

Top quark pair production in photon-photon collisions at the LHC

Hua-Sheng Shao

LPTHE Paris

Top LHC France 2025 Jussieu 30 April 2025

Introduction

- Very impressive SM cross section measurements at the LHC
 - many processes are at percent even subpercent level

Mainly quarks and gluons (photon density ~ 1% of quark density)

Introduction

- Ultra-Peripheral Collisions (UPCs)
- Large photon flux $\propto Z^2$
- Cross section enhanced by Z^4

E.g., PbPb is $Z^4 = 45M$ times larger than pp & e+e-

Photon may interact either coherently or incoherently

= Equivalent Photon Approximation

How do events look like ?

Most collisions have enormous multiplicities.

How do events look like ?

UPC: low multiplicities

Introduction

Gold-plated SM and BSM processes

Process	Physics motivation				
$\gamma\gamma ightarrow e^+e^-, \mu^+\mu^-$	"Standard candles" for proton/nucleus γ fluxes, EPA calculations, and higher-order QED correction				
$\gamma\gamma \to \tau^+ \tau^-$	Anomalous τ lepton e.m. moments [29–32]				
$\gamma\gamma \rightarrow \gamma\gamma$	aQGC [25], ALPs [27], BI QED [28], noncommut. interactions [36], extra dims. [37],				
$\gamma\gamma ightarrow {\cal T}_0$	Ditauonium properties (heaviest QED bound state) [38, 39]				
$\gamma\gamma \rightarrow (c\overline{c})_{0,2}, (b\overline{b})_{0,2}$	Properties of scalar and tensor charmonia and bottomonia [40, 41]				
$\gamma\gamma \rightarrow XYZ$	Properties of spin-even XYZ heavy-quark exotic states [42]				
$\gamma\gamma \rightarrow VM VM$	(with VM = ρ , ω , ϕ , J/ ψ , Υ): BFKL-Pomeron dynamics [43–46]				
$\gamma\gamma \rightarrow W^+W^-, ZZ, Z\gamma, \cdots$	anomalous quartic gauge couplings [11, 26, 47, 48]				
$\gamma\gamma \rightarrow H$	Higgs- γ coupling, total H width [49, 50]				
$\gamma\gamma \rightarrow HH$	Higgs potential [51], quartic $\gamma\gamma$ HH coupling				
$\gamma\gamma \rightarrow t\bar{t}$	anomalous top-quark e.m. couplings [11, 49]				
$\gamma\gamma \rightarrow \tilde{\ell}\tilde{\ell}, \tilde{\chi}^+\tilde{\chi}^-, \mathrm{H^{++}H^{}}$	SUSY pairs: slepton [11, 52, 53], chargino [11, 54], doubly-charged Higgs bosons [11, 55].				
$\gamma\gamma \rightarrow a, \phi, \mathcal{MM}, G$	ALPs [27, 56], radions [57], monopoles [58-61], gravitons [62-64],				

Introduction

Gold-plated SM and BSM processes

Process	Physics motivation				
$\gamma\gamma ightarrow e^+e^-, \mu^+\mu^-$	"Standard candles" for proton/nucleus γ fluxes, EPA calculations, and higher-order QED corrections				
$\gamma\gamma ightarrow au^+ au^-$	Anomalous τ lepton e.m. moments [29–32]				
$\gamma\gamma \rightarrow \gamma\gamma$	aQGC [25], ALPs [27], BI QED [28], noncommut. interactions [36], extra dims. [37],				
$\gamma\gamma ightarrow {\cal T}_0$	Ditauonium properties (heaviest QED bound state) [38, 39]				
$\gamma\gamma \rightarrow (c\overline{c})_{0,2}, (b\overline{b})_{0,2}$	Properties of scalar and tensor charmonia and bottomonia [40, 41]				
$\gamma\gamma \rightarrow XYZ$	Properties of spin-even XYZ heavy-quark exotic states [42]				
$\gamma\gamma \rightarrow VM VM$	(with VM = ρ , ω , ϕ , J/ ψ , Υ): BFKL-Pomeron dynamics [43–46]				
$\gamma\gamma \rightarrow W^+W^-, ZZ, Z\gamma, \cdots$	anomalous quartic gauge couplings [11, 26, 47, 48]				
$\gamma\gamma \rightarrow H$	Higgs- γ coupling, total H width [49, 50]				
$\gamma\gamma \rightarrow HH$	Higgs potential [51], quartic $\gamma\gamma$ HH coupling				
$\gamma\gamma \rightarrow t\bar{t}$	anomalous top-quark e.m. couplings [11, 49]				
$\gamma\gamma \rightarrow \tilde{\ell}\tilde{\ell}, \tilde{\chi}^+\tilde{\chi}^-, \mathrm{H^{++}H^{}}$	SUSY pairs: slepton [11, 52, 53], chargino [11, 54], doubly-charged Higgs bosons [11, 55].				
$\gamma\gamma \rightarrow a, \phi, \mathcal{MM}, G$	ALPs [27, 56], radions [57], monopoles [58-61], gravitons [62-64],				

Motivation

- Why $\gamma\gamma \rightarrow t\bar{t}$? Or what we can learn ?
 - Electric charge and electromagnetic dipole moments

$$\begin{array}{c} \gamma & & \\ \gamma & & \\ \hline t & t \\ \gamma & & \\ \gamma & & \\ \hline \gamma & & \\ \end{array} \begin{array}{c} t & t \\ \hline t & \\ t & \\ \hline t & \\ t & \\ t & \\ \hline t & \\ t & \\ \hline t & \\ t & \\ \hline t & \\ t &$$

FCNC and anomalous top-photon couplings

- Other BSM enhancements, e.g., resonances and extra-dim models Baldenegro et al. (JHEP'22); Inan, Billur (PRD'11)
- Elastic photon flux and soft survival probability at large ξ

Central exclusive production

$p \qquad p \\ \gamma \\ \gamma \\ \tau \\ r \\ r \\ p \\ p$	p =	S^2	p = p - $t < - \overline{t}$ - p	p γ	$\begin{array}{c} & p \\ \hline & t \\ \hline & \overline{t} \\ & p \end{array}$
Generator Setting	$\sigma_{(p\mathbb{P} o t\bar{t})}$ [pb]	$\sigma_{(\gamma p o t \bar{t})} [{ m pb}]$	$\sigma_{(\gamma \mathbb{P} o t \bar{t})}$ [pb]	$\sigma_{(\mathbb{PP} o t\bar{t})}$ [pb]	$\sigma_{(\gamma\gamma o t \bar{t})} [{\rm pb}]$
SuperChic (isurv $= 1$)	_	_	_	$1.22(1)\cdot 10^{-5}$	$2.05(2)\cdot 10^{-4}$
(isurv = 2)	—	—	-	$3.21(2)\cdot 10^{-5}$	$2.06(1)\cdot 10^{-4}$
(isurv = 3)	_	_	-	$2.05(1)\cdot 10^{-5}$	$2.05(1)\cdot 10^{-4}$
(isurv = 4)	_	_	-	$1.59(1)\cdot 10^{-5}$	$2.06(1)\cdot 10^{-4}$
(sfaci = false)	_	_	-	$1.73(1)\cdot 10^{-3}$	$2.77(2)\cdot 10^{-4}$
MadGraph	—	1.23	-	-	$3.33 \cdot 10^{-4}$
PYTHIA (MPI: unchecked)	90.5(1)	1.45	$1.26(6) \cdot 10^{-1}$	-	$4.56(2) \cdot 10^{-4}$
(MPI: checked)	5.14(5)	1.46	$1.27(6) \cdot 10^{-1}$	-	$4.57(2)\cdot 10^{-4}$
FPMC 7	_	_	$5.2 \cdot 10^{-2}$	$2.84 \cdot 10^{-2}$	$3.4 \cdot 10^{-4}$

- Pomeron related processes have large uncertainties
- Photon-photon is relatively well understood theoretically

Howarth (2008.04249)

Feasibility at the LHC

https://hshao.web.cern.ch/hshao/gammaupc.html

Why do we need gamma-UPC ?

Our aim is to generate any final state of interest

MadGraph5_aMC@NLO

 Final state of elementary particles in SM and BSM both at LO and NLO QCD+EW

HELAC-Onia

- Final state of elementary particles and quarkonia (including $B_{\rm c})$ in SM at tree level
- + Both can generate the standard Les Houches event files to allow to interface to general-purpose Monte Carlo tools (e.g. Pythia)

Why do we need gamma-UPC ?

Our aim is to generate any final state of interest

MadGraph5_aMC@NLO

 Final state of elementary particles in SM and BSM both at LO and NLO QCD+EW

HELAC-Onia

- Final state of elementary particles and quarkonia (including $B_{\rm c}$) in SM at tree level
- + Both can generate the standard Les Houches event files to allow to interface to general-purpose Monte Carlo tools (e.g. Pythia)
- We need (realistic) photon-photon flux in UPC

Why do we need gamma-UPC ?

