Cea irfu Top LHC France April 28, 2025

Probing the *CP* nature of the top Yukawa coupling in $t\bar{t}H$ multi-lepton final states with the ATLAS experiment at LHC

Alberto Carnelli, Frederic Déliot, Anastasia Kotsokechagia, Marianna Liberatore, Vera Maiboroda, Tanguy Marsault, Matthias Saimpert

- The asymmetry between matter and antimatter in the Universe is a long-standing mystery
- CP violation, which could lead to such an asymmetry, has already been observed in the K and B meson systems
- It is not enough to explain the observed matter-antimatter asymmetry
- Since 2012, the Higgs sector is a new candidate source for CP violation

Magritte, La reproduction interdite, 1937

tTHML CP

The top Yukawa coupling

- The top quark has the largest mass $m_t \simeq 172.5 \text{ GeV}$
- The top Yukawa coupling is the strongest coupling in the Standard Model
- It makes it the perfect candidate to study the structure of the coupling

• The CP violating nature of the coupling is introduced through the modified Lagrangian

$$\mathcal{L}_{\mathsf{Yukawa}} = -y_t oldsymbol{\kappa'_t} oldsymbol{ar{t}} e^{ioldsymbol{lpha}\gamma_5} th$$

- \blacksquare The phase α accounts for CP violation while the parameter κ_t' accounts for the strength of the coupling
- The $(\alpha, \kappa_t') = (0^\circ, 1)$ corresponds to the Standard Model scenario

- $t\bar{t}H$ is a rare process ($\sigma \sim 0.5$ pb)
- It can be studied in its different final states, $H \rightarrow \gamma \gamma$, $H \rightarrow b\bar{b}$ and the multileptonic final states
- Previous analyses using $H\to\gamma\gamma$ and $H\to b\bar{b}$ have been carried in ATLAS and CMS
- Confidence Intervals (CI) and CP-odd exclusion are shown in the table below

Channel	α Cl	CP-odd excl.	Ref.
ATLAS $H \rightarrow \gamma \gamma$	$[-43^{\circ}, 43^{\circ}]$	3.9σ	[1]
ATLAS $H o b \overline{b}$	$[-73^{\circ}, 53^{\circ}]$	1.2σ	[2]
CMS $H \rightarrow \gamma \gamma$	—	3.2σ	[3]

1. Analysis strategy

2. Parametrization of the signals

3. Results

I - Introduction

Targetted events

- 2 kind of multilepton final states are sensitive to the CP nature of the top Yukawa coupling
- \blacksquare These are discriminated by the number of hadronic τ in the final state

• We will give an overview of these 2 channels separately

28/4/2025

tŦHML CP

0τ channel

- \blacksquare The 0τ channel focuses on $H \rightarrow WW/\tau\tau$ and leptonic decays of the τ
- It has 2 subchannels differing in their number of final state leptons
- 2ISS channel with 2 same charge leptons in the final state
- 3/ channel with 3 leptons in the final state

2*ISS*

- Targetting semileptonic decay of $t\overline{t}$ pair
- The same sign condition forces one lepton to come from the tt decay
- The other one must come from the Higgs boson decay products
- 2 tight leptons of same sign with $p_T > 15$ GeV
- \blacksquare \geq 3 jets, \geq 1 $\emph{b}\text{-jet}$

3/

- Two options
- Either a dileptonic decay of the Higgs
- Or a dileptonic decay of the $t\bar{t}$ pair
- Opposite sign pair invariant mass incompatible with the Z mass within 10 GeV
- \geq 2 jets, \geq 1 *b*-jet

Signal-background discrimination

- The $t\bar{t}H$ and tH processes are very rare and various background can mimic the signal
- The most important ones are $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}$ and VV
- 2 BDTs are used for 2ISS and 3I channels, relying on kinematics of the leptons, angular variables and tagging of the b-jets
- The different processes are classified using BDT distributions that are fitted
- The BDT outputs a score for $t\bar{t}H$, tHjb, $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}$ and VV

STXS framework

60

120

300

400

 ∞

- An enhanced sensitivity to CP has been observed. when splitting the analysis in Higgs p_T bins
- This is the STXS framework

