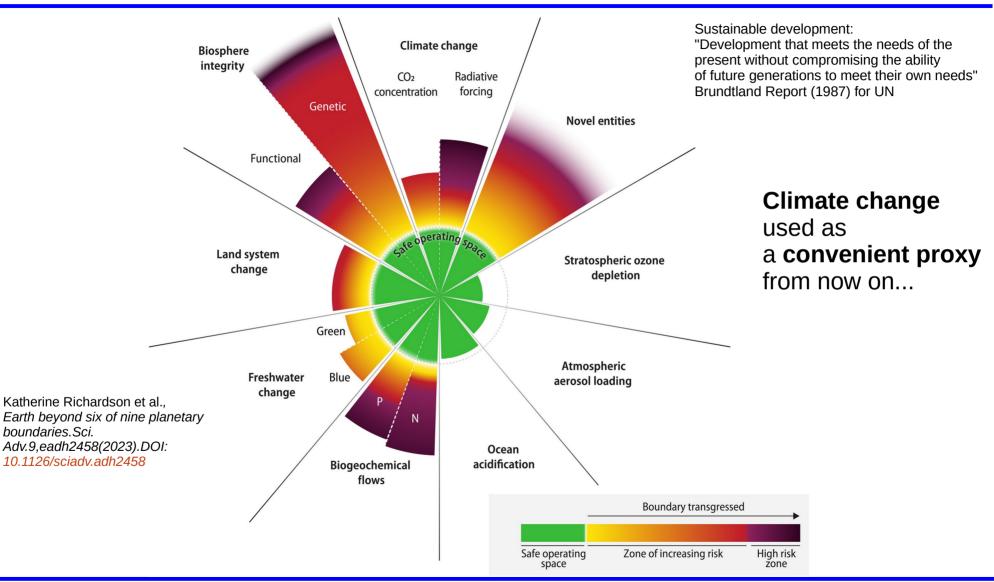
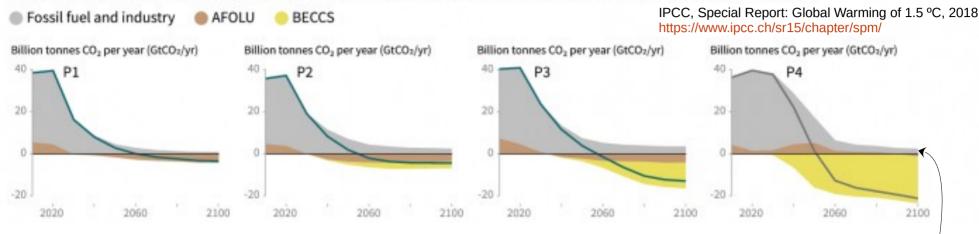
Sustainability for future colliders


TopLHCFrance 30/04/25

Samuel Calvet


Sustainability = be within planetary boundaries

Sustainability for future colliders

Climate change & society – in 1 slide

Breakdown of contributions to global net CO2 emissions in four illustrative model pathways

- The longer we wait to reduce our CO2 emissions, the more carbon capture (CC) technology will be needed

=2t/pers

- Neutrality needed by ~2050
- CC techs are not yet ready or are expensive

- Carbon budget (to stay <2°C, with 50% chance) : 200GtCO₂eq (starting from early 2023) Forster et al., 2024, Earth System Science Data

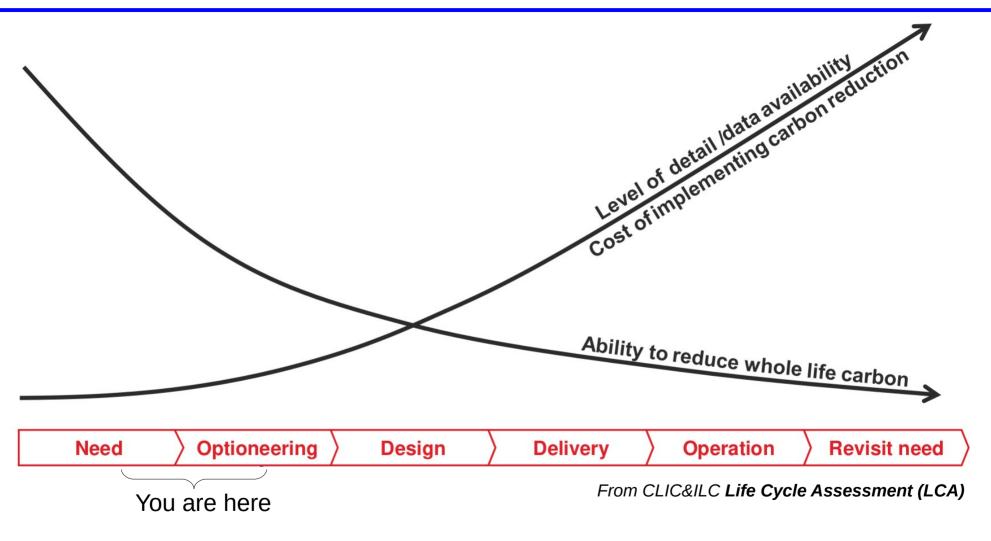
Life Cycle Assessment/Analysis

- LCA very useful to reduce env. footprint of project during R&D
 - Estimate impacts in terms of C, water consumption, ozone, ...

New CERN course:

https://lms.cern.ch/ekp/servlet/ekp?PX=N&TEACHREVIEW=N&CID=EKP000044552&TX=FORMAT1&L/

Introduction to Environmental Life Cycle Assessment (LCA) for Engineers (e-learning)


Accéder à la session

This e-learning provides an **introduction to Life Cycle Assessment (LCA)**, a detailed method for evaluating the environmental impacts of products throughout their entire life cycle, from raw material extraction to disposal. The primary objective of this course is to build your knowledge and skills in the Life Cycle Assessment, enrich the theoretical part of LCA, and understand how to use this in your work.