Our aim is to generate any final state of interest

MadGraph5_aMC@NLO

 Final state of elementary particles in SM and BSM both at LO and NLO QCD+EW

HELAC-Onia

- Final state of elementary particles and quarkonia (including $B_{\rm c}$) in SM at tree level
- * Both can generate the standard Les Houches event files to allow to interface to general-purpose Monte Carlo tools (e.g. Pythia)
- We need (realistic) photon-photon flux in UPC

• Cross section:

$$\sigma(\mathbf{A} \to \mathbf{B} \xrightarrow{\gamma\gamma} \mathbf{A} X = \int \frac{dE_{\gamma_1}}{E_{\gamma_1}} \frac{dE_{\gamma_2}}{E_{\gamma_2}} \frac{\mathrm{d}^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(\mathbf{A} \to \mathbf{B})}}{\mathrm{d} E_{\gamma_1} \mathrm{d} E_{\gamma_2}} \sigma_{\gamma\gamma \to X}(W_{\gamma\gamma})$$

Cross section:

$$\sigma(\mathbf{A} \to \mathbf{B} \xrightarrow{\gamma\gamma} \mathbf{A} X \to \mathbf{B}) = \int \frac{dE_{\gamma_1}}{E_{\gamma_1}} \frac{dE_{\gamma_2}}{E_{\gamma_2}} \left[\frac{\mathrm{d}^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(\mathbf{A} \to \mathbf{B})}}{\mathrm{d} E_{\gamma_1} \mathrm{d} E_{\gamma_2}} \sigma_{\gamma\gamma \to X}(W_{\gamma\gamma}) \right]$$

Effective two-photon luminosity:

$$\frac{\mathrm{d}^2 N_{\gamma_1/\mathbf{Z}_1,\gamma_2/\mathbf{Z}_2}^{(\mathrm{AB})}}{\mathrm{d} E_{\gamma_1} \mathrm{d} E_{\gamma_2}} = \int \mathrm{d}^2 \boldsymbol{b}_1 \mathrm{d}^2 \boldsymbol{b}_2 P_{\mathrm{no \, inel}} \left(|\boldsymbol{b}_1 - \boldsymbol{b}_2| \right) N_{\gamma_1/\mathbf{Z}_1} (E_{\gamma_1}, \boldsymbol{b}_1) N_{\gamma_2/\mathbf{Z}_2} (E_{\gamma_2}, \boldsymbol{b}_2) \times \theta(b_1 - \epsilon R_{\mathrm{A}}) \theta(b_2 - \epsilon R_{\mathrm{B}})$$

Cross section:

$$\sigma(\mathbf{A} \to \mathbf{B} \xrightarrow{\gamma\gamma} \mathbf{A} X \to \mathbf{B}) = \int \frac{dE_{\gamma_1}}{E_{\gamma_1}} \frac{dE_{\gamma_2}}{E_{\gamma_2}} \frac{\mathrm{d}^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(\mathbf{A} \to \mathbf{B})}}{\mathrm{d}E_{\gamma_1} \mathrm{d}E_{\gamma_2}} \sigma_{\gamma\gamma \to X}(W_{\gamma\gamma})$$

• Effective two-photon luminosity:

$$\frac{\mathrm{d}^2 N_{\gamma_1/\mathbf{Z}_1,\gamma_2/\mathbf{Z}_2}^{(\mathrm{AB})}}{\mathrm{d} E_{\gamma_1} \mathrm{d} E_{\gamma_2}} = \int \mathrm{d}^2 \boldsymbol{b}_1 \mathrm{d}^2 \boldsymbol{b}_2 P_{\mathrm{no \, inel}} \left(|\boldsymbol{b}_1 - \boldsymbol{b}_2| \right) N_{\gamma_1/\mathbf{Z}_1} (E_{\gamma_1}, \boldsymbol{b}_1) N_{\gamma_2/\mathbf{Z}_2} (E_{\gamma_2}, \boldsymbol{b}_2) \times \theta(b_1 - \epsilon R_{\mathrm{A}}) \theta(b_2 - \epsilon R_{\mathrm{B}})$$