28/4/2025

• It will be used in the 0τ channel

Higgs p_T distribution

Confusion matrices of the GNN, 2/SS on the left and 3/ on the right

2ISS signal regions, $t\bar{t}H + +$

t**THML** CP

2/SS signal regions, $t\bar{t}H - -$

t**THML** CP

28/4/2025

3/ signal regions

28/4/2025

tTHML CP

< □ ▷ < ∅ ▷ < ≧ ▷Tanguy=Marsault 13/32

tH regions

- *tH* may also be sensitive to the *CP* nature of the top Yukawa coupling
- 2 *tH* signal regions are included in the analysis, one for 2*ISS* and one for 3*I*

28/4/2025

t**T**HML CP

< □ ► < □ ► < ∃ ► Tanguy∃Marsault 14/32

Background processes

- The $t\bar{t}H$ and tH processes are very rare and various background can mimic the signal
- The most important ones are $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}$ and VV
- Control Regions (CR) are included for each of these processes to adjust their normalisation
- Another CR is included to control other minor backgrounds

Fakes and conversions

- Control regions are also included to control the rates of fake leptons (specific to the multilepton channel)
- These can be heavy flavor leptons $HFe HF\mu$, for which 6 regions are included in total
- Conversion of photons into leptons close to the interaction vertex (Internal Conversion) and in the detector material (External Conversion) are also controlled

Heavy flavor control regions

- Control electrons coming from heavy flavor decays
- Require 2 jets and a *b*-jets (decays are mostly from *b*-hadrons)
- Include every combination of lepton definition
- Leptons are selecected as tight in the signal regions
- Here they are either both medium, or one of them is tight

< □ ▷ < ♂ ▷ < ≥ ▷Tañguy=Marsault 16/32

Conversion control regions

- The internal conversions regions require to identify decays of the *Z* boson into 2 muons
- They are built by tagging no *b*-jet
- Additionnally, 2 muons are required and an internal or material conversion candidate is required
- The invariant mass of the three leptons is required to be compatible with the Z mass within 10 GeV
- ${\ensuremath{\,\bullet\,}}$ Evaluated using $Z \to \mu \mu$ bremstrahlung events

< □ ▷ < ♂ ▷ < ≧ ▷ Tanguy Marsault 17/32

28/4/2025

2τ channel

- Targets specifically $H \rightarrow \tau_{had} \tau_{had}$
- In such cases, the $t\bar{t}$ pair decays in 1 or 2 leptons
- The *tH* process is also sensitive to the *CP* nature of the top Yukawa coupling and makes another signal region
- A BDT has been trained to discriminate between *CP*-even and *CP*-odd *tH* and *ttH* events
- One of its main discriminative variable is $p_T^{\tau \tau} \sim p_T^H$
- Various angular variables between the different objects in the event are also used
- The STXS framework is not used in this case

tTHML CP

IN A B → A B → Tanguy Marsault 18/32

2τ signal regions

28/4/2025

tTHML CP

19/32

II - Parametrization

of the signals

• The modified Yukawa coupling can be parametrized as,

$$\mathcal{L}_{\mathsf{Yukawa}} = -y_t \kappa'_t \overline{t} (\cos \alpha + i \sin \alpha \gamma_5) th$$

- How does the yield evolve in the SR w.r.t (α, κ'_t) ?
- At first order in the coupling, the most general form must be, $y^{SR}(\alpha, \kappa'_t) \propto A\kappa'^2_t \cos^2 \alpha + B\kappa'^2_t \sin^2 \alpha + E\kappa'^2_t \cos \alpha \sin \alpha$ 2 diagrams w/ Yukawa $+C\kappa'_t \cos \alpha + D\kappa'_t \sin \alpha$ 1 w/ Yukawa and 1 w/o +F 2 diagrams w/o Yukawa
- Parity considerations w.r.t $\alpha = 0$ leads to E = D = 0
- How to determine the coefficients A, B, C, F?

