal dans la région ou on cherche le Higgs

➤Meilleure significance

Problème principal de combinatoire et de la pureté de Higgs

Higgs in mass range \pm 30 GeV/c²

Résultats

7 mary ses precedentes							
Analyse	méthode	Sig	Remarque				
Cammin	χ^2	1.9	Simulation rapide				
	Likelihood	2.9					
Corréard	χ^2	2.5	Simulation semi-rapide				
	Likelihood	(4.9)	Pas assez de ttjj				

Analyzas prácádantas

Problème de détermination de la forme et de la normalisation du bruit

Evénement dans le domaine $M_H \pm 30 \text{GeV}/c^2$	ttH	ttbb	ttjj(jj≠bb)	Sig	
# événement MC	783	124	14	2.2	$\rightarrow \chi^2$ \rightarrow Likelihood
# événement 30 fb ⁻¹	33	152	61	2.3	
# événement MC	1048	151	12	2.8	
# événement 30 fb ⁻¹	44	188	52		

Le détecteur à pixels

Détecteur à pixels

- Détecteur à pixels:
 - 3 couches de pixels
 - 1744 modules
 - 46080 pixels par module
 - 50 (r ϕ) × 400 μ m² par pixel
 - Grande résistance à la radiation
 - Nécessaire pour avoir une grande résolution sur le paramètre d'impact \rightarrow b-tagging

Calibration et carte de pixels spéciaux

- Participation à la mise en place du software du détecteur à pixels
 - Extraction des données de calibration qui viennent des tests de production des modules des pixels (seuil, bruit, ToT)
 - Extraction des cartes de pixels spéciaux (morts, bruyants ...)
 - Participation à la mise en place des bases de données contenant les données du système de contrôle du détecteur à pixels (température, haute tension ...)

Cela va servir à une meilleur maîtrise de la reconstruction et à une simulation plus réaliste du détecteur

15/06/2007

Georges AAD

Données de cosmiques

• Déclenchement aléatoire pour déterminer le bruit

- Forte corrélation entre les données de bruit et la carte des pixel spéciaux
- Définition de taux d'occupation des pixels bruyant à $\sim 10^{-6}$

Conclusion

- Le canal ttH, bien que difficile, reste l'un des canaux principaux pour la recherche du Higgs de faible masse dans Atlas
- Les études sont en cours pour ce canal pour principalement diminuer la combinatoire et l'extraction de la forme du bruit dans les données
- Le b-tagging est fondamental pour ce canal et je vais commencer à travailler sur ce sujet
- Toutes ces études nécessitent une meilleure compréhension du détecteur à pixels qui va donc être le sous-détecteur à comprendre avec les premières données notamment les cosmiques