No hadronic/inelastic interaction probability density:

$$P_{\text{no inel}}(b) = \begin{cases} e^{-\sigma_{\text{inel}}^{\text{NN}} \cdot T_{\text{AB}}(b)}, & \text{nucleus-nucleus} \\ e^{-\sigma_{\text{inel}}^{\text{NN}} \cdot T_{\text{A}}(b)}, & \text{proton-nucleus} \\ \left|1 - \Gamma(s_{\text{NN}}, b)\right|^{2}, & \text{with } \Gamma(s_{\text{NN}}, b) \propto e^{-b^{2}/(2b_{0})} & \text{p-p} \end{cases}$$

Cross section:

$$\sigma(A \to \gamma\gamma A X B) = \int \frac{dE_{\gamma_1}}{E_{\gamma_1}} \frac{dE_{\gamma_2}}{E_{\gamma_2}} \frac{d^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(AB)}}{dE_{\gamma_1} dE_{\gamma_2}} \sigma_{\gamma\gamma \to X}(W_{\gamma\gamma})$$

Effective two-photon luminosity:

 $\frac{\mathrm{d}^2 N_{\gamma_1/\mathbf{Z}_1,\gamma_2/\mathbf{Z}_2}^{(\mathrm{AB})}}{\mathrm{d} E_{\gamma_1} \mathrm{d} E_{\gamma_2}} = \int \mathrm{d}^2 \boldsymbol{b}_1 \mathrm{d}^2 \boldsymbol{b}_2 P_{\mathrm{no \, inel}} \left(|\boldsymbol{b}_1 - \boldsymbol{b}_2| \right) N_{\gamma_1/\mathbf{Z}_1} (E_{\gamma_1}, \boldsymbol{b}_1) N_{\gamma_2/\mathbf{Z}_2} (E_{\gamma_2}, \boldsymbol{b}_2) \times \theta(b_1 - \epsilon R_{\mathrm{A}}) \theta(b_2 - \epsilon R_{\mathrm{B}})$

No hadronic/inelastic interaction probability density:

$$P_{\text{no inel}}(b) = \begin{cases} e^{-\sigma_{\text{inel}}^{\text{NN}} \cdot T_{\text{AB}}(b)}, & \text{nucleus-nucleus} \\ e^{-\sigma_{\text{inel}}^{\text{NN}} \cdot T_{\text{A}}(b)}, & \text{proton-nucleus} \\ \left|1 - \Gamma(s_{\text{NN}}, b)\right|^{2}, & \text{with } \Gamma(s_{\text{NN}}, b) \propto e^{-b^{2}/(2b_{0})} & \text{p-p} \end{cases}$$

Glauber model

Cross section:

$$\sigma(A \ B \xrightarrow{\gamma\gamma} A \ X \ B) = \int \frac{dE_{\gamma_1}}{E_{\gamma_1}} \frac{dE_{\gamma_2}}{E_{\gamma_2}} \frac{d^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(AB)}}{dE_{\gamma_1} dE_{\gamma_2}} \sigma_{\gamma\gamma \to X}(W_{\gamma\gamma})$$

Effective two-photon luminosity:

 $\frac{\mathrm{d}^2 N_{\gamma_1/\mathbf{Z}_1,\gamma_2/\mathbf{Z}_2}^{(\mathrm{AB})}}{\mathrm{d} E_{\gamma_1} \mathrm{d} E_{\gamma_2}} = \int \mathrm{d}^2 \boldsymbol{b}_1 \mathrm{d}^2 \boldsymbol{b}_2 P_{\mathrm{no \, inel}} \left(|\boldsymbol{b}_1 - \boldsymbol{b}_2| \right) N_{\gamma_1/\mathbf{Z}_1} (E_{\gamma_1}, \boldsymbol{b}_1) N_{\gamma_2/\mathbf{Z}_2} (E_{\gamma_2}, \boldsymbol{b}_2)$

Cross section:

$$\sigma(\mathbf{A} \to \mathbf{B} \xrightarrow{\gamma\gamma} \mathbf{A} X \to \mathbf{B}) = \int \frac{dE_{\gamma_1}}{E_{\gamma_1}} \frac{dE_{\gamma_2}}{E_{\gamma_2}} \frac{\mathrm{d}^2 N_{\gamma_1/Z_1,\gamma_2/Z_2}^{(\mathbf{A} \to \mathbf{B})}}{\mathrm{d}E_{\gamma_1} \mathrm{d}E_{\gamma_2}} \sigma_{\gamma\gamma \to X}(W_{\gamma\gamma})$$