$t\bar{t}H$ parametrization

There is only one main diagram for the production of the $t\bar{t}H$ process So that the parametrization is much simpler, $y_{t\bar{t}H}^{SR}(\alpha,\kappa_t') = y_{t\bar{t}H}^{SM}\kappa_t'^2\cos^2\alpha$ $+ \gamma_{t\bar{t}\mu}^{CP}\kappa_{t}^{\prime}\sin\alpha$ • where y^{SM} and y^{CP} are the yields for $(\alpha = 0, \kappa'_t = 1)$ and $(\alpha = 90^\circ, \kappa'_t = 1)$ respectively

28/4/2025

tŦHML CP

< □ ▷ < ∅ ▷ < ∃ ▷ Tanguy∃Marsault 22/32

tH parametrization

- It may come from these two diagrams
- Interferences between these diagrams lead to coefficient $\propto \kappa'_t$
- The parametrization cannot be further simplified,

$$y_{tH}^{SR}(\alpha, \kappa_t') = A\kappa_t'^2 \cos^2 \alpha$$
$$+ B\kappa_t'^2 \sin^2 \alpha$$
$$+ C\kappa_t' \cos \alpha$$
$$+ F$$

- Needs to fit the coefficients A, B, C, F in the tH process
- Procedure done for *tHg* and *tWH* events independently

28/4/2025

tTHML CP

23/32

Determination of the *tH* parametrization

• Samples were generated with MG5_aMC@NLO for somes values of (α,κ_t')

 $(0^{\circ},1),\;(15^{\circ},1),\;(30^{\circ},1),\;(45^{\circ},1),\;(60^{\circ},1),\;(75^{\circ},1),\;(90^{\circ},1),\;(180^{\circ},1),\;(0^{\circ},0.5),\;(0^{\circ},2)$

• A fit was performed to derive the coefficients A, B, C, F in the tH process for each bin of each region

III - Results

and expected sensitivity

- A profile likelihood fit was performed to extract the values of the POIs κ_t' and α
- Along with these 2 POIs, the normalization factors of the main backgrounds are included, $t\bar{t}W, t\bar{t}Z, WZ, HFe/\mu$ and γ conversions
- \blacksquare In particular, the interval of α is derived
- The expected sensitivity of the analyses will be presented in each channel independently
- A combination is finally performed
- For each setup, an Asimov fit helps us derive the expected sensitivity under the SM hypothesis
- Another fit with data in the control region is performed to get a more data oriented estimation of the sensitivity

Individual channel Asimov results

- All normalisation factors are fitted to their SM value as expected
- \blacksquare The errors on α are not to be trusted here

28/4/2025

tŦHML CP

< □ ▷ < ∅ ▷ < ≧ ▷Tanguy=Marsault 27/32

Individual channel Hybrid results

< □ > < □ > < □ > < ∃ > Tanguy=Marsault

28/32

• All norm factors are compatible with the SM value apart from $N(t\bar{t}W)$

```
28/4/2025
```

t**T**HML CP

Hybrid α scans

- Perform likelihood scans to determine the expected sensitivity of each channels
- \blacksquare Derive the interval for α
- Exclusion of *CP*-odd hypothesis is evaluated by the value of $-2\Delta \log \mathcal{L}$ at $\alpha = 90^{\circ}$
- No 95% CI is expected in individual channels

Channel	CP-odd excl.		
3/	1.4σ		
2 <i>ISS</i>	1.6σ		
2 au	1.9σ		

tTHML CP

Results of combination Hybrid and Asimov

28/4/2025

tTHML CP

□ ► < ▷ ► < ∃ ► Tanguy∃Marsault
 30/32

Combination improvements

28/4/2025

tTHML CP

31/32

Conclusion

- The ttH CP analysis in the multilepton channel has an expected sensitivity comparable to the measurements in other Higgs decay channels
- ${\mbox{ \ \ expected confidence region for } \alpha}$ is at 43°
- \blacksquare The CP-odd hypothesis is excluded at 3σ
- The analysis is also perfoming the cross section measurement

$\begin{tabular}{|c|c|c|c|} \hline Channel & CP\mbox{-odd excl.} \\ \hline \hline 2/SS & 1.6\sigma \\ \hline 3/ & 1.4\sigma \\ \hline 2\tau & 1.9\sigma \\ \hline Combined & 3\sigma \\ \hline \end{tabular}$

Further steps

- Analysis unblinded and approval in progress
- Expected publication soon

Thank you for your attention!

