ATLAS results at the $t\bar{t}$ threshold

LHC Top France

Nedaa-Alexandra Asbah (CERN) April 29th 2025

$t\bar{t}$ Production at Threshold

• The threshold region is defined:

$$m_{t\bar{t}}^{\text{threshold}} = 2 m_{\text{top}} \approx 345 \text{ GeV}$$

- Region poses several modelling challenges
 - EW corrections
 - Non-relativistic QCD
 - Spin correlations & entanglement
 - NWA assumes both tops are on shell

JHEP08 (2024) 013

$t\bar{t}$ Production at Threshold

• Active Research Frontier :

 The threshold region, where topantitop pairs are produced nearly at rest, is a major focus for ATLAS and CMS

• Quantum Entanglement Studies:

 Key for exploring top-quark entanglement and testing quantum mechanics at high energies

• Focus of Today's Presentation:

 Public results on the observation of quantum entanglement in topquark pairs with the ATLAS detector

Nature 633 (2024) 542

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Observation of quantum entanglement with top quarks at the ATLAS detector

The ATLAS Collaboration

Entanglement is a striking feature of quantum mechanics [1-3], with applications in fields such as metrology, cryptography, quantum information, and quantum computation [4-8]. It has been observed in a wide variety of systems and length scales, ranging from the microscopic [9-13] to the macroscopic [14-16]. However, entanglement remains largely unexplored at the highest accessible energy scales. We report the highest-energy observation of entanglement, in top-antitop quark events produced at the Large Hadron Collider, using a proton-proton collision data set with a center-of-mass energy of $\sqrt{s} = 13$ TeV and an integrated luminosity of 140 fb-1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top-antitop quark production threshold, where the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from limitations of the Monte Carlo event generators and the parton shower model in modeling top-quark pair production. The entanglement marker is measured to be $D = -0.537 \pm 0.002$ (stat.) ± 0.019 (syst.) for $340 < m_{t\bar{t}} < 380$ GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes both the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement to date.

Entanglement Theory

- Spin correlations between top and anti-top provide novel approach to measure entanglement
- Tops have an extremely short lifetime

$$5 \times 10^{-25}$$
 s $<< \sim 10^{-24}$ s $<< \sim 10^{-21}$ s
Top lifetime Hadronization Spin

- The $t\bar{t}$ system forms a bipartite spin 1/2 system
- The spin of the $t\bar{t}$ decay products are correlated to the spin of the tops

Spin Density Matrix

$$\rho = \frac{1}{4} \left[I_4 + \sum_i \left(B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i \right) + \sum_{i,j} C_{ij} \sigma^i \otimes \sigma^j \right]$$

Top polarization

Spin correlations

Entanglement Theory

$$\rho = \frac{1}{4} \left[I_4 + \sum_i \left(B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i \right) + \sum_{i,j} C_{ij} \sigma^i \otimes \sigma^j \right]$$

- At LHC $t\overline{t}$ has negligible polarisation
- Observable
 - From the Peres-Horodecki criterion

tr[C] < -1

• Define the spin correlation coefficient

 $D = \operatorname{tr}[C] \to D < -1/3$

D can be determined from

$$\hat{\ell}_1 \cdot \hat{\ell}_2 = \cos(\phi_{\ell\ell})$$

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\varphi} = \frac{1}{2}(1 - D\cos\varphi)$$

The statistical deviation from the null hypothesis for different assumptions of relative uncertainty on D

Eur. Phys. J. Plus (2021) 136:907

Entanglement Theory

$$\rho = \frac{1}{4} \left[I_4 + \sum_i \left(B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i \right) + \sum_{i,j} C_{ij} \sigma^i \otimes \sigma^j \right]$$

- At LHC $t\bar{t}$ has negligible polarisation
- Observable
 - From the Peres-Horodecki criterion

tr[C] < -1

Define the spin correlation coefficient

 $D = \operatorname{tr}[C] \to D < -1/3$

D can be determined from

$$\hat{\ell}_1 \cdot \hat{\ell}_2 = \cos(\phi_{\ell\ell})$$

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\varphi} = \frac{1}{2}(1 - D\cos\varphi)$$

The statistical deviation from the null hypothesis for different assumptions of relative uncertainty on D

Eur. Phys. J. Plus (2021) 136:907

Analysis Strategy

- Event Selection
 - Select eµ dilepton tt events
 - Extremely pure channel (~90% tt)

Event Selection

- Select eµ dilepton tt events
- Extremely pure channel (~90% tt)
- Top Reconstruction
- Estimate Calibration curve
 - Data and simulation corrected to fiducial particle level using calibration curve
- Extract spin correlation coefficient
 - Extract D at fiducial particle level

$$\mathbf{D} = -3 \cdot < \cos \phi >$$

Event Selection

- Full run 2 data-set (140 fb⁻¹)
- Dominant backgrounds
 - *Wt*, diboson, $Z \rightarrow \tau \tau$, fakes
- Split into four regions
 - SR : Tops are maximally entangled

100000

- VR1 : Entanglement diluted
- VR2 : No entanglement
- CR : Used to estimate non-prompt lepton contribution

Selection	Requirement
Leptons	$N_{e} = 1, N_{\mu} = 1$
Lepton p _t	$\ell \ge 15 \text{ GeV} \ (\ell = e \text{ or } \mu)$
Jets	$N_{jets} \ge 2, p_t \ge 25 \text{ GeV}$
B-jets	$N_b \ge 2$, $DL1r = 85\%$

Top Reconstruction

- Need to reconstruct the top and anti-top
- Top Reconstruction

Top Reconstruction

- Primary technique:
 - Ellipse Method : A geometric approach that provides analytical solutions for the neutrino momenta based on kinematic constraints in dileptonic top decays
- Alternative techniques:
 - Neutrino Weighting method:
 - Scans over possible neutrino pseudo-rapidities
 - Assigns weights to solutions based on their consistency with the observed missing transverse momentum
 - Simple kinematic matching
 - Simplified method pairing each lepton with the closest btagged jet
 - No explicit neutrino reconstruction; used as a proxy for reconstructing the top and antitop quarks

- Allows for the reconstruction of $m_{t\bar{t}}$ and $cos(\phi_{ll})$
- Estimate spin correlation coefficient

 $D = -3. < cos\phi >$

Reconstructed $cos\phi$ at detector level in the SR

Mapping to particle level

- Using MC : create a map between detector and fiducial particle level for different values of D
- Simulation is re-weighted at particle level for different values of D
 - Implemented as a function of $m_{t\bar{t}} \& cos\phi$
- Systematics propagated with their own curves
 - Added in quadrature
- Corrects for detector effects
- D extracted at a fiducial particle level

Re-weighting of $cos\phi$ for different values of D is shown at particle level

Calibration curve

- Using MC : create a map between detector and fiducial particle level for different values of D
- Simulation is re-weighted at particle level for different values of D
 - Implemented as a function of $m_{t\bar{t}}$ & $cos\phi$
- Systematics propagated with their own curves
 - Added in quadrature
- Corrects for detector effects
- D extracted at a fiducial particle level

An illustration of the calibration curve mapping between detector and particle level

Generator Discrepancy

- Good agreement between PhPy8 and PhHw7 at parton level
- Discrepancy arises at stable particle level
 - Difference also present at detector level
- Isolated to shower ordering
- Treatment of spin effects in Monte Carlo generators requires attention

Differences in $cos\phi$ distribution between PhPy8 and PhHw7 at particle level

	Pythia 8	Herwig 7
Tune	A14	H7-UE-MMHT
Hadronisation model	Lund string	Cluster
Shower ordering	p_T	angular

Generator Discrepancy

- Good agreement between PhPy8 and PhHw7 at parton level
- Discrepancy arises at stable particle level
 - Difference also present at detector level
- Isolated to shower ordering
- Treatment of spin effects in Monte Carlo generators requires attention

Differences in $cos\phi$ distribution between Dipole shower and Angular shower at particle level

	Pythia 8	Herwig 7
Tune	A14	H7-UE-MMHT
Hadronisation model	Lund string	Cluster
Shower ordering	p_T	angular

Results

- Calibration curve created using outline procedure
- Uncertainty dominated by $t\overline{t}$ modelling
 - Top quark decay
 - PDF uncertainty
- Observed results in the SR are

 $D = -0.547 \pm 0.002$ [stat.] ± 0.021 [syst.] -

First observation of entanglement in quarks

Constructed calibration curve for the SR showing the measured D in data and simulation

Results

- Calibration curve created using outline procedure
- Uncertainty dominated by $t\overline{t}$ modelling
 - Top quark decay
 - PDF uncertainty
- Observed results in the SR are

 $D = -0.547 \pm 0.002$ [stat.] ± 0.021 [syst.] -0.5

First observation of entanglement in quarks

Measured values of D for data and simulation for the SR and VRs.

Particle-level Invariant Mass Range [GeV]

Uncertainties

Source of uncertainty	$\Delta D_{\text{observed}}(D = -0.537)$	ΔD [%]	$\Delta D_{\text{expected}}(D = -0.470)$	ΔD [%]
Signal modeling	0.017	3.2	0.015	3.2
Electrons	0.002	0.4	0.002	0.4
Muons	0.001	0.2	0.001	0.1
Jets	0.004	0.7	0.004	0.8
b-tagging	0.002	0.4	0.002	0.4
Pile-up	< 0.001	< 0.1	< 0.001	< 0.1
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.002	0.4	0.002	0.4
Backgrounds	0.005	0.9	0.005	1.1
Total statistical uncertainty	0.002	0.3	0.002	0.4
Total systematic uncertainty	0.019	3.5	0.017	3.6
Total uncertainty	0.019	3.5	0.017	3.6

Systematic uncertainty source	Relative size (for SM D value)
Top-quark decay	1.6%
Parton distribution function	1.2%
Recoil scheme	1.1%
Final-state radiation	1.1%
Scale uncertainties	1.1%
NNLO QCD + NLO EW reweighting	1.1%
pThard setting	0.8%
Top-quark mass	0.7%
Initial-state radiation	0.2%
Parton shower and hadronization	0.2%
h_{damp} setting	0.1%

Conclusions

- Threshold region is a very active area of research
- Quantum entanglement measured for the first time in quarks
 - Measured in the region 340 GeV $< M_{t\bar{t}} < 380$ GeV
- Results shown at fiducial particle level

 $D = -0.547 \pm 0.002$ [stat.] ± 0.021 [syst.]

- Discrepancy between generators at particle level
- Isolated to angular ordering used by Herwig7

Run: 311071 Event: 1452867343 2016-10-21 06:34:07 CEST

Merci!

Published for SISSA by 🖄 Springer

RECEIVED: May 1, 2024 Accepted: July 2, 2024 Published: August 2, 2024

Search for heavy neutral Higgs bosons decaying into a top quark pair in 140 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector

Signal was type-II 2HDM scalar
and pseudo-scalar

Analysis Specifics

 $\begin{array}{ll} 1 \text{-Lepton} \\ m_{t\bar{t}} & \cos\theta^* \end{array}$

2-Lepton $m_{llbb} \Delta \phi$

1L Distributions

Limits on BSM Model