- ActionNationnaleFormation "eco-conception" (CNRS)
 - IN2P3/INSIS
 - 12-17/10/2025
 - For engineers/physicists
 - Registration will open in May

Sustainability for future colliders

	Midpoint Impact Ca	ategories	Abbr.		Unit
	Global warming		GWP		kg CO ₂ eq
	Stratospheric ozone o	depletion	ODP		kg CFC-11 eq
	Ionizing radiation		IRP		kBq Co-60 eq
	Fine particulate matte	er formation	PMFP	1	kg PM2.5 eq
	Ozone formation, Hu	man health	HOFP	•	kg NOx eq
	Ozone formation, Ter ecosystems	restrial	EOFP		kg NOx eq
	Terrestrial acidificatio	'n	TAP		kg SO ₂ eq
	Freshwater eutrophic	ation	FEP		kg P eq
	Marine eutrophication	ı	MEP		kg N eq
λLA	Terrestrial ecotoxicity	,	TETP		kg 1,4-DCB
	Freshwater ecotoxicit	y	FETP		kg 1,4-DCB
	Marine ecotoxicity		METP		kg 1,4-DCB
	Human carcinogenic		HTPc		kg 1,4-DCB
	Human non-carcinogo toxicity	enic	HTPno)	kg 1,4-DCB
	Land use		LOP SOP		m²a crop eq
	Mineral resource sca	rcity			kg Cu eq
	Fossil resource scarc	ity	FFP		kg oil eq
	Water consumption	WC			m ³
	Before use stage [A0-A5]	Use s [B1-	stage -B8]		End of life stage [C1-C4]
	A0 Preliminary studies	B1	Use		C1 Deconstruction/ Demolition
P		B2 Main	Itenance		Bernolition
	A1 Raw material supply	DE main		C2	Transport for Disposal
		B3 R	epair		
	A2 Transport	B4 Repla	acement	C3	Waste Processing for recovery
	A3 Manufacture	B5 Refur	bishment		C4 Disposal
	A4 Transport to works site		onal Energy se		
	A5 (A5a & A5w) Construction process		onal Water se		
	Scope of LCA		tilisation of ructure		

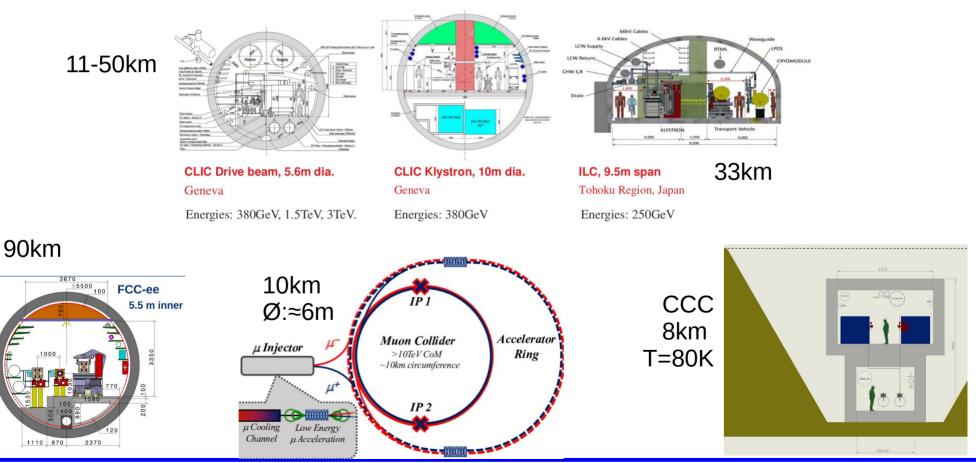
Environnemental footprint = tunnel

- + accelerator construction
- + accelerator operation
- + detector construction
- + detector operation
- + computing
- + collaboration life

 $\times N_{experiments}$

Environnemental footprint = tunnel

- + accelerator construction
- + accelerator operation
- + detector construction
- + detector operation
- + computing
- + collaboration life


 $\times N_{experiments}$

Today: 35tCO₂eq/year/LHC physicist when LHC is running (not accounting for travels, WLCG, ...)

Tunnel (@LO)


Main parameters:

length, profile : amount of concrete and steel

Sustainability for future colliders

Tunnel (LO) + everything related to it (NLO)



Droject	Main tunnal langth (lum)	$GWP (kton CO_2e)$ $Main tunnel + other structures + A4-A5$						
Froject	Main tunnel length (km)	Main tunnel –	\vdash other structure	es + A4-A	15			
FCC	90.6	578	751	939	+60%			
CEPC	100	638	829	1040	+00%			
ILC	13.3	97.6	227	266	+170%			
CLIC	11.5	73.4	98	127	+70%			
C^3	8.0	133	133	146	+10%			

From https://arxiv.org/abs/2307.04084 FCC&CEPC: rough estimates from CLIC LCA!

