

Measurement of CP-violating Wtb couplings using EFT in single top t-channel production with CMS Run 2 data

Top LHC France 30/04/2025

Nicolas Chanon (Staff), Arnab Purohit (Postdoc), Enzo Fillaudeau (PhD)

CMS group at IP2I Lyon

Context : Matter and antimatter asymmetry

The universe is baryon-number asymmetric

SM prediction:
$$\eta_{SM} = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \propto 10^{-27}$$

Observation:
$$\eta_{obs} = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \propto 10^{-10}$$

$$\overrightarrow{\Rightarrow \frac{\eta_{SM}}{\eta_{obs}} \propto 10^{-17}}$$

Discrepancy between the SM prediction and observations

Looking for new CP violation sources involving top quarks Beyond the Standard Model (BSM).

Measure CP violation through the t-channel production of single-top quarks and their subsequent decay to Wb. *This process has the advantage of involving twice the Wtb vertex*

Analysis performed in the context of Effective Field Theory

$$\mathscr{L}_{eff}^{(6)} = \mathscr{L}_{SM} + \sum_i rac{C_i^{(6)}}{\Lambda_i^2} O_i^{(6)} + h.\,c.$$

Non-Hermitian Operators involving two quarks and a boson

$$O_{uW}^{(6)} = (\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\varphi}W_{\mu\nu}^{I}$$
$$O_{dW}^{(6)} = (\bar{q}\sigma^{\mu\nu}\tau^{I}b)\varphi W_{\mu\nu}^{I}$$
$$O_{\varphi ud}^{(6)} = (\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\bar{u}\gamma^{\mu}d)$$

Wilson Coefficients

$$\begin{array}{ll} c_{tW} + ic_{tW}^{I} & \text{CP violation if} \\ c_{bW} + ic_{bW}^{I} & \textbf{c}_{tW}^{i} \neq \textbf{0}, \textbf{c}_{bW}^{i} \neq \textbf{0} \text{ or } \textbf{c}_{\varphi tb}^{i} \neq \textbf{0} \\ c_{\varphi tb} + ic_{\varphi tb}^{I} & \end{array}$$

- → EFT impacts both the production and decay of top quark
- → This vertex can be modified by CP violation
- → The effect is canceled in ttbar process

Measuring CP violation : EFT impact on angular variables

Dim6 [TeV⁻²]

SM $C_{tW}^{I} = -2$ $C_{tW}^{I} = 2$ \$ * [rad]

The shape of the distribution varies depending on the value of the EFT coefficient

The amount of CP violation can be extracted using such angular distributions

Main background processes :

Other backgrounds :

- → Diboson
- → ttX
- \rightarrow Single top s-channel and tW process

- Single Top/AntiTop t-channel (SM): ST_t-channel_top_4f_InclusiveDecays_TuneCP5_13TeV-powheg-madspin-pythia8
- **ttbar semileptonic** : TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8
- W + Jets : WJetsToLNu_TuneCP5_13TeV-madgraphMLM-pythia8
- **QCD** : pT binned (mu or EM enriched) QCD_Pt-50To80_MuEnrichedPt5_TuneCP5_13TeV-pythia8
- **tW top and anti-top**: ST_tW_top_5f_inclusiveDecays_TuneCP5_13TeV-powheg-pythia8

EFT samples :

- Generated using the dim6Top LO UFO model from Madgraph5
- > A reweighting technique is used to get all the EFT combination

The **single isolated muon** trigger with $p_T > 24$ GeV (2016, 2018) and $p_T > 27$ GeV (2017) are used in this analysis

Jet selection

	Good jets
lηl	< 4.7
р _т 2016 (GeV)	> 40
p _T 2017 and 2018 (GeV)	> 40 (η < 2.4) > 60 (2.4 < η < 4.7)
Overlap	Removed overlap between jets and leptons in a $\Delta R < 0.4$ cone
Jet Id	Tight (discriminate real jets from fake lepton, pile up and detector noise)

b-jets :

- > Must be good jets
- > |η| < 2.5 (2017 & 2018)</p>
- > |η| <2.4 (2016)</p>
- > Tight/medium working point of DeepJet tagger used

Muon selection	
----------------	--

	Isolated muon	Loose muon		
lηl	< 2.4	< 2.4		
pT 2017 (GeV)	> 30	> 10		
pT 2016 and 2018 (GeV)	> 26	> 10		
Relative isolation	< 15%	< 25%		
Id	tight	loose		

A reversed isolated muon is also defined by reverting the isolation : > 40%

→ All recommended CMS corrections are applied (including pileup and b-tag weights, muon Rochester momentum correction, JEC, MET phi modulation)

Analysis regions

Loose preselection applied to reduce fake lepton contribution :

- ➤ MET > 20 GeV
- > Transverse mass of W boson with fixed lepton p_T at 45 GeV ($M_T^{W,fix}$) > 25 GeV

Lepton selection :

- Exactly one isolated tight muon
- Veto events with additional loose muons
- Veto events with veto electrons

Event categorization based on the number of Jets and b-tagged jets : Signal region (SR) , W/Z-Jets control region (CR) and ttbar CR

- + QCD measurement region (sideband region) :
 - defined for each signal and control region
 - same selection but reverted muon isolation (>0.4)

In the SR we require : 1 isolated tight muon, 2 jets and 1 tight b-jet

- BDT trained in the SR using XGBoost to discriminate single top (ST) t-channel from other SM background process
- Input variables for the BDT : cos(θ^{*}), η of the spectator jet, M_T^{W,fix}, M_{top}, Δη(μ, b-jet), ΔR(spec jet, b-jet), b-jet p_T, lepton p_T

As the measurement observable we are using the ϕ^* variable in bins of the BDT

- Constructed by unrolling the 2D distribution to get a 1D distribution
- → ϕ^* : Measure the CP violation (c_{tw}^{i} Wilson Coefficient)
- → BDT : Increase the sensitivity of the analysis

In the ttbar control region, we are using **invariant mass of the lepton and three jets** (2 tight b- tagged jets and a third jet with the highest p_T) system.

- → Variable chosen for its power to discriminate between ttbar and the rest
- → Good data/MC agreement observed

In the W-jets CR we use the transverse mass of the W boson with fixed lepton p_T at 45 GeV ($M_{T_{,,fix}}^{W}$) in bins of our main observable (3D distribution unrolled in 1D)

→ Variable chosen for its power to discriminate between W+jets and the rest

QCD estimation strategy

CMS iP 2i

- There is no standard method to estimate QCD (under discussion within TOP PAG)
- We present here our QCD estimation strategy

Let's take any variable

For each bin of this variable :

- 1. Build the $M_T^{W,fix}$ template (transverse mass of the W with lepton p_T fixed at 45 GeV) for every process after optimizing the binning of the variable and $M_T^{W,fix}$
- 2. Replace the QCD MC template by the **data driven QCD template** (obtained from the QCD sideband region) and set its normalization to that of QCD MC from SR.
- 3. Perform a **simultaneous fit** over all bins of the chosen variable with **n Parameters Of Interests (POIs) for the QCD normalization** (n bins of the variable)

Binning optimization

- BDT binning : We are using 2 bins of BDT with equal number of W+jets events in the SR in each of them to reduce the impact of the lack of statistics for this process
- φ^{*} binning : Binning optimized in the SR by maximizing the significance of ST t-channel with EFT over SM (5 bins of φ^{*})

M_T^{W,fix} : Tried optimizing wrt significance of QCD over the rest but found better results using a binning with equal number of W+jets events in each bin. We are using 4 bins of M_T^{W,fix}

NAMES	USED	CORRELATION
Muon Reco	Y	All channel
Muon HLT	Y	All channel
Muon ID	Y	All channel
Muon Iso	Y	All channel
B Tagging SF	Y	All channel
Prefiring	Y	All channel
Pile Up	Y	All channel
Top pt	Y	Only TTbar
Lumi	Y	All channel
JES/JER	Y	As per Recom
ISR	Y	Not correlated
FSR	Y	Not correlated
PDF + alpha_s	Y	All channels
QCD Scale	Y	All channels
Diff btw NLO and LO	Y	Only EFT+ST

We introduce 2 uncertainties in this analysis :

- Data Driven QCD shape/era uncertainty (constructed by choosing different data taking era)
- Difference between NLO (POWHEG samples) and LO (Madgraph samples)

All uncertainties are correlated over bins of the main observable except **QCD era uncertainty**.

 $\rm M_T^{W,fix}$ distribution in BDT bin 1 and ϕ^* bin 1 with Up and Down variations of QCD era uncertainty

Uncertainties include both statistical and systematic

POI Name	Best Fit Value	Uncertainty	
r_bin1_phi1	2.130	+/- 0.136	
r_bin1_phi2	2.144	+/- 0.169	
r_bin1_phi3	2.397	+/- 0.212	
r_bin1_phi4	2.581	+/- 0.215	
r_bin1_phi5	2.115	+/- 0.145	
r_bin2_phi1	0.714	+/- 0.033	
r_bin2_phi2	0.733	+/- 0.033	
r_bin2_phi3	1.002	+/- 0.041	
r_bin2_phi4	0.791	+/- 0.035	
r_bin2_phi5	0.717	+/- 0.032	

