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General overview

Are the values of the neutrino masses and mixing angles random
or do they follow an underlying symmetry ?

The neutrino mixing pattern could be understood on the basis of a
specific class of symmetry : non-Abelian discrete flavour

symmetry.
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New fundamental symmetry in
the lepton sector ?



Theoretical Framework : Neutrino mixing

U=VP, P =diag (1,e"“%,e"“‘%)
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Weak charged lepton current

(i) spectrum with normal ordering (NO): m; < my <

2 2 _ 2

Ordering of the neutrino masses : "a Am311(32) > 0, Amy > 0, mys) = (my +
(the squared differences are pretty Am%lm))i;

well known experimentally) (ii) spectrum with inverted ordering (10): m3 < m; <

1

ma, Am3y 5y < 0, Ama; > 0, my = (m3 4+ Am3,)2,

1
iy = (m% + Am%3 — Am%l)z.



Theoretical Framework : Neutrino mixing
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Asymmetry of the oscillation probability



Theoretical Framework : Discrete symmetry

Extending the SM with a discrete non-Abelian group, unified at High Energy, broken at Low

Energy so that the particles get different masses.
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Thus the PMNS matrix is either completely
determined or at least constrained by the choice of
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Example of discrete groups

S4 : (permutation of 4 elements).

Tri-bimaximal mixing: G, = Z} ={1,T,T?%}, G, =Z5 x Z¥ ={1,8,U, SU}, U;=Vigu=| -

ruled out by data because it implies #,5 = 0 .

Other possibility : Ge = Z1 ={1,T,T%, G, =23V ={1, SU},
Which lead to the following equation for & :
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where ¢;; = c0s 6,3 and 5y, = sin6,5.



Example of discrete groups

S4 : (permutation of 4 elements).

Tri-bimaximal mixing: G, = Z} ={1,T,T?%}, G, =275 x Z¥ ={1,8,U, SU}, U;=Viu=

ruled out by data because it implies #,5 = 0 .

Other possibility : Ge = Z1 ={1,T,T%, G, =23V ={1, SU}, :
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Values of & based on this group are strongly disfavored by the

7
1
current data (but not completely ruled out yet). ~ %
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Example of discrete groups

A4 : (even permutation of 4 elements). Upmns = Uy P° =

Subgroups : Ge:Z;:{l’T’TZ}, GV:Zgz{l,S}, _ _\ifst
We have the following equation for &: —% -
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It leads also to a correlation of Sin(@lg), 8111(023) , which means
that a good measure of those angles plus a decent measure of & could verify or rule
out model based on the A4 group.
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Example of discrete groups

Comparison of different symmetry
patterns with the expected data
from future experiments

Fig. 3 Sensitivities of the
experiments DUNE, T2HK and
their combined (prospective)
data to the symmetry form
parameter sin? 6}, allowing to
distinguish between the TBM,
GRA, GRB, and HG symmetry
forms under the assumption that
one of them is realised in
Nature. In the top left and right
panels the assumed true
symmetry forms are respectively
TBM (sin” 6}, = 1/3) and GRA
(sin2 9,"2 = 0.276), while in the
bottom left and right panel these
forms are GRB
(sin® 6}, = 0.345) and HG
(sin? 6}, = 0.25). See text for
further details. (From Ref. [41].)
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Generalised CP symmetry

~ cP B .
With the previous models, the Majorana phases remain undetermined. ‘B8 —> UX D) C G &)
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Their values are instead constrained by a Generalised CP symmetry (GCP) (k) = HXRprClp¥)

combining CP symmetry with flavour symmetry. vy, (%) €F i(XL)770C —”i'L (x/)T



Conclusion

Sufficiently precise measurement of the Dirac phase of the PMNS matrix as
well as a refinement of the measures of the mixing angle will provide
informations as to which discrete group is correct for the eventual flavour
symmetry.