A4-A5: transport + construction process

Before use stage [A0-A5]	Use stage [B1-B8]	End of life stage [C1-C4]		
A0 Preliminary studies	B1 Use	C1 Deconstruction/ Demolition		
	B2 Maintenance			
A1 Raw material supply	B3 Repair	C2 Transport for Dispos		
A2 Transport	B4 Replacement	C3 Waste Processing fo recovery		
A3 Manufacture	B5 Refurbishment	C4 Disposal		
	B6 Operational Energy			
A4 Transport to works site	Use			
	B7 Operational Water			
A5 (A5a & A5w) Construction process	Use			
Scope of LCA	B8 User utilisation of infrastructure			

Calcul initialScénario de référence999 780 tCO2(eq)477 390 tCO2(eq)Réduction52%

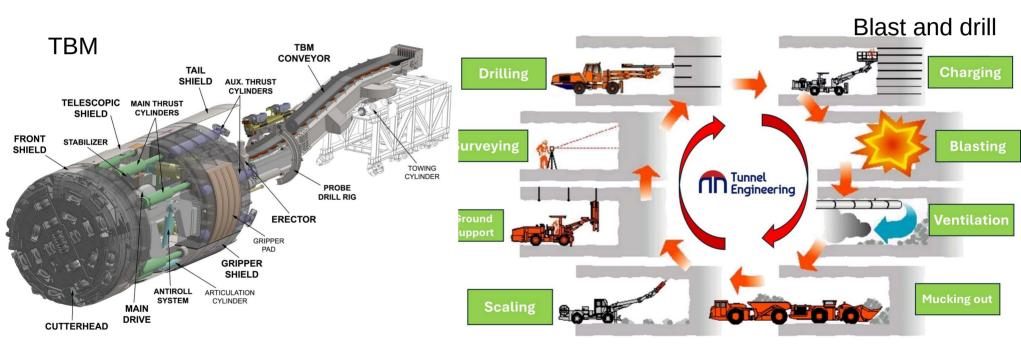
Matériaux de référence dans l'outil OneClickLCA	Émission CO₂	Fournisseurs locaux avec une proposition équivalente	rapport au
Steel sheets, generic, 100% recycled content, S235, S275 and S355	0.87 kgCO ₂ e/kg	Sottas Morand	77%
Steel fibre for concrete reinforcement, 100% recycled content	0.51 kgCO ₂ e/kg	Sottas	75%
Reinforcement steel (rebar), generic, 100% recycled content, A615	0.42 kgCO ₂ e/kg	Stahl Sottas	70%
Ready-mix concrete, normal strength, generic, C35/45 (5000/6500 PSI) with CEM III/A (340 kg/m ³)	170.36 kgCO ₂ e/m ³	Probéton Vigier Holcim	48%
Ready-mix concrete, low-strength, generic, C12/15 (1700/2200 PSI) (220 kg/m ³)	149.41 kgCO ₂ e/m ³	Probéton Vigier Holcim	31%
Ready-mix concrete, normal- strength, generic, C40/50 (5800/7300 PSI) with CEM III/B,	173.00 kgCO ₂ e/m ³	Probéton Vigier Holcim	39%

Possible k-factor of 0.5

But need to check ...

- the scaling up with industry
- the cost
- the timescale

Sustainability for future colliders


CO2 (tCO2e)

Émissions de

Main parameters:

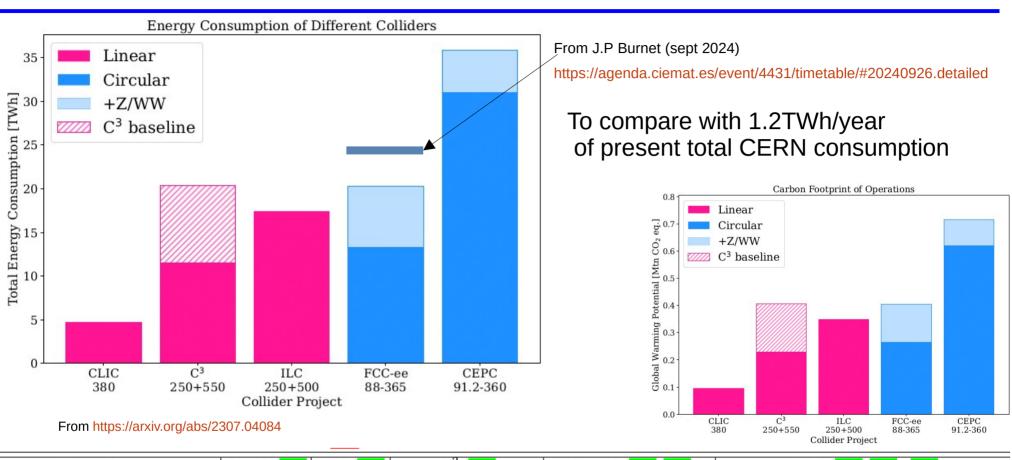
length, profile : amount of concrete and steel, technology

Main parameters:

length, profile : amount of concrete and steel, technology Klystron isolation, number of shafts, caverns

Accelerator construction

- Could not not find a lot of evaluations...
- Interesting one: muon collider

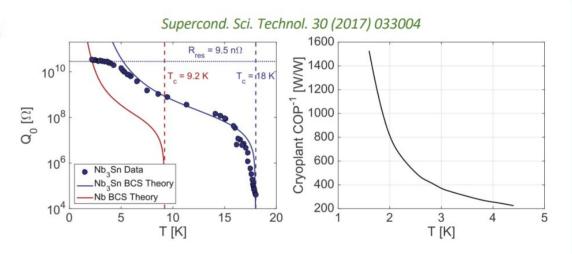

Future accelerator technologies? High Temperature Superconductors

Target & Capture Solenoids for the Muon Collider

Accelerator operations

Higgs factory	CLIC 40	ILC	12	C^3	11	CE	PC [53, 5	<u>54</u>]	FCC 20], 55	, 56	
$\sqrt{s} \; (\text{GeV})$	380	250	500	250	550	91.2	160	240	360	88,9	$1,\!94$	157,163	240	340 - 350	365
P (MW)	110	111	173	150(87)	175 (96)	283	300	340	430	22	22	247	273	357	
$T_{\rm collisions} \ (10^7 \ {\rm s/year})$	1.20	1.6	60	1.	60		1.3	0				1.	.08		
$T_{\rm run}$ (years)	8	11	9	10	10	2	1	10	5	2	2	2	3	1	4
$\mathcal{L}_{\rm inst}/{\rm IP}~(\cdot 10^{34}~{\rm cm}^{-2}~{\rm s}^{-1})$	2.3	1.35	1.8	1.3	2.4	191.7	26.6	8.3	0.83	115	230	28	8.5	0.95	1.55
$\mathcal{L}_{\mathrm{int}}~(\mathrm{ab}^{-1})$	1.5	2	4	2	4	100	6	20	1	50	100	10	5	0.2	1.5

