Learning Off-Shell Effects in Top-Pair Production with Direct Diffusion Neural Networks

Tomáš Ježo

Institute of Theoretical Physics University of Münster

based on: [TJ, Nason '15], [TJ, Lindert, Nason, Oleari, Pozzorini '16], [Ferrario Ravasio, TJ, Nason, Oleari '18], [Ferrario Ravasio, TJ, Nason, Oleari '19], [Herwig, TJ, Nachman '19], [Ferrario Ravasio, TJ '21], [TJ, Lindert, Pozzorini '23], [Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23] [Kuschick '24]

Top LHC France 2025 30/04/25

Learning Off-Shell Effects in Top-Pair Production with Direct Diffusion Neural Networks

Motivations:

- ▶ Why top quark? Because it's a versatile probe of the SM and a window to NP.
 - ▷ a.) Coloured object that b.) decays electroweakly and c.) couples strongly to the Higgs boson
- ▶ Why top quark at LHC? Because "several hundred million tops produced" ...
 - ...implies theory will soon lag behind the experiment.
 - ... means it is major background in many other LHC analyses.

Precise simulations of top quark production and decay at LHC imperative!

Correspondingly we have: NLO QCD, NNLO QCD, NLO EW, NNLO QCD+NLO EW, analytic resummations, NLO QCD+PS and NNLO QCD+PS

Learning Off-Shell Effects in Top-Pair Production with Direct Diffusion Neural Networks

Motivations:

- ▶ Why top quark? Because it's a versatile probe of the SM and a window to NP.
 - ▷ a.) Coloured object that b.) decays electroweakly and c.) couples strongly to the Higgs boson
- ▶ Why top quark at LHC? Because "several hundred million tops produced" ...
 - ...implies theory will soon lag behind the experiment.
 - ▶ ... means it is major background in many other LHC analyses.
- ▶ But do we also need off-shell effects?
 - They modify shapes of spectra used for measurements of top properties,
 - and allow the inclusion of quantum interferences between different production modes and radiation from production and decay

There is: NLO QCD, NLO EW and NLO QCD+PS in the dileptonic channel

• Off-shell effects distort the top mass shape and other distributions

[TJ, Nason '15], [TJ, Lindert, Nason, Oleari, Pozzorini '16]

- \blacktriangleright Potentially affecting m_t and y_t measurements
- Proper treatment of interference required
 - ▶ To describe the data
 - \blacktriangleright And if you have it, you can try measuring Γ_t in tails

- Off-shell effects distort the top mass shape and other distributions
 - \blacktriangleright Potentially affecting m_t and y_t measurements

[Ferrario Ravasio, TJ, Nason, Oleari '18, '19], [ATL-PHYS-PUB -2021-042]

- Proper treatment of interference required
 - ▶ To describe the data
 - \blacktriangleright And if you have it, you can try measuring Γ_t in tails

- Off-shell effects distort the top mass shape and other distributions
 - ightharpoonup Potentially affecting m_t and y_t measurements

[Ferrario Ravasio, TJ '21]

- Proper treatment of interference required
 - ▶ To describe the data
 - \blacktriangleright And if you have it, you can try measuring Γ_t in tails

- Off-shell effects distort the spectra used for measurements of top properties
 - \blacktriangleright Potentially affecting m_t and y_t measurements
- Proper treatment of interference required
 - ▶ To describe the data

[PRL 121, 152002]

 \blacktriangleright And if you have it, you can try measuring Γ_t in tails

- Off-shell effects distort the spectra used for measurements of top properties
 - \blacktriangleright Potentially affecting m_t and y_t measurements
- Proper treatment of interference required
 - ▶ To describe the data

[PRL 121, 152002]

 \blacktriangleright And if you have it, you can try measuring Γ_t in tails

- Off-shell effects distort the spectra used for measurements of top properties
 - \blacktriangleright Potentially affecting m_t and y_t measurements
- Proper treatment of interference required
 - ▶ To describe the data
 - \blacktriangleright And if you have it, you can try measuring Γ_t in tails

[Herwig, TJ, Nachman '19]

bb41: $t\bar{t}$ off-shell

bb41: $pp \rightarrow l^+ v_l \ell^- \bar{v}_\ell b \bar{b}$ @ NLO+PS

[TJ et al. '15, '16, '23]

- We published a MC event generator POWHEG BOX RES/bb41
 - ▶ Implementing process $pp \to l^+ v_l \ell^- \bar{v}_\ell b \bar{b}$ up to $\mathcal{O}(\alpha_S^2 \alpha^4 \times \alpha_S)$, l, ℓ different
 - ▶ ME in 4FNS ($m_b > 0$) but 5FNS PDFs also possible (CGN '98 matching)
 - ► Matching to PS using the resonance-aware version of the POWHEG method
- Two important developments
 - ▶ POWHEG style matching for processes with resonances possible
 - ▶ Modelling of emission in the decay with exact matrix element

Traditional NLOPS

Multiple-radiation-improved NLOPS (allrad)

bb41: $pp \rightarrow l^+ v_l \ell^- \bar{v}_\ell b \bar{b}$ @ NLO+PS

[TJ et al. '15, '16, '23]

- We published a MC event generator POWHEG BOX RES/bb41
 - ▶ Implementing process $pp \to l^+ v_l \ell^- \bar{v}_\ell b \bar{b}$ up to $\mathcal{O}(\alpha_S^2 \alpha^4 \times \alpha_S)$, l, ℓ different
 - ▶ ME in 4FNS ($m_b > 0$) but 5FNS PDFs also possible (CGN '98 matching)
 - Matching to PS using the resonance-aware version of the POWHEG method
- Two important developments
 - ▶ POWHEG style matching for processes with resonances possible
 - ► Modelling of emission in the decay with exact matrix element

Traditional NLOPS

Multiple-radiation-improved NLOPS (allrad)

bb41: $pp \rightarrow l^+ v_l \ell^- \bar{v}_\ell b \bar{b}$ @ NLO+PS

[TJ et al. '15, '16, '23]

- We published a MC event generator POWHEG BOX RES/bb41
 - ▶ Implementing process $pp \to l^+ v_l \ell^- \bar{v}_\ell b \bar{b}$ up to $\mathcal{O}(\alpha_S^2 \alpha^4 \times \alpha_S)$, l, ℓ different
 - ▶ ME in 4FNS ($m_b > 0$) but 5FNS PDFs also possible (CGN '98 matching)
 - ► Matching to PS using the resonance-aware version of the POWHEG method
- Two important developments
 - ▶ POWHEG style matching for processes with resonances possible
 - ► Modelling of emission in the decay with exact matrix element

Traditional NLOPS

ME Multiple-radiation-improved NLOPS (allrad)

bb41: $pp \rightarrow l^+ v_l \ell^- \bar{v}_\ell b\bar{b}$ @ NLO+PS

[TJ et al. '15, '16, '23]

- We published a MC event generator POWHEG BOX RES/bb41
 - ▶ Implementing process $pp \to l^+ v_l \ell^- \bar{v}_\ell b \bar{b}$ up to $\mathcal{O}(\alpha_S^2 \alpha^4 \times \alpha_S)$, l, ℓ different
 - ▶ ME in 4FNS ($m_b > 0$) but 5FNS PDFs also possible (CGN '98 matching)
 - ► Matching to PS using the resonance-aware version of the POWHEG method
- Two important developments
 - ▶ POWHEG style matching for processes with resonances possible
 - Modelling of emission in the decay with exact matrix element

Traditional NLOPS

PS Multiple-radiation-improved NLOPS (allrad) ν_e

bb41: $pp \rightarrow l^+ \nu_l \ell^- \bar{\nu}_\ell b \bar{b}$ @ NLO+PS

[**TJ** et al. '15, '16, '23]

- We published a MC event generator POWHEG BOX RES/bb41
 - ▶ Implementing process $pp \to l^+ v_l \ell^- \bar{v}_\ell b \bar{b}$ up to $\mathcal{O}(\alpha_S^2 \alpha^4 \times \alpha_S)$, l, ℓ different
 - ▶ ME in 4FNS ($m_b > 0$) but 5FNS PDFs also possible (CGN '98 matching)
 - ▶ Matching to PS using the resonance-aware version of the POWHEG method
- We have done it but it is very computationaly intensive!
 - ▶ Genuine calculation with $2 \rightarrow 6(7)$ external legs at LO(NLO)
 - Warm-up stage: 32 cd (core days) to reach $\sim 0.5\%$ on inclusive σ
 - ► Even generation stage: 3 evt/s (~1700 cd for 50M events)
 - ▶ Note: no uncertainties (scale, pdf, matching, ...), unweighting up to virtuals
- Limitations
 - Too computationally costly to "play with"
 - ▶ Publishing the "full" output impractical
 - Validation of samples too time consuming

ML off-shell effects

Learning off-shell effects with NNs

- Can machine learning help?
 - ► Train a NN that generates events directly
 - ► Make integration and unweighting methods more efficient
 - ▶ Learn matrix elements
 - ► Transform samples using reweight
- Our idea: transform samples beyond reweighting
 - ► Take advangate of existing or inexpensive samples (POWHEG/hvq)
 - ▶ Train a NN that transforms it into the costly sample
- Our goal: publish "full output" (= inexpensive sample run card + NN)
 - ▶ To play with, to benchmark, to validate samples against, etc.
 - ▶ Part of a hybrid calculation which aims at higher formal accuracy

Learning off-shell effects with NNs

- Conceptually:
 - ▶ We are after a recipe to transform one sample into another, event by event
 - ► Goal sample: events with full off-shell effects (POWHEG/bb41)
 - ► Starting sample: events with approximate off-shell effects (POWHEG/hvq)
- Technically:
 - ▶ "Unshowered" parton level events (LHE format) on input and output
 - ► Going beyond reweighting is crucial, due to incomplete phase-space coverage
 - ▶ Use direct diffusion based neural network supplemented by a classifier
 - Requires samples of same dimensionality
- Important points to address:
 - Could parton shower be included?
 - ▶ Detector simulation is still the most costly component

The phase-space population issue

- Reconstructed top mass with approximate vs. full off-shell effects:
 - ► On POWHEG/hvq generator with approximate top decay, no radiative corrections in decay, only finite-width effects (+ approximate spin correlations)
 - ▶ Off POWHEG/bb41 generator with full off-shell top decay, including corrections in decay, finite-width, non-resonant and interference effects

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]

• Off-Shell event $x_{off}(t=0)=x_0$, on-shell events $x_{on}(t=1)=x_1$ respectively

[†] slide credit M. Kuschick

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]

• Off-Shell event $x_{off}(t=0)=x_0$, on-shell events $x_{on}(t=1)=x_1$ respectively

[†] slide credit M. Kuschick

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]

• Off-Shell event $x_{off}(t=0)=x_0$, on-shell events $x_{on}(t=1)=x_1$ respectively

[†] slide credit M. Kuschick

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]

• Off-Shell event $x_{off}(t=0)=x_0$, on-shell events $x_{on}(t=1)=x_1$ respectively

[†] slide credit M. Kuschick

- Does it work?
 - On input sample with approximate top decay modelling
 - Off target sample with full offshell top decay modelling
 - ▶ DiDi NN prediction
- It succeeds in filling regions of phase-space absent in the input sample
- Precision could be better

Direct diffusion + reweighting

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]

• Furthermore, we can reweight the DiDi events with

$$w(x) = \frac{p_{\text{Off,data}}(x)}{p_{\text{Off,DiDi}}(x)}$$
 with

$$C(x) = \frac{p_{\text{Off,data}}(x)}{p_{\text{Off,data}}(x) + p_{\text{Off,DiDi}}(x)}$$

• To appreciably improve the precision

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]

- Setup
 - $e^+ v_e \mu^- \bar{v}_\mu b \bar{b}$ at LO QCD $\mathcal{O}(\alpha_S^2 \alpha^4)$ at 13TeV LHC
 - ▶ Input sample: POWHEG/hvq; Target sample: POWHEG/bb41
 - $m_t = 172.5 \text{ GeV}$, $\Gamma_t = 1.453 \text{ GeV}$, $m_b = 4.75 \text{ GeV}$, etc.

DiDi

Hyperparameter	
Embedding dimension	64
Layers	8
Intermediate dimensions	768
LR scheduling	OneCycle
Starter LR	10 ⁻⁴
Max LR	10 ⁻³
Epochs	1000
Batch size	16384
С	10 ⁻³
# Training events	3 M

Reweighting classifier

Hyperparameter	
Layers	5
Intermediate dimensions	512
Dropout	0.1
Normalization	BatchNorm1d
LR scheduling	ReduceOnPlateau
Starter LR	1^{-3}
Starter LR Patience	1 ⁻³ 10
otarior Lit	_
Patience	10

- Prediction (DiDi Rew.) matches the target sample (Off) very well
 - ▶ Devitations down to ~1% in the bulk and ~10% in the tails
- Uncertainties smaller than the size of the off-shell effect in the off-shell regions
 - ▶ DiDi is a Bayesian NN, but not the reweighting classifier

- Migration plots visualize the mapping from the input data set to the prediction
 - ▶ Offer insights as to what the NN actually does under the hood
- We find that no events moving from below to peak above the peak and vice versa

Towards a realistic example

[Kuschick '24]

- Radiative corrections
 - ► Extra radiation increases the dimensionality, does DiDi scale? Yes, see next slide!
 - ▶ At NLO bb41 and hvq do not match in dimensionality. DiDi applied only to radiation in production.
- Other production modes
 - ▶ Do we gain anything if tW production is added to the input sample? No benefits found thus far (no plots shown in this presentation).
- Parton Shower
 - ► No intention to include, but preparing for parton shower requires extra steps (shower starting scale, colour flows, etc.)
 - ▶ Could it be included in principle? Yes, in principle.

Summary and outlook

- New ML method for transforming event samples
- "Learns" off-shell effects in top quark production
 - ► Performs kinematic shifts and reweights
 - ▶ Combines a direct diffusion NN and a classifier
 - ▶ Proof of concept limited to LO, but realistic application is WIP [Kuschick '24]
- Other ideas
 - ► Can it also learn dependence on input parameters, e.g. top mass and width?
 - ► Can it encode scale dependence and be independent of PDFs for uncertainty estimates?
 - ► Can it be extended to include parton shower and detector simulation steps?