											1
r_bin2_phi5	0.1.6										
r_bin2_phi4	0.17										- 0.9
r_bin2_phi3	0:15										0.8
r_bin2_phi2	0.19										- 0.7
r_bin2_phi1	0.17										- 0.6
r_bin1_phi5	0.23			0.25							- 0.5
r_bin1_phi4	0.20				0.25						- 0.4
r_bin1_phi3	0,21										- 0.3
r_bin1_phi2	0.22										0.2
r_bin1_phi1	1.00										
	r_bin1_phi1	_bin1_phi2	_bin1_phi3	_bin1_phi4	_bin1_phi5	r_bin2_phi1	_bin2_phi2	_bin2_phi3	_bin2_phi4	_bin2_phis	

► Low correlations (<0.25) between the POIs

- → The impact of the nuisances on the POI of BDT bin 1 and phi star bin 4 is presented
 - Pulls of the nuisances are not very large
 - MC statistical uncertainties have a large impact on the POIs

- A goodness of fit (GoF) test with the saturated model where likelihood ratio is used as test statistic, and the alternate hypothesis is considered to be the data itself, is performed.
- The observed P-value shows, the model adequately fits the data

2018 results

59.7 fb⁻¹ (13 TeV) CMS Private work (CMS data/simulation) 120 s-channel/tW OCD data driven new method 100 Events 80 1114 60 40 20 Data/MC ົດ 9 10 BDT * of* CMS Private work (CMS data/simulation) 59.7 fb⁻¹ (13 TeV) s-channel/tW 35 OCD data driven new method Diboson W/Z+iets 30 Events 25 20 15 10 Data/MC 30 35 °0 5 10 15 20 25 40

MtW_{fix} * BDT * φ*

- A new QCD template ("aka" Scaled QCD) is constructed from the best fit values of the POIs
- The templates does **not** include pulled nuisances from background data fit
- Upper plot will be the input to the final EFT fit
- Clear improvement of the data/MC agreement compared to prefit (slide 12)

QCD background fit results for other years

Same method is used for other years showing same improvement in the data/MC agreement as in 2018.

2016 postVFP

What has been done :

- → Produced private EFT samples
- → Divided the analysis into signal and control regions
- → Trained a BDT to improve the sensitivity of the analysis on EFT measurement
- → Developed a promising QCD estimation strategy

Plans :

- Working on the improvement of the data/MC agreement by modifying the selection
- Perform final EFT fit with all years combined

Thank you for your attention

- We produce a simulation sample for single top production including EFT coefficients at top production and decay
- <u>Reweighting method</u>: different regions of the parameter space to be probed with a single Monte Carlo (MC) sample

The reweighting method allows to produce a single sample instead of 729

Comparing reweighted distributions of $\cos(\theta)$ and ϕ^* to dedicated (non-reweighted) samples at two different distant points of the parameter space

Reweighting is validated

ATLAS results

	C_{i}	W	C_{itW}			
	68% CL	95% CL	68% CL	95% CL		
All terms	[-0.3, 0.8]	[-0.9, 1.4]	[-0.5, -0.1]	[-0.8, 0.2]		
Order $1/\Lambda^4$	[-0.3, 0.8]	[-0.9, 1.4]	[-0.5, -0.1]	[-0.8, 0.2]		
Order $1/\Lambda^2$	[-0.3, 0.8]	[-0.8, 1.5]	[-0.6, -0.1]	[-0.8, 0.2]		

QCD background fit results for other years

2016 postVFP

2017

2016 preVFP

40

CMS Preliminary

35

30

25

41.5 fb⁻¹ (13 TeV)

s-channel/tW

20

QCD data driven new method

31

19.5 fb⁻¹ (13 TeV)

QCD background fit results for other years

postfit

CMS i P '2i

MtW_{fix} * BDT * φ*

2017

2016 postVFP

CMS

 $\times 10^3$

35

30

25 Events

20

15 10

Data/MC

1

Preliminary

W/Z+jet

4 5

BDT * q*

2016 preVFP

2016post results

Fit diagnostics

Distribution of input variables for the SR BDT

0.1

0.0 -

deltaR light b iets

Binning optimization with significance

Formula used to evaluate significance (Poisson-Poisson model) taken from ATL-PHYS-PUB-2020-025 :

$$\sqrt{\sum_{i} \left(n_i \ln\left[\frac{n_i(b_i + \sigma_i^2)}{b_i^2 + n_i \sigma_i^2}\right] - \frac{b_i^2}{\sigma_i^2} \ln\left[1 + \frac{\sigma_i^2(n_i - b_i)}{b_i(b_i + \sigma_i^2)}\right] \right)}$$

n = QCD + non QCD
b = non QCD
$$\sigma = \sqrt{\sum evWeight^2}$$

Optimization performed with the differential evolution algorithm from scipy.optimize (evolutionary algorithm)