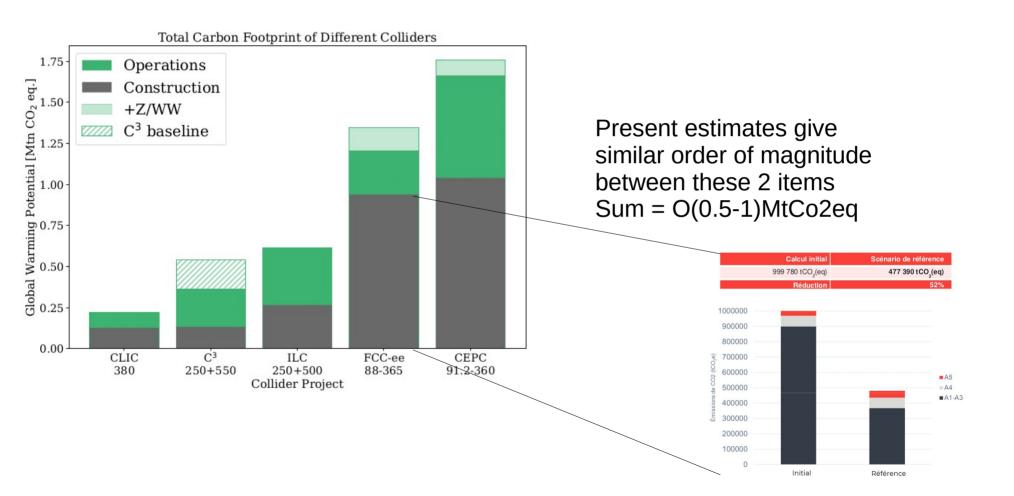
Accelerator operations


Lots of developments on going. For example, a French one:

iSAS develops, prototypes & validates SRF energy-saving technologies

TA#2: energy-savings from cryogenics

The objective is focused on the development of thin-film cavities and aims to transform conventional superconducting radio-frequency technology based on off-shelf bulk niobium operating at 2 K, into a technology operating at 4.2 K using a highly functionalized material, where individual functions are addressed by different layers.

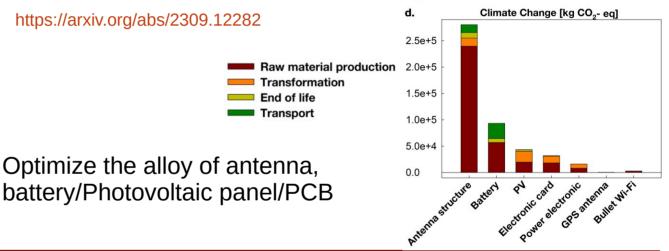

iSAS will optimize the coating recipe for Nb₃Sn on copper to optimize tunability and flux trapping of thin-film superconducting cavities and to validate a prototype beyond the achievements of the ongoing Horizon Europe I.FAST project, and the various US-based achievements (e.g., GARD).

The higher critical temperature (T_c) of Nb₃Sn allows for the maximum value of quality factor Q₀ for 1.3 GHz cavities to be achieved at operating temperatures of about 4 K compared to 2 K for Nb (left figure). The graph on the right shows the efficiency of a cryogenic plant (COP) as a function of temperature achieving about 3 times higher COP efficiency when operating at a temperature of 4.2 K than at 2 K. This suggests that operating a cryogenic plant at 4.2 K with Nb₃Sn SRF cavities, can lead to significant better performances and energy savings.

https://agenda.ciemat.es/event/4431/contributions/5058/

Tunnel + accelerator operation (wo/ building accelerator!)

Detector construction


Radiotelescope array

No data yet !

Nice example of LCA :

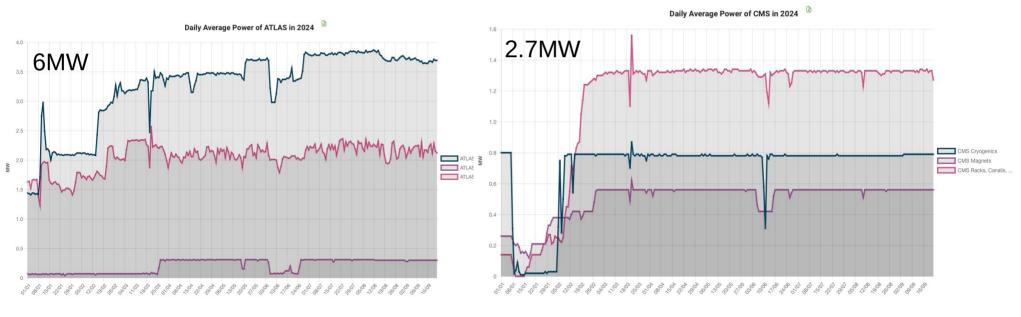
Life Cycle Analysis of the GRAND Experiment

Leidy T. Vargas-Ibáñez^{a,b}, Kumiko Kotera^{c,d}, Odile Blanchard^e, Peggy Zwolinski^a, Alexis Cheffer^f, Mathieu Collilieux^f, Paul Lambert^f, Quentin Lefèbvre^f, Thomas Protois^f

