THE CHERENKOV TELESCOPE ARRAY CTA

Stefan Schlenstedt, DESY

Marseille, December 14th, 2009

COSMIC RAYS

Victor F. Hess 1912

Marseille, CTA, December 14, 2009

Energies and rates of the cosmic-ray particles

ACCELERATORS

IN COSMOS Hillas-plot

large fields

(candidate sites for E=100 EeV and E=1 ZeV)

COSMIC ACCELERATORS

proton acceleration in shock waves (Fermi)

neutrino production

- proton interactions with baryons and photons
- decay of pions and muons

simultaneous gamma production in π^0 decays

Particle accelerator

F. Halzen

POSSIBLE SOURCE OF COSMIC RAYS : SUPERNOVAE AND SUPERNOVA REMNANTS

Association with Gamma Ray Bursts

Tycho Brahe, 1572

Marseille, CTA, December 14, 2009

X-ray, radio, optical

POSSIBLE EXTRA-GALACTIC SOURCE OF COSMIC RAYS: GAMMA-RAY BURSTS

Most powerful emissions of γ rays L_{γ} = 10^{51...53} erg/s (sun 10⁴¹ erg/y)

POSSIBLE EXTRA-GALACTIC SOURCES OF COSMIC RAYS: ACTIVE GALACTIC NUCLEI

Massive black hole 10^{6...9} M_o with collimated jets

Brightest observed steady sources: $L_{\gamma} = 10^{42} \div 10^{47}$ erg/s

HIGHEST ENERGY COSMIC RAYS

from Active Galactic Nuclei?

PARTICLE PROPAGATION

SNR

GRB

Micro quasars

Chandra X-Ray

Active galactic nuclei

Sources of cosmic rays

- Astrophysics of sources
- Acceleration and propagation

Starburst galaxies

NATURE OF DARK MATTER PARTICLES?

- Presence inferred from gravitational effects on visible matter
- Search for annihilation signal of dark-matter particles

HESS/VERIT

CTA

1000

10000

Challenge: distinguish this signal from astrophysical gamma rays

for neutralino mass

of 330 GeV

10

100

energy [GeV]

GLAST

10⁻¹²

, 10⁻¹³

energy flux

Dark matter

26%

Dark energy

70%

BLAZARS: EXCEPTIONAL FLARES

peak flux \approx 50 times average doubling times < 3 min

Dynamics of acceleration?
Vacuum dispersion from quantum gravity?

MULTI-WAVELENGTH ASTRONOMY

peaks reflect primary spectrum and depend on magnetic fields and matter density

HIGH-ENERGY GAMMA-RAY SKY

intensity \rightarrow energy orientation \rightarrow direction shape \rightarrow primary stereo \rightarrow source position

THE NEXT GENERATION

THE CHERENKOV TELESCOPE ARRAY

- Increase sensitivity
- Extend energy range
- Improve angular resolution

CTA: An advanced facility for ground-based γ -ray astronomy and astro-particle physics

Observatory with flexible and robotic operation

Arrays in North and South for full sky coverage

large, medium and small telescopes

SENSITIVITY

NUMBER OF SOURCES

- CTA consortium extended H.E.S.S. + MAGIC community from 20 countries in Europe, Americas, Japan
- Priority project by European funding agencies ASPERA and ASTRONET \rightarrow ASPERA call
- European Strategy Forum on Research Infrastructures (ESFRI) Roadmap 2008
- EU calls for ESFRI projects for preparatory phase, and for e-Infrastructure

WORK PACKAGE STRUCTURE

- Management, governance, legal aspects and financial model
- Preparing construction
 - project office with system engineering and integration, and contacts to industry
 - for different telescope types
 - keep structure for common aspects
 - transition from vertical to horizontal structure for specifics
- Preparing operation
 - data and user tools, computing, outreach...

CTA IN EU SEVENTH FRAMEWORK (FP7) FUNDING APPLICATIONS

- INFRA-2010-2.2.10: Construction of new infrastructures preparatory phase
 - bring the project to the level of legal and financial maturity required to implement the project (governance, logistical, also technical work for prototypes and efficient start-up)
- INFRA-2010-1.2.3: Observatory Research e-Infrastructure
 - coordination, deployment and further evolution of structured information systems (Grid) – and development of userconfigured tools and virtual research facilities

ATMOSPHERIC MONITORING AND INSTRUMENT CALIBRATION

Temperature – density, thickness, refractive index

- Establish a list of candidate site possible CTA for both North and South Hemisphere
 - Flat Area: 3 x 3km² (SH), I x I km² (NH)
 - Cloud Coverage: > 70% of clear nights
 - Altitude 1500–4000m
 - Latitude +30° N ... -30° S
 - Atmosphere: transparent, dry and quite in general (low aerosol content, reasonable relative humidity and wind speed)
 - Infrastructure

ARRAY LAYOUT

- Explore parameter space
 - telescope diameter and focal length
 - telescope spacing
 - camera size and pixel size
 - read-out speed
 - off-axis performance
 - array height
- → Performance in a given budget

10¹¹ showers
 with grid and
 batch cluster

OPTIMIZATION WITHIN A FIXED BUDGET

 Investigate > 45 array configurations from a pool of 275 telescopes: sensitivity, resolution, trigger, E_{thr}

▶ Data rate South 400 MB/s → I.8 PB/ year → trigger farm

PRELIMINARY RECOMMENDATION FROM MC WORK PACKAGE

- Mix of three telescopes types (or two with different PMTs for HE component)
- Regular grids used to explore field of view and telescope separation phase space
 - 60, 85, 120, 170 and 240 m spacing for all FoVs
 - ▶ 37 telescopes with 5° ≅
 24 telescopes with 8°

Figure 7: Range of reasonable f/d ratio for a given FOV for 23 m parabolic telescopes (blue), 12 m Davies-Cotton telescopes (red) and 7 m Davies-Cotton telescopes (green). The telescopes used in the MC productions are shown with circles.

PRELIMINARY RECOMMENDATION CONT

- I 2 m class telescope
 - ▶ field of view 6-8°
 - f/D of I.3...I.4 and Davies-Cotton optics
 - pixel size 0.15-0.2°
- 24 m class telescope
 - ▶ field of view 5-6°
 - f/D of 1.3...1.4 and parabolic optics
 - pixel size 0.08-0.1°

No recommendation yet for HE part but FoV >7°

TELESCOPE CONSTRUCTION

- Baseline designs for different
 - diameter
 - focal length
 - field of view
 - mirror arrangement
 - alternatives
- → Prediction of performance parameters and costs

- Iarge-size telescope
- small-size telescope
- medium-size telescope
- drive and control system
- energy management

TOWARDS A MEDIUM-SIZE TELESCOPE

- Diameter 12 m
- Focal length 16 m
- Field of view 8°
- Price and ease of construction
- Small deformations

 → small point spread function

MEDIUM-SIZE TELESCOPES CONT

- