Observation of a pseudoscalar excess at the top quark pair production threshold

Alexander Grohsjean on behalf of the CMS Collaboration

Universität Hamburg

EXZELLENZCLUSTER QUANTUM UNIVERSE TOP LHC France 2025 29th of April 2025

> based on arXiv:2503.22382 HIG-22-013

- short lifetime of O(10⁻²⁵) s
 - \rightarrow top spin propagated to decay products
 - \rightarrow fingerprint of $t\bar{t}$ production mode
- heaviest elementary particle:
 172.52 ± 0.33 GeV (PRL 132 (2024) 261902)
- Yukawa-like top couplings close to 1
 → potential key to finding new (pseudo)-scalars

Two Higgs Doublet Model – Type II

- extend SM by one complex SU(2) doublet
 - up-type quarks couple to φ₁
 - down-type quarks and charged fermions to ϕ_2
- four additional degrees of freedom after EWSB:
 H/A/H⁺/H⁻
- strong couplings of A/H to top quarks
 - $m_{A/H} > 2m_t$:

tt final states promising for a discovery

Two Higgs Doublet Model – Type II

- extend SM by one complex SU(2) doublet
 - up-type quarks couple to φ₁
 - down-type quarks and charged fermions to ϕ_2
- four additional degrees of freedom after EWSB:
 H/A/H⁺/H⁻
- strong couplings of A/H to top quarks
 - $m_{A/H} > 2m_t$:

tt final states promising for a discovery

• interference with SM:

dip-peak in invariant tt mass spectrum

SM Pseudoscalars: tī Quasi-Bound States

- color singlet (¹S₀[1]) attractive
 - \rightarrow peak below the $t\bar{t}$ threshold
- color octet (¹S₀[8] or ³S₁[8]) repulsive
 → contributions small below threshold

- color singlet (¹S₀[1]) attractive
 - \rightarrow peak below the $t\bar{t}$ threshold
- color octet (¹S₀[8] or ³S₁[8]) repulsive
 - \rightarrow contributions small below threshold

How to get non-relativistic contributions from Monte Carlo ?

Approximating tr Quasi-Bound States

- simplified η_t model inspired by JHEP 03 (2024) 099
 - generic color-singlet, CP-odd, spin-0 particle
 - direct couplings to gluons and tops
 - mass/width from fit to NRQCD:

 $m_{\eta t} = 343 \text{ GeV}$ $\Gamma_{\eta t} = 2 \Gamma_t = 2.8 \text{ GeV}$

- to keep in mind:
 - details of lineshape well below experimental resolution (15% - 25%)
 - very similar signature as low-mass A resonance without interference

- 138 fb⁻¹ of pp collisions at 13 TeV (2016 2018)
- dilepton final state
- explore invariant tt mass and differences in production
 - distinguish mixture of states from pure scalar

e⁺, µ⁺ W⁺ b jet v v e⁻, µ⁻

• distinguish ${}^{1}S_{0}(A/\eta_{t})$ from ${}^{3}P_{0}(H)$ tr spin states

CMS

- 138 fb⁻¹ of pp collisions at 13 TeV (2016 2018)
- dilepton final state
- explore invariant tt mass and differences in production
 - distinguish mixture of states from pure scalar

1000000

- distinguish ${}^{1}S_{0}(A/\eta_{t})$ from ${}^{3}P_{0}(H)$ tt spin states
 - c_{hel}: scalar product of leptons in parent top rest frame

g os

-0.5

0.0

0.5

A/H

-1.0

VS.

1.0 C_{hel}

CMS

iet

- 138 fb⁻¹ of pp collisions at 13 TeV (2016 2018)
- dilepton final state
- explore invariant tt mass and differences in production
 - distinguish mixture of states from pure scalar

- distinguish ${}^{1}S_{0}(A/\eta_{t})$ from ${}^{3}P_{0}(H)$ transform states
 - c_{hel}: scalar product of leptons in parent top rest frame
 - c_{han}:scalar product of leptons with sign flip in top direction

e⁺, μ⁺

W⁺

b

jet 🗐

w

e., µ.

b

CMS

- 138 fb⁻¹ of pp collisions at 13 TeV (2016 2018)
- dilepton final state
- explore invariant tt mass and differences in production
 - distinguish mixture of states from pure scalar

- distinguish ${}^{1}S_{0}(A/\eta_{t})$ from ${}^{3}P_{0}(H)$ transform states
 - c_{hel}: scalar product of leptons in parent top rest frame
 - c_{han}:scalar product of leptons with sign flip in top direction

A/H

3 search variables: m_{tt} x c_{hel} x c_{han}

Alexander Grohsjean

VS.

g os

Analytic Event Reconstruction

- 6 unknowns (2 massless v's)
- 6 constraints:
 - p_T^{miss} from v's
 - 2 x top and 2 x W masses
- ◆ assign b-jets using m_{lb}-based likelihood
- finite detector resolution:
 - repeat 100 times with smeared inputs