28/4/2025

tTHML CP

IV - Backup

	е					μ				
	L	L L' M M _{ex}			Т	L	Ľ	М	M _{ex}	Т
LooseVar_Rad isolation		Yes				Yes				
Non-prompt lepton BDT	No		Tight	Tight-not-	VanTight	No		Tight	Tight-not-	VamTight
(PLIV)			rigni	¹ VeryTight ^V	veryngni				VeryTight	veryngni
Identification	Loose Tight				Loose	Medium				
Charge mis-assignment veto	No. Vas					NI/A				
(ECIDS)	INO		ies		19/A					
Conversion rejection	No Yes					N/A				
Transverse impact parameter	. 5			- 3						
significance $ d_0 /\sigma_{d_0}$										
Lonzgitudinal impact parameter	< 0.5 mm									
$ z_0 \sin \theta $	< 0.5 mm									

Table 5: Loose (L or L'), Medium (M), Medium exclusive (Mex), and Tight (T) light lepton definitions.

External conversion

- Reconstruction of a conversion vertex with r > 20 mm
- \blacksquare The invariant mass of the electron track and the closest track to the conversion vertex is required to be $<100~{\rm MeV}$

Internal conversion

- Not classified as *external conversion*
- \blacksquare The invariant mass of the electron track and the closest track to the primary vertex is required to be $<100~{\rm MeV}$

Channel	Cut-based Control Regions	Signal and MVA-based Control regions
2ℓSS	$TM_{ex}, M_{ex}T, M_{ex}M_{ex}$	TT
3ℓ	L'MM/LMM (L' for μ and L for e)	LTT (L for ℓ_0)
4ℓ]	LLLL
$2\ell SS+1\tau_{had}$	L'L' and MM (for fake τ_{had} CR)	MM
$1\ell+2\tau_{had}$ and $2\ell+2\tau_{had}$		L[L]

Table 6: Summary of the light lepton definitions used in the six analysis channels. The definition used for each of the leptons selected in a given channel is indicated e.g TT corresponds to the definition of the two leptons in the SR of the 2ℓ SS channel while LLLL corresponds to the definition of the 4 leptons in the 4ℓ channel.

			$2\ell SS+0\tau_{had}$		$3\ell + 0\tau_{had}$		4ℓ	
$ au_{\rm had}$ ca	indidates		==0 M		==0 M		-	
Lepton	s counting		==2 T: $p_{\rm T} > 15 \text{ GeV}$		==3 (T,T,L): $p_{\rm T} > 15, 15, 10$		$==4$ L: $p_{\rm T} > 10$ GeV	
					GeV			
Lepton	details		SS		OS (to others): L $p_{\rm T} > 10 \text{ GeV}$		Sum charge $= 0$	
					SS pair: T $p_{\rm T} > 15$ GeV			
					0 GeV	OS pairs: $m(ll) > 12$ GeV		
			and $m(ll) > 12 \text{ GeV}$		$m(llll) \notin [115 \mathrm{GeV}, 130 \mathrm{GeV}]$			
N _{jets}		≥ 3		≥ 2		≥ 2		
$N_{b-\text{jets}}$ (@ 85% WP)		≥ 1		≥ 1		≥ 1		
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$1\ell + 2\tau_{had}$		$2\ell OS+2\tau_{had}$		
	$\tau_{\rm had}$ candidates			==2 0	$2 \text{ OS M } p_{\text{T}} > 20 \text{ GeV}$		$PS M p_T > 20 GeV$	
	Leptons counting			$==1 L p_T > 27 GeV$		==2 OS L $p_{\rm T}$ > 10 GeV		
	Lepton details	SS				OS pair: $ m(ll) - m_Z > 10 \text{ GeV}$		
		m(ll)	$ m(ll) - m_Z > 10$				(ll) > 12 GeV	
	Njets	≥ 3	: 3		≥ 3			
	N _{b-jets}	≥ 1 (0	1 (@ 85% WP)		≥ 1 (@ 77% WP)		> 0 (@ 77% WP)	

