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Learning Off-Shell Effects in Top-Pair Production

with Direct Diffusion Neural Networks

e Motivations:

» Why top quark? Because it's a versatile probe of the SM and a window to NP.

> a.) Coloured object that b.) decays electroweakly and c.) couples strongly
to the Higgs boson

» Why top quark at LHC? Because “several hundred million tops produced” ...

> ...implies theory will soon lag behind the experiment.

> ...means it is major background in many other LHC analyses.

Precise simulations of top quark production and decay at LHC imperative!

Correspondingly we have: NLO QCD, NNLO QCD, NLO EW, NNLO
QCD+NLO EW, analytic resummations, NLO QCD+PS and NNLO QCD+PS
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e Motivations:

» Why top quark? Because it's a versatile probe of the SM and a window to NP.

> a.) Coloured object that b.) decays electroweakly and c.) couples strongly
to the Higgs boson

» Why top quark at LHC? Because “several hundred million tops produced” ...
> ...implies theory will soon lag behind the experiment.
> ...means it is major background in many other LHC analyses.

» But do we also need off-shell effects?
> They modify shapes of spectra used for measurements of top properties,

> and allow the inclusion of quantum interferences between different pro-
duction modes and radiation from production and decay

There is: NLO QCD, NLO EW and NLO QCD+PS in the dileptonic channel
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e Off-shell effects distort the top mass shape
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Do we need off-shell effects?

e Off-shell effects distort the top mass shape and other distributions

» Potentially affecting m; and y; measurements
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Do we need off-shell effects?

e Off-shell effects distort the top mass shape and other distributions

» Potentially affecting m: and y; measurements
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Do we need off-shell effects?

o Off-shell effects distort the spectra used for measurements of top properties
» Potentially affecting m; and y; measurements
e Proper treatment of interference required

» o describe the data
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Do we need off-shell effects?

o Off-shell effects distort the spectra used for measurements of top properties
» Potentially affecting m; and y; measurements
e Proper treatment of interference required
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Do we need off-shell effects?

o Off-shell effects distort the spectra used for measurements of top properties
» Potentially affecting m; and y; measurements
e Proper treatment of interference required

» o describe the data

» And if you have it, you can try measuring I'; in tails
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bb4l: tt off-shell



bb4l: pp - [*vi€ vybb @ NLO+PS

[T) et al. 15, "16, '23]

e We published a MC event generator POWHEG BOX RES/bb41l

» Implementing process pp — [*v;€~vybb up to O(aéa’ x as), L, ¢ different
» ME in 4ENS (mp > 0) but 5FNS PDFs also possible (CGN '98 matching)

» Matching to PS using the resonance-aware version of the POWHEG method
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e Two important developments

» POWHEG style matching for processes with resonances possible

» Modelling of emission in the decay with exact matrix element
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bb4l: pp - [*vi€ vybb @ NLO+PS

T) et al. 15, '16, 23]

e We published a MC event generator POWHEG BOX RES/bb41

» Implementing process pp — [*v;€~vybb up to O(aéa’ x as), L, ¢ different
» ME in 4ENS (mp > 0) but 5FNS PDFs also possible (CGN '98 matching)

» Matching to PS using the resonance-aware version of the POWHEG method

e We have done it ... ...but it is very computationaly intensive!

v

Genuine calculation with 2 — 6(7) external legs at LO(NLO)
Warm-up stage: 32 cd (core days) to reach ~0.5% on inclusive o

v

» Even generation stage: 3 evt/s (~1700 cd for 50M events)

» Note: no uncertainties (scale, pdf, matching, ...), unweighting up to virtuals
e Limitations

» Too computationally costly to “play with”
» Publishing the “full” output impractical

» Validation of samples too time consuming
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Learning off-shell effects with NNs

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]

e Can machine learning help?

» Train a NN that generates events directly
» Make integration and unweighting methods more efficient
» Learn matrix elements

» Transform samples using reweight
e Our idea: transform samples beyond reweighting

» Take advangate of existing or inexpensive samples (POWHEG/hvq)
» Train a NN that transforms it into the costly sample

e Our goal: publish “full output” (= inexpensive sample run card + NN)

» To play with, to benchmark, to validate samples against, etc.