- major background: SM tt
 - NLO MC (Powheg+Pythia 8)
 - reweighting to NNLO QCD and NLO EW in bins of m_{tī} vs. cosθ* (EPJC 78 (2018) 537, EPJC 51 (2007) 37)
 - normalize to NNLO+NNLL cross section (CPC 185 (2014) 2930)

Putting all together

- profile-likelihood fit to 20 bins of m_{tt} x 3 bins of c_{hel} x 3 bins of c_{han}
- interpretation in terms of η_t

$$\sigma(\eta_{\rm t}) = 8.8 \pm 0.5$$
 (stat) $^{+1.1}_{-1.3}$ (syst) pb = $8.8 \, ^{+1.2}_{-1.4}$ pb

Result well compatible with NRQCD prediction of $\sigma_{\eta t}$ = 6.43 pb

PRD 104 (2021) 034023

Putting all together

CMS

- profile-likelihood fit to 20 bins of m_{tt} x 3 bins of c_{hel} x 3 bins of c_{han}
- interpretation in terms of η_t

Result well compatible with NRQCD prediction of $\sigma_{\eta t}$ = 6.43 pb

PRD 104 (2021) 034023

Scalar or Pseudoscalar?

$\eta_{\rm t}, \sigma(\eta_{\rm t}) = 7.8^{+1.8}_{-1.2} {\rm pb}$
$\chi_{\rm t}$, $\sigma(\chi_{\rm t}) = 3.0^{+2.6}_{-3.3}{\rm pb}$

Scalar or Pseudoscalar?

Excess best compatible with pseudoscalar hypothesis !

Systematics Uncertainties

Uncertainties dominated by tt modeling

29th April 2025

Background-Only Fits

 residual discrepancies in m_{tt} and c_{hel}

Background-Only Fits

- residual discrepancies in m_{tt} and c_{hel}
- strong pull in top
 Yukawa coupling
 and electroweak
 correction scheme

Observed excess can only reasonably be explained with additional contributions !

Alternative Monte Carlo Predictions

- increased nr. of events at low m_{tt} in Herwig7
- similar shapes in bb4l vs nominal Powheg

- Iess slope in c_{hel} for Herwig7
- increased slope for bb4l

Alternative Monte Carlo Predictions

FO pQCD generator setup	$\sigma(\eta_{t})$ [pb]
POWHEG v2 hvq + PYTHIA	8.7 ± 1.1
POWHEG v2 hvq + HERWIG	8.6 ± 1.1
POWHEG vRES bb41 + PYTHIA	6.6 ± 1.4
Nominal result	$8.8{}^{+1.2}_{-1.4}$

29th April 2025

3.5 σ local excess – best match for a pseudoscalar of 400 GeV (lowest mass point tested)

tension in m_{tt} between data and pQCD at the threshold region in multiple measurements

- largest deviation at threshold
 - significant differences between generators
 - slopes in higher m_{tt} bins

Difference between azimuthal lepton angles highly affected by modelling – Reduced sensitivity

Consistency with Other Results: Spin Correlation

- recent entanglement measurements at threshold point to stronger slopes D
 - \rightarrow missing pseudoscalar contributions

Particle-level Invariant Mass Range [GeV]

ATLAS, Nature 633 (2024) 542

Consistency with Other Results: Spin Correlation

- recent entanglement measurements at threshold point to stronger slopes D
 - \rightarrow missing pseudoscalar contributions

Closing Remarks

- significant excess in data at low m_{tt}
 - fits well simplified model of $t\bar{t}$ bound state η_t

 $\sigma(\eta_{t}) = 8.8 \pm 0.5 \text{ (stat)} ^{+1.1}_{-1.3} \text{ (syst)} \text{ pb} = 8.8 ^{+1.2}_{-1.4} \text{ pb}$

- observed significance well above 5 standard deviations
- excess cannot be explained by systematic uncertainties or alternative background models
- looking forward to
 - further improved background modeling crucial to increase knowledge on η_t
 - better theory input needed on the MC modeling of η_t
- next experimental steps
 - measurement in semileptonic channel
 - confirmation from ATLAS

Exciting excess at tt threshold – Opening up a new chapter 30 years after the top discovery !

Symmetry Magazine CMS Briefing CERN News

BACK-UP

29th April 2025

Top Quarks

- top quarks are special
- short lifetime of O(10⁻²⁵) s
 - \rightarrow top spin propagated to decay products
 - \rightarrow fingerprint of $t\bar{t}$ production mode
- heaviest elementary particle:
 172.52 ± 0.33 GeV (PRL 132 (2024) 261902)
- Yukawa-like top couplings close to 1
 - \rightarrow potential key to finding new (pseudo)-scalars

MIIbb Result