• Effective two-photon luminosity:

$$\frac{\mathrm{d}^2 N_{\gamma_1/\mathbf{Z}_1,\gamma_2/\mathbf{Z}_2}^{(\mathrm{AB})}}{\mathrm{d} E_{\gamma_1} \mathrm{d} E_{\gamma_2}} = \int \mathrm{d}^2 \boldsymbol{b}_1 \mathrm{d}^2 \boldsymbol{b}_2 P_{\mathrm{no \, inel}} \left(|\boldsymbol{b}_1 - \boldsymbol{b}_2| \right) \frac{N_{\gamma_1/\mathbf{Z}_1}(E_{\gamma_1}, \boldsymbol{b}_1) N_{\gamma_2/\mathbf{Z}_2}(E_{\gamma_2}, \boldsymbol{b}_2)}{\times \theta(b_1 - \epsilon R_{\mathrm{A}}) \theta(b_2 - \epsilon R_{\mathrm{B}})}$$

No hadronic/inelastic interaction probability density:

$$P_{\text{no inel}}(b) = \begin{cases} e^{-\sigma_{\text{inel}}^{\text{NN}} \cdot T_{\text{AB}}(b)}, & \text{nucleus-nucleus} \\ e^{-\sigma_{\text{inel}}^{\text{NN}} \cdot T_{\text{A}}(b)}, & \text{proton-nucleus} \\ \left|1 - \Gamma(s_{\text{NN}}, b)\right|^{2}, & \text{with } \Gamma(s_{\text{NN}}, b) \propto e^{-b^{2}/(2b_{0})} & \text{p-p} \end{cases}$$

- The photon number density:
 - Two form factors

Two Form Factors

- Electric dipole form factor (EDFF)
 - Same as STARlight

$$N_{\gamma/Z}^{\text{EDFF}}(E_{\gamma}, b) = \frac{Z^2 \alpha}{\pi^2} \frac{\xi^2}{b^2} \left[K_1^2(\xi) + \frac{1}{\gamma_{\text{L}}^2} K_0^2(\xi) \right] \qquad \xi = \frac{E_{\gamma} b}{\gamma_{\text{L}}}$$

Charge form factor (ChFF)

$$N_{\gamma/Z}^{\rm ChFF}(E_{\gamma},b) = \frac{Z^{2}\alpha}{\pi^{2}} \left| \int_{0}^{+\infty} \frac{dk_{\perp}k_{\perp}^{2}}{k_{\perp}^{2} + E_{\gamma}^{2}/\gamma_{\rm L}^{2}} F_{\rm ch,A} \left(\sqrt{k_{\perp}^{2} + E_{\gamma}^{2}/\gamma_{\rm L}^{2}} \right) J_{1} \left(bk_{\perp} \right) \right|^{2}$$
$$F_{\rm ch,A}(q) = \int \mathrm{d}^{3}\boldsymbol{r} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} \rho_{\rm A}(\boldsymbol{r}) = \frac{4\pi}{q} \int_{0}^{+\infty} \mathrm{d}r \rho_{\rm A}(r) r \sin\left(qr\right)$$

density profile of nuclei normalised to unity

Photon number density

• EDFF vs ChFF

- Main difference comes from the $b < R_A$ regime
- EDFF photon number density is divergent at b=0
 - Need a (arbitrary) cutoff when convoluting with ME

Effective two-photon luminosity

EDFF vs ChFF

gamma-UPC+MadGraph5_aMC@NLO

• Leading Order (already in version >= 3.5.0)

HSS, d'Enterria (JHEP'22)

./bin/mg5_aMC
MG5_aMC> import model <a model>
MG5_aMC> generate a a > t t~
MG5_aMC> output; launch

• Next-to-Leading Order QCD and/or EW (to be released)

HSS, Simon (2504.10104)

./bin/mg5_aMC
MG5_aMC> import model loop_qcd_qed_sm_Gmu-a0
MG5_aMC> generate !a! !a! > t t~ [QCD_QED]
MG5_aMC> output; launch

Total Cross Sections

Process: $\gamma \gamma \rightarrow t\bar{t}$	gamma-UPC+MG5_AMC			
Colliding system, c.m. energy	$\sigma_{ m LO}$	$\sigma_{ m NLO~QCD}$	$\sigma_{\rm NLO~QCD+EW}$	
p-p at 13 TeV	212.40(6) ab	$256.43(9)^{+4.5}_{-3.7}$ ab	$244.8(1)^{+4.5}_{-3.7}$ ab	
p-p at 13.6 TeV	228.53(6) ab	$275.5(1)^{+4.8}_{-4.0}$ ab	$263.1(1)^{+4.8}_{-4.0}$ ab	
p-p at 14 TeV	239.58(7) ab	$288.7(1)^{+5.0}_{-4.2}$ ab	$275.5(1)^{+5.0}_{-4.2}$ ab	
p-Pb at 8.8 TeV	46.89(1) fb	$59.87(2)^{+1.3}_{-1.1}$ fb	$57.32(2)^{+1.3}_{-1.1}$ fb	
Pb-Pb at 5.52 TeV	30.64(1) fb	$39.08(1)^{+0.87}_{-0.72}$ fb	37.43(1) ^{+0.87} _{-0.72} fb	
p-p at 100 TeV	2.3080(2) fb	$2.7111(2)^{+0.041}_{-0.034}$ fb	$2.5816(2)^{+0.041}_{-0.034}$ fb	
p-Pb at 62.8 TeV	3.0742(2) pb	3.6721(3) ^{+0.061} _{-0.050} pb	3.5045(3) ^{+0.061} _{-0.050} pb	
Pb-Pb at 39.4 TeV	0.9583(1) nb	1.2062(2) ^{+0.026} _{-0.021} nb	$1.1545(2)^{+0.026}_{-0.021}$ nb	
K factor		$\sigma_{ m NLO~QCD}/\sigma_{ m LO}$	$\sigma_{ m NLO~QCD+EW}/\sigma_{ m LO}$	
p-p at 13 TeV		1.207	1.153	
p-p at 13.6 TeV		1.205	1.151	
p-p at 14 TeV		1.205	1.151	
p-Pb at 8.8 TeV		1.277	1.222	
Pb-Pb at 5.52 TeV		1.276	1.222	
p-p at 100 TeV		1.175	1.119	
p-Pb at 62.8 TeV		1.194	1.140	
Pb-Pb at 39.4 TeV		1.259	1.205	

HSS, Simon (2504.10104)

- Sizable NLO QCD:
 +20%
- Non-negligible NLO EW:

-5%

$$\sigma_{\gamma\gamma \to t\bar{t}}^{\rm NLO~QCD+EW} = 0.275 \text{ fb}$$

@pp 14 TeV

NLO+PS Event Simulation

• At NLO QCD (no NLO EW), we can have NLO+PS simulations

HSS, Simon (2504.10104)

The first measurement

• The first measurement by CMS with data collected in 2017 (29.4 fb⁻¹) where all CT-PPS strip and pixel detectors were operational

CMS-TOTEM (JHEP'24)

Signal and backgrounds are well separated by BDT

The first measurement

Conclusion

- LHC is a unique photon-photon collider
 - Novel BSM programmes: axions, gravitons, monopole, anomalous couplings, ...
 - Increasing number of SM rare/precise measure: LbL, tau g-2, WW, top pair, ...
- gamma-UPC+MadGraph5_aMC@NLO enables NLO QCD+EW calculations and NLO QCD+PS simulations
- First measurement of $pp \xrightarrow{\gamma\gamma} p t\bar{t} p$ by CMS-TOTEM collaboration using CT-PPS based on 2017 Run 2 data (29.4 fb⁻¹)
- What about ATLAS using AFP ? Run 3 data ?

Conclusion

- LHC is a unique photon-photon collider
 - Novel BSM programmes: axions, gravitons, monopole, anomalous couplings, ...
 - Increasing number of SM rare/precise measure: LbL, tau g-2, WW, top pair, ...
- gamma-UPC+MadGraph5_aMC@NLO enables NLO QCD+EW calculations and NLO QCD+PS simulations
- First measurement of $pp \xrightarrow{\gamma\gamma} p t\bar{t} p$ by CMS-TOTEM collaboration using CT-PPS based on 2017 Run 2 data (29.4 fb⁻¹)
- What about ATLAS using AFP ? Run 3 data ?

Thank you !

Backup Slides

A few selected results

CMS (2412.15413)

Fiducial and differential cross sections

ChFF(~SuperChic) is definitely better than EDFF (~STARlight) !

A few selected results

Fiducial and differential cross sections

• Dimuon

HSS, d'Enterria (JHEP'25)

Importance of NLO and ChFF !

Light-by-Light Scattering