» Part of a hybrid calculation which aims at higher formal accuracy



Learning off-shell effects with NNs

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]

e Conceptually:

» We are after a recipe to transform one sample into another, event by event
» Goal sample: events with full off-shell effects (POWHEG/bb41)

» Starting sample: events with approximate off-shell effects (POWHEG/hvq)
e Technically:

» “Unshowered” parton level events (LHE format) on input and output
» Going beyond reweighting is crucial, due to incomplete phase-space coverage
» Use direct diffusion based neural network supplemented by a classifier

> Requires samples of same dimensionality
e Important points to address:

» Could parton shower be included?

» Detector simulation is still the most costly component



The phase-space population issue

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]
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e Reconstructed top mass with approximate vs. full off-shell effects:

> On POWHEG/hvqg generator with approximate top decay, no radiative

corrections in decay, only finite-width effects (4 approximate spin correlations)

Off POWHEG/bb41l generator with full off-shell top decay, including cor-
rections in decay, finite-width, non-resonant and interference effects



The direct diffusion neural network

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]

*  Off-Shell event x.#(t=0)=xo, on-shell events x..(t=1)=x1 respectively
t ~U([o,1]) l
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The direct diffusion neural network

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]

e Does it work?

> On  input sample with approx-

imate top decay modelling

Off target sample with full off-
shell top decay modelling

DiDi NN prediction

>

e It succeeds in filling regions of phase-space
absent in the input sample

e Precision could be better
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Direct diffusion + reweighting

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]
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Results

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]

e Setup

» et Ve v,bb at LO QCD O(aéa’) at 13TeV LHC
» Input sample: POWHEG/hvq; Target sample: POWHEG/bb41
» m=172.5 GeV, [ 1 =1.453 GeV, my =4.75 GeV, etc.

DiDi Reweighting classifier
Hyperparameter | Hyperparameter |
Embedding dimension 64 Layers 5
Layers 8 Intermediate dimensions 512
Intermediate dimensions 768 Dropout 0.1
IR scheduling OneCycle Normalization BatchNorm1d
Starter LR 10:: LR scheduling ReduceOnPlateau
Max LR 10 Starter LR 173
Epochs 1000 Patience 10
Batch size 16384 Epochs 100
c | 1073 Batch size 1024

# Training events | 3 M # Training events 25M




Results

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]
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e Prediction (DiDi Rew.) matches the target sample (Off) very well
» Devitations down to ~1% in the bulk and ~10% in the tails
e Uncertainties smaller than the size of the off-shell effect in the off-shell regions

» DiDi is a Bayesian NN, but not the reweighting classifier



Results

[Butter, TJ, Klasen, Kuschick, Palacios Schweitzer, Plehn '23]
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e Migration plots visualize the mapping from the input data set to the prediction
» Offer insights as to what the NN actually does under the hood

e We find that no events moving from below to peak above the peak and vice versa



Towards a realistic example
[Kuschick '24]

e Radiative corrections

» Extra radiation increases the dimensionality, does DiDi scale? Yes, see next

slide!
» At NLO bb4l and hvg do not match in dimensionality. DiDi applied only to

radiation in production.
e Other production modes
» Do we gain anything if tW production is added to the input sample? No
benefits found thus far (no plots shown in this presentation).
e Parton Shower

» No intention to include, but preparing for parton shower requires extra steps
(shower starting scale, colour flows, etc.)
» Could it be included in principle? Yes, in principle.



Summary and outlook

e New ML method for transforming event samples

m— 0ff (NLO)
w DiDi rew.
m== 0N (NLO)

o “Learns” off-shell effects in top quark production

Performs kinematic shifts and reweights

-~ PRELIMINARY
» Combines a direct difftusion NN and a classifier ; b
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» Can it also learn dependence on input parame-
ters, e.g. top mass and width?
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