) 3	Impact categories	Base case	Battery weight -10% mass	AAPD (%)	PV size -10% size	AAPD (%)	Printed circuit board weight -10% mass	AAPD (%)
)	Climate Change [kg CO2eq]	471460	461999	2,01	467383	0,86	468860	0,55
1 I	Ressource use, fossils [MJ]	6220747	6099235	1,95	6171177	0,80	6176872	0,71
	Ressource use, minerals and metals [kg Sb eq]	28	27	3,48	28	0,52	28	1,20
6	Acidification [mol H+ eq]	1709	1682	1,55	1687	1,29	1697	0,68
1 3	Ionizing radiation, human health [kBq U235 eq]	15565	15512	0,34	15343	1,43	15074	3,16

Total/net (including AAPD* Antenna structure production all components (%) (extraction) and processes Climate Change [kg CO2eq] Base case X5CrNiMo18 (316) 239649.43 282015.80 Alloy 1 X5CrNi18 (304) 229170.75 268695.30 4.72 Alloy 2 X20Cr13 (420) 146834.08 186358.63 33.92 Stainless Steel (secondary) 56667.74 91552.11 67.54

Raw material

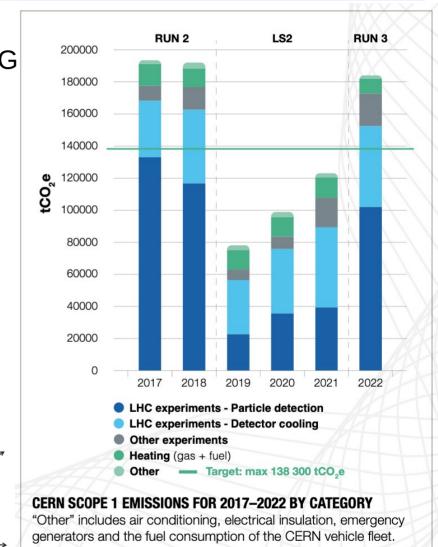

	Ressource use, fossi	ls [MJ]	
Base case X5CrNiMo18 (316)	3290049.95	3678502.85	
Alloy 1 X5CrNi18 (304)	3146177.23	3493535.40	5.03
Alloy 2 X20Cr13 (420)	1999582.65	2346940.82	36.20
Stainless Steel (secondary)	908311.97	1385277.37	62.34

	Ressource use, minerals	and metals [kg	Sb eq]
Base case X5CrNiMo18 (316)	11.60	11.60	
Alloy 1 X5CrNi18 (304)	1.94	1.94	83.30
Alloy 2 X20Cr13 (420)	3.98	3.97	65.78
Stainless Steel (secondary)	0.01	0.01	99.91
	Acidification [mol H+ eq]		
Base case X5CrNiMo18 (316)	841.15	936.53	
Alloy 1 X5CrNi18 (304)	675.27	763.35	18.49
Alloy 2 X20Cr13 (420)	642.97	731.05	21.94
Stainless Steel (secondary)	98.85	210.65	77.51
	Ionizing radiation, human	n health [kBq U	235 eq]
Base case X5CrNiMo18 (316)	106.47	4019.62	
Allow 1 VEC:Ni19 (204)	100.40	1010.00	0.10

	Ionizing radiation,	, human health [kBq U235 eq]
Base case X5CrNiMo18 (316)	106.47	4019.62	
Alloy 1 X5CrNi18 (304)	109.43	4013.06 0.1	6
Alloy 2 X20Cr13 (420)	156.69	4060.33 -1.0)1
Stainless Steel (secondary)	156.73	3111.96 22.5	58

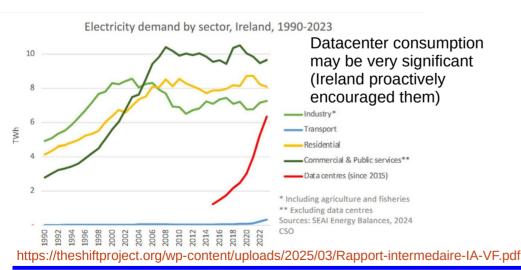
Detectors: Power consumption

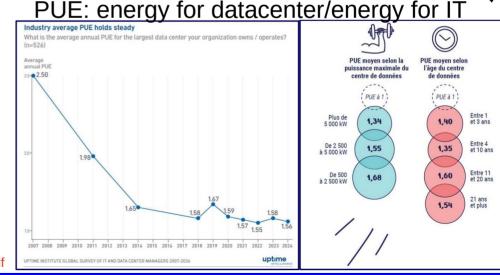
- W. Riegler (sept 2024) https://agenda.ciemat.es/event/4431/contributions/5081/
 - For the LHC, ~5% of the PC is from the experiments
 - O(5MW)/experiment, but depend a lot of the deseign !
 - Same consomption is expected for FCCee
 - Cryogeny is the key !



ATLAS

CMS


Detectors: Direct emissions


- Presently, the main contributor of CERN GHG
 - Cooling, RPC, RICH
 - HFCs, PFCs and SF_6
 - O(0.2)MtCO2eq/year
 - Future detectors are expected to drastically reduce such usages
- Warning: detector complexity may have strong impact on the cpu/gpu needed for simulation/reconstruction !
- No LCA yet
 - The sooner the better

Computing

- Usually done on World wide grid \rightarrow strongly depends on the electricity mix
 - So will assume a low-C electricity production in the future...
 - → Likely more intermittent
- Some ways to save energy:
 - Use the heat from datacenter for heating other buildings
 - Use different chips, with lower consumption (ARM)
 - Vary the cpu frequency
 - Decrease/increase the frequency when little/a lot of low-C electricity is produced

But most of the gains

have already be made

Sustainability for future colliders

Collaboration structure/life

- Still assuming a world that has achieved its transition in 2050...
- Amount of fly should have been drastically reduced
 - Producing enough C-free fuel is challenging (O(25%) of today electricity to replace kerosene with e-fuel)
 - How can we organize ourself to reduce the distance and the number of flies ?