Control regions definitions

Control regions for:	Diboson	tīZ	Conversions	HF non-prompt			
Njets	2 or 3	≥ 4	≥ 0	≥ 2			
N _{b-jets}	$1 b^{85\%}$		$0 \ b^{85\%}$	$1 \ b^{85\%}$			
Lepton requirement	3ℓ		$\mu\mu e^*$	2ℓSS			
Lepton definition		(L, I)	(M, M)	$(T, M_{\mathrm{ex}}) \parallel (M_{\mathrm{ex}}, T) \parallel (M_{\mathrm{ex}}, M_{\mathrm{ex}})$			
Lepton $p_{\rm T}$ [GeV]	(10, 15, 15)			(15, 15)			
$ m_{\ell^+\ell^-}^{ m SF} - m_Z $ [GeV]	< 10		> 10	_			
$ m_{\ell\ell\ell} - m_Z $ [GeV]	>10		< 10	_			
$m_T(\ell_0, E_{\mathrm{T}}^{\mathrm{miss}})$ [GeV]				< 250 for $TM_{\rm ex}$ and $M_{\rm ex}T$ pairs			
τ_{had} candidates (Medium)			0	0			
Region split	_	-	internal / material	subleading $e/\mu \times (TM_{ex}, M_{ex}T, M_{ex}M_{ex})$			
Region naming	3ℓVV	3ℓttZ	3ℓIntC	2ℓ tt(e) _{TMex} , 2ℓ tt(e) _{MexT} , 2ℓ tt(e) _{MexMex}			
			3ℓMatC	$2\ell \operatorname{tt}(\mu)_{TM_{\mathrm{ex}}}, 2\ell \operatorname{tt}(\mu)_{M_{\mathrm{ex}}T}, 2\ell \operatorname{tt}(\mu)_{M_{\mathrm{ex}}M_{\mathrm{ex}}}$			
				Tanguy			

28/4/2025

tŦHML CP

larsault 6/12

Heavy flavor control regions

28/4/2025

tTHML CP

7/12

CR $t\bar{t}W$, $t\bar{t}Z$

28/4/2025

tTHML CP

CR $t\bar{t}$, *VV* and others

28/4/2025

tTHML CP

(c) tWH w/o Yukawa tH coupling

< □ > < □ > < □ > < ≥ >Tanguy=Marsault 10/12

tTHML CP

2τ CP **BDT**

Variable	Definition	$1\ell + 2\tau_{had}$	$2\ell+2\tau_{\rm had}$	$tH1\ell+2\tau_{\rm had}$
$p_{T_{\tau\tau}}$	visible $p_{\rm T}$ of the di- τ system	5.9	7.9	6.3
$\Delta R(au au)$	angular distance between two τ -leptons	6.6	9.6	8.8
$\Delta R(au au,\ell_0)$	angular distance between the leading lepton and the di- $ au$ system	6.6	9.0	8.2
$\min(\Delta R(\tau, \ell))$	minimum angular distance between τ and lepton	6.4	_	9.3
$\min(\Delta R(\tau, \mathbf{j}))$	minimum angular distance between jet and $ au$	7.2	9.2	9.1
$m_{\ell_0 \tau \tau}$	visible invariant mass of the leading lepton and the di- $ au$ system	5.5	7.7	-
$\eta_{\tau\tau}$	η of di- τ system	5.9	8.6	8.8
$\Delta \phi(t,t)$	azimuthal angle between the reconstructed top pair	6.9	9.2	_
$\Delta \eta(t,t)$	$\Delta \eta$ between the reconstructed top pair	6.4	9.3	_
$m_{ m tH}$	invariant mass of the reconstructed top and Higgs	5.2	_	7.2
$\Delta \phi(t,H)$	azimuthal angle between the reconstructed top and Higgs	6.3	_	9.2
$\Delta \eta(t,H)$	$\Delta \eta$ between the reconstructed top and Higgs	6.7	_	8.6
H_{T}	sum of jet $p_{\rm T}$ (GeV)	6.1	7.1	7.8
$E_{\mathrm{T}}^{\mathrm{miss}}$	the missing momenta (GeV)	5.7	_	7.4
$\min(\Delta R(\ell, j))$	minimum angular distance between jet and lepton	6.9	9.2	9.3
$m_{t\bar{t}}$	invariant mass of the reconstructed top pair	5.5	6.2	_
$m_{\ell_1 \tau \tau}$	visible invariant mass of the subleading lepton and the di- τ system	-	7.3	-

Asimov LH scans

28/4/2025

tTHML CP

≺ □ ⊢ ≺ ⊜ ⊢ ≺ ≣ ⊦Tanguy-Marsault 12/12