

Tuning files for PyfiTQun

Lorenzo Restrepo Orrantia

Important quantities for the analysis

- Oscillation analysis (accelerator *ν*):
- \rightarrow Neutrino energy (E) and type (e or mu)

- Determination of the neutrino origin (beamline, atmospheric, Supernovae...)
- \rightarrow Neutrino direction (θ , ϕ)

fiTQun pipeline

- SK reconstruction algorithm
- Divided into parts that perform different tasks
- Ring fit = heart of the algorithm
 → Determination of (x, θ, φ, p)
 → PID

Single & multi ring fits

• Likelihood function \boldsymbol{L} = probabilistic model

Probability of observing a set of hits (times and charges), knowing the particle parameters $\mathbf{p} = (x, \theta, \varphi, E)$

- Computed for different particle hypothesis
- \rightarrow Single track hypothesis (e, mu...) = single ring fit
- → Multiple track hypothesis (pi0...) = multi-ring fit

Évènement **µ**

- The set of parameters that <u>maximise ln(L)</u> are taken as particle parameters p
- PID is done by applying cuts in ln(*L(H1)/L(H2)*) for each combination of particle hypothesis

The likelihood model

Exclusively function of the track parameters X

• Depends on the physics processes and the detector geometry

$$L(\mathbf{x}) = \prod_{j}^{\text{unhit}} P_j(\text{unhit}|\mu_j) \prod_{i}^{\text{hit}} \{1 - P_i(\text{unhit}|\mu_i)\} f_q(q_i|\mu_i) f_t(t_i|\mathbf{x})$$

- Complex model with some free parameters
- Tuning = fitting the free parameters

PyfiTQun

- Our goal right now is to test the electron single-ring fit
- Initially, we will do it:
 - → Without scattering
 - \rightarrow Without time pdf
- For now, we only need:
 - → Predicted charges (without scattering)
 - \rightarrow Unhit probability
 - \rightarrow Charge pdf

Predicted charges: Normalisation factor

- $\Phi(p)$; hould account for all the proportionality factors not accounted for in $\mu^{
 m dir}$
- In PyfiTQun, the normalisation factor is simply expressed
 as:

$$\Phi(p) = Q_{Eff} N_{\gamma}$$

Quantum Number of efficiency photons

Predicted charges: Parabolic approximation

• The previous integral is not analytical, thus we introduce the parabolic approximation:

$$J(s) \equiv \Omega(R)T(R)\epsilon(\eta) \approx j_0 + j_1s + j_2s^2$$

• The predicted charge becomes:

$$\mu^{\text{dir}} = \Phi(p) \int dsg(s)J(s) \approx \Phi(p)(I_0j_0 + I_1j_1 + I_2j_2)$$

• With: $I_n \equiv \int dsg(s)s^n \longrightarrow = \text{Cherenkov integrals}$

Predicted charges: Cherenkov profiles

 The Cherenkov profiles are generated through simulatic in a precise geometry

100m

691

- Simulated energy range: 50MeV 4GeV
- 1000 events/energy

Momentum = 3850.0

Predicted charges: Cherenkov profiles

The Cherenkov integrals are fitted as a function of E for each (Ro, **0**)

 $r_0 = 7037.037$ cm, $\cos \theta_0 = -0.22$

Predicted charges: Angular acceptance

The simulations consist of "electron bombs" (~3MeV)
 → Supposed to be point-like Cherenkov sources

• Used for the angular acceptance AND the Scattering Table

• 10 million events in HK geometry

Predicted charges: Angular acceptance

• First the overall angular acceptance is computed:

Predicted charges: Angular acceptance

• Second, knowing that $J(R=0,\eta)=\Omega(0)T(0)\epsilon(\eta)\sim\epsilon(\eta)$ We can fit an estimation of $\epsilon(\eta)$

Unhit probability

- For a PMT the photoelectron production can be modelled as a *Poisson law* with mean : μ $p(\mu,k) = rac{\mu^k}{k!}e^{-\mu}$
- Thus, the unhit probability: $P(unhit|\mu_i) = p(\mu,k=0) = e^{-\mu}$

Taking into account the PMT threshold, a correction is applied:

$$P(\text{unhit}|\mu) \approx (1 + a_1\mu + a_2\mu^2 + a_3\mu^3)e^{-\mu}$$

Unhit probability

• The simulations use the TRUE deposited charges

• From 0.1C to 50C

• 5000 events per charge value

• Also used for *the charge pdf*

 $f_q(q_i|\mu_i)$

Unhit probability

$$P(\text{unhit}|\mu) \approx (1 + a_1\mu + a_2\mu^2 + a_3\mu^3)e^{-\mu}$$

• Unhit probability fit = 10^{-1} 10^{-4} fit of a1, a2 and a3 10-7 P_{unhit} 10-10 $P(unhit|\mu_i)$ 10-13 10^{-16} 10^{-19} · 10 20 30 0 40 50 predicted charge μ

Charge pdf $f_q(q_i|\mu_i)$

• Charge pdf = probability of detecting the charge **q**_j, knowing the true charge μ_j

Conclusion

- Preliminary performance study of the electron single ring, using PyfiTQun with HK geometry
- Starting point: same models as fiTQun (for now)

- Cherenkov profiles 🗹
- 🔹 Unhit probability 🗹
- Charge pdf 🗹

TODO

- Angular acceptance (
- Scattering tables
- Time pdf 👹

Thank you

Backup

Cherenkov profiles: potential issue in IO

There is a weird behaviour for cos(θ) ~ 0.5 integrals at low energies (first bin)

• Ongoing investigation...