Example (crazy idea nowadays, but in 2050...?): organizing the detector-collaborations by continent

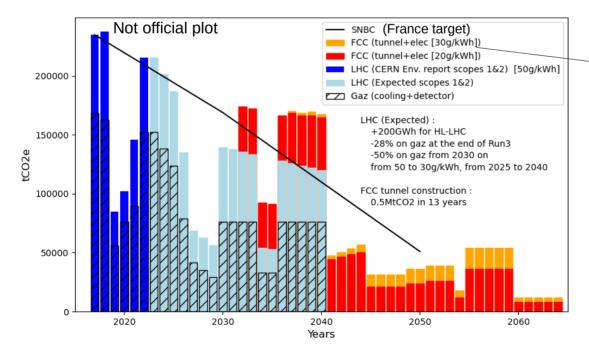
- How many collaborations/detectors do we really need ?
- It would be interesting to have an estimate of this item ? Bigger than acc.?

Back to the envelop calculation: 9k physicists x 14years x 2t/fly x 2 flies/year = 0.5MtCO2

Geneva-NY

Summary

Environnemental footprint = tunnel \checkmark


+ accelerator construction ??

Gaz?

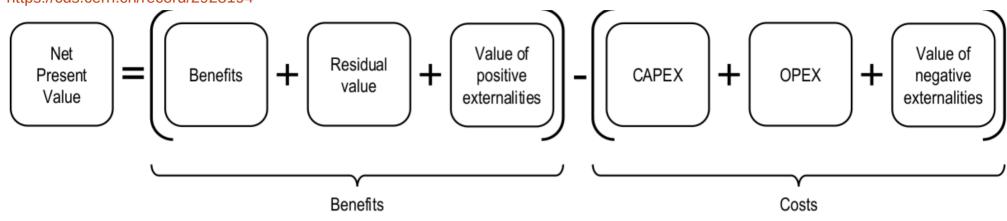
►O(0.5-1)MtCo2eq

O(0.5)Mt ?

- + accelerator operation ✓
- + detector construction ??
- + detector operation+ collaboration life

Biodiversity

Reduce the impact during construction example at GANIL, with Semi-permeable barriers around the site:



- Plan constructions that are biodiversity friendly
 - Isolated areas for technical building can be biodiversity refuges
 - Avoid barrier, create corridors btw/ sites

©J. Faivre

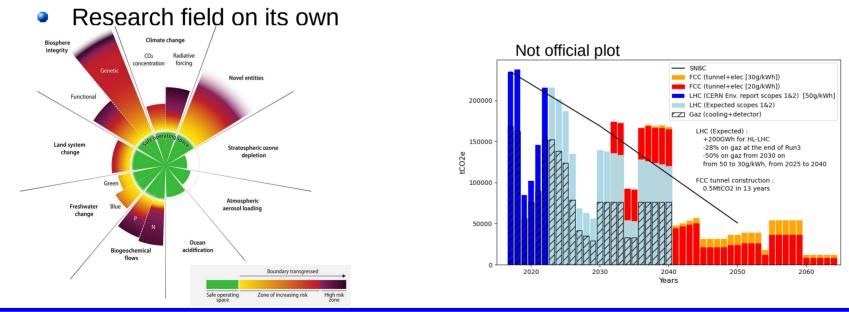
How do we decide whether a collider is "sustainable" ?

FCC Feasibility Study Report Vol 3 : Civil Engineering, Implementation and Sustainability https://cds.cern.ch/record/2928194

Estimations with best estimates and unknowns...

Economic formula to actualize the benefits/costs:

$\mathrm{Present}_{\mathrm{Value}} = rac{\mathrm{Future}_{\mathrm{Value}}}{(1 + \mathrm{SDR})^{\mathrm{year} - \mathrm{base}_{-}}}$	year	
	Institution	SDR for Carbon
SDR: Social Discount Rate	US EPA (old)	3%
- debate on the right value:	US EPA (new)	2%
are equally important as present one)	Stern Review	1.4%
- set it to 2.8%	EIB	~1–2%

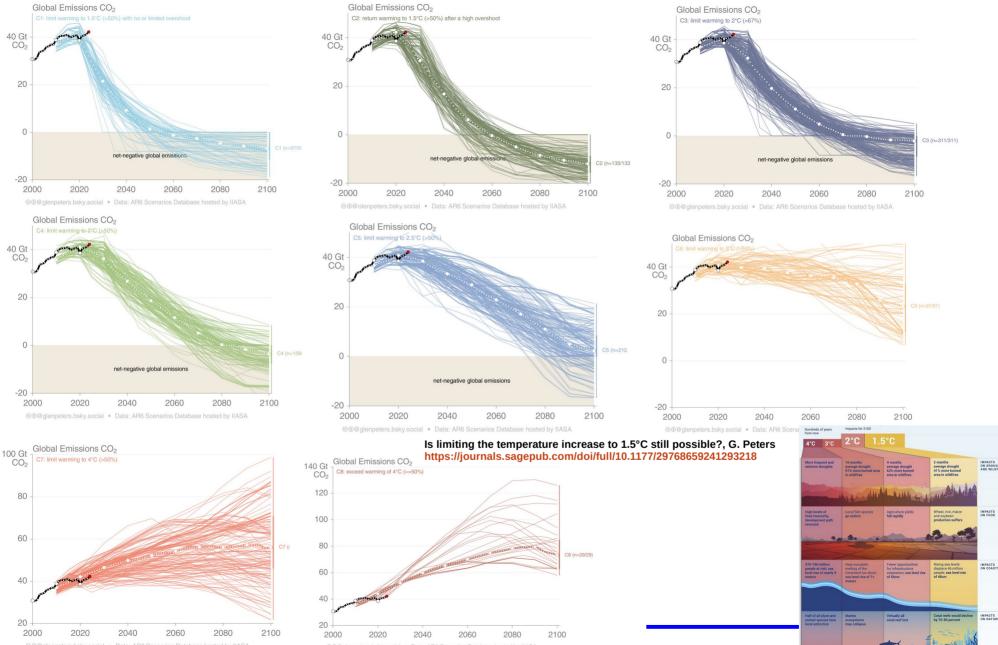

How do we decide whether a collider is "sustainable" ?

	Effect of SDR		
Cost/Benefit	Undiscounted	Discounted	-
(A) Costs		19 666 MCHF	-
Investment costs (for 4 experiments, injector and $t\bar{t}$ stage) Personnel costs Operation costs (materials, consumables, services) Dismantling costs	16 215 MCHF 16 802 MCHF 4410 MCHF 228 MCHF	10 171 MCHF 7544 MCHF 1879 MCHF 72 MCHF	Cost due to Comission for
(B) Negative externalities		354 MCHF	tunnel construction
Shadow cost of carbon Loss of agricultural income, biodiversity & habitat Social cost of project-related, induced noise Social cost of project-related, traffic-induced air pollution Social cost of project-related, traffic-induced GHG externalities Social cost of ionising radiation	634 MCHF 7.6 MCHF 0.02 MCHF 0.9 MCHF 9.8 MCHF 1.3 MCHF	342 MCHF 4.1 MCHF 0.02 MCHF 0.6 MCHF 7 MCHF 0.6 MCHF	(<i>no detector, nor computing, nor collaboration life</i>)
(C) Core benefits		23 974 MCHF	-
Scientific production Early career researcher training Industrial benefits for suppliers Onsite visitors Online and social media Open software (experiments and detectors)	6507 MCHF 20 687 MCHF 17 577 MCHF 4538 MCHF 229 MCHF 7428 MCHF	2813 MCHF 4986 MCHF 9569 MCHF 2129 MCHF 102 MCHF 4375 MCHF	
Total costs including negative externalities	(A + B)	20 020 MCHF	_
Total core benefits	(C)	23 974 MCHF	-
Reference net present value (NPV)	(C) - (A + B)	3954 MCHF	>0 :FCC feasibility study concludes
Reference Benefit Cost Ratio (BCR)		1.20	it is worth to make it

Conclusions

Humanity is facing huge challenges

- How could HEP be part of the solution ?
 - innovations (tech, but also social ?)
 - be patient ? (tech readiness)
 - biodiversity harvest ?
- LCA is a crucial tool, to evaluate & to plan how to reduce the impacts


Backup

Bibliography

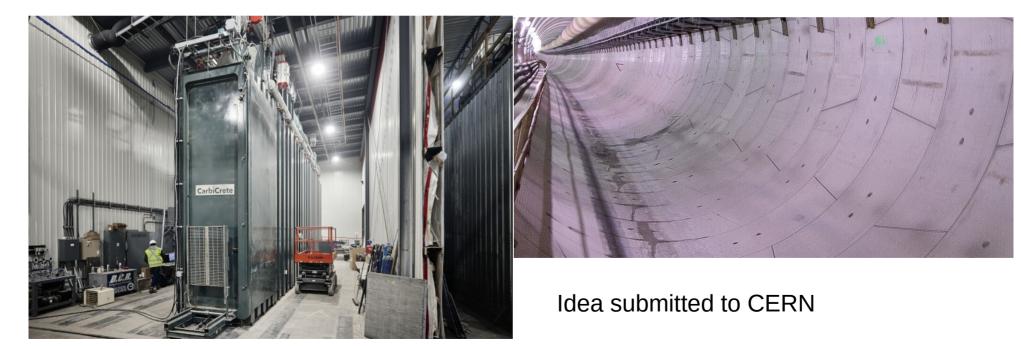
- CERN and the Environment (Nov 2024): https://indico.cern.ch/event/1456577/
- FCC LCA (oct 2024) https://zenodo.org/records/13899160
- Energy for Sust. Sc. At Research Infra (sept 2024) https://agenda.ciemat.es/event/4431/
- Interim report for the International Muon Collider Collaboration (IMCC) (July 2024) https://arxiv.org/abs/2407.12450
- Know your footprint (for HEP physicists) (mar 2024) https://arxiv.org/abs/2403.03308
- Sustainability Strategy for the Cool Copper Collider (nov 2023) https://arxiv.org/abs/2307.04084
- LCA of CLIC&ILC (July 2023)

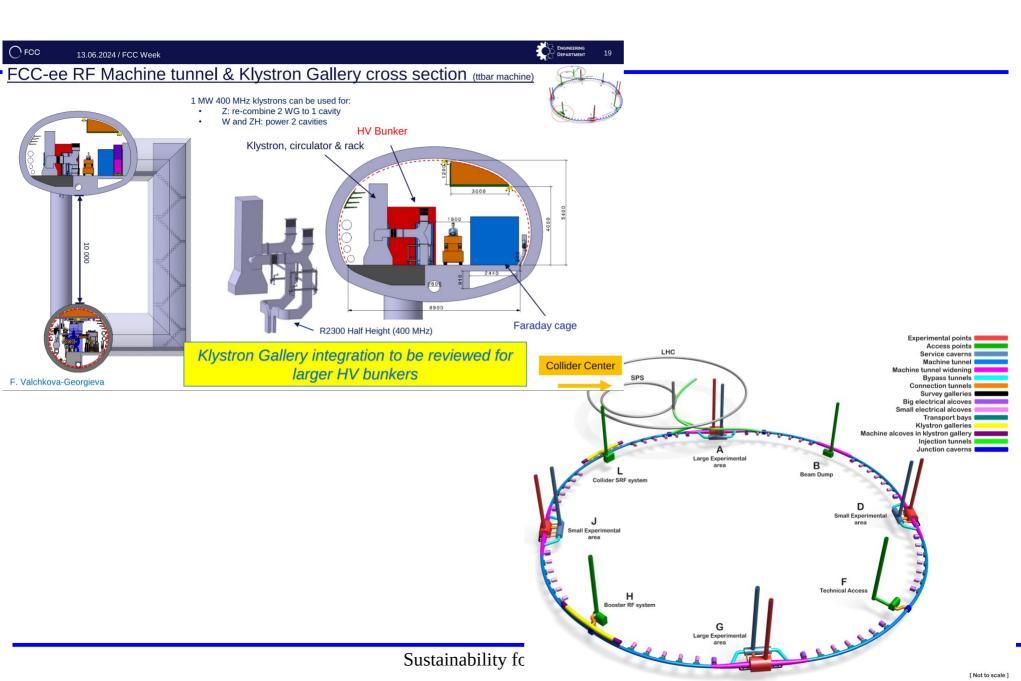
https://edms.cern.ch/ui/#!master/navigator/document?D:101320218:101320218:subDocs

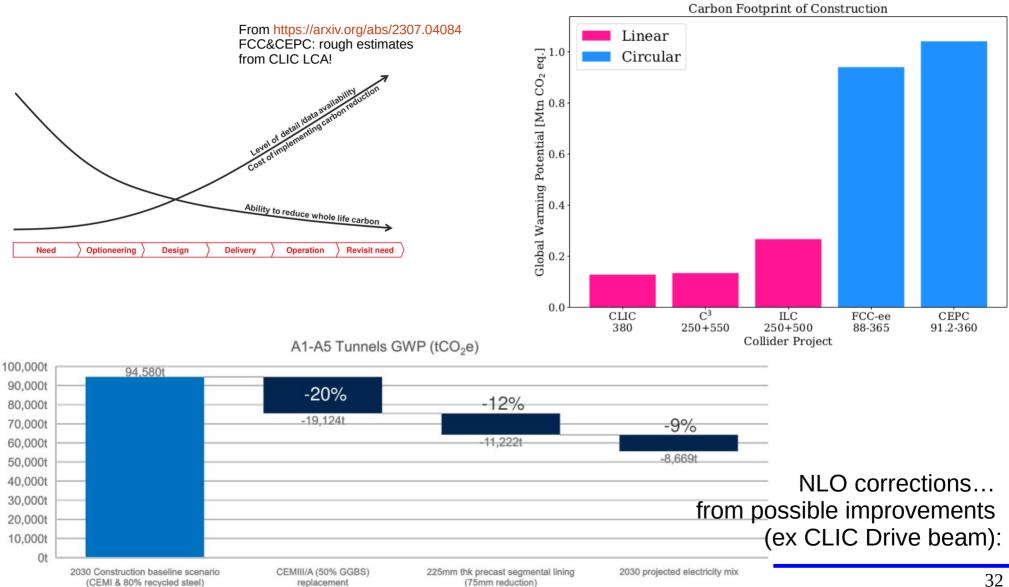
 The carbon footprint of proposed e+e- Higgs factories (sept 2022) https://arxiv.org/abs/2208.10466

osky.social • Data: AR6 Scenarios Database hosted by IIASA

ero.vory.ouvial * Data. And ocertatios DataDase nosted by IIASA

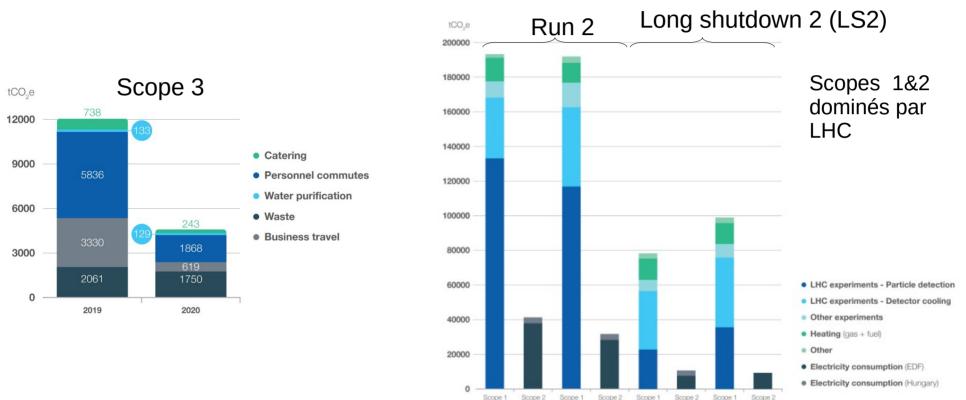

Toward a 0-net CO₂ emission tunnel ?


Industry is elaborating cement free concrete


- cement fully replaced by steel slag
- CO₂ captured from a plant
- CO₂ injected into the slag+gravel to produce concrete
- → negative CO₂eq concrete ! (but only prefab)

https://carbicrete.com/specify-carbicrete/

Needs to certify the concrete for tunnel usage Usual scaling-up issue, but would help the civil society



Inputs

CERN environment report 2019-2020

https://hse.cern/environment-report-2019-2020

CERN Annual Personnel Statistics

https://cds.cern.ch/collection/CERN%20Annual%20Personnel%20Statistics

2017

2018

2019

2020

Construction du LHC

- Pas clair comment amortir
 - Tunnel déjà existant (accélérateur LEP)
 - Temps d'amortissement ?
 - Prise en compte des upgrades ?
- Ordre de grandeur

	А	В	С	D	E	F
1	cout:	4,50E+09	euros	LHC+4 expe	HF=euros)	
2	annees:	2008	2040	32	ans	
3				1,41E+08	euros/an	
4	FE:	0,3	kg/euros			
5	Co2eq:	4,22E+04	tonnes			
6	physiciens:	8600				
7		4,91	t/phys			

 \rightarrow Pas pris en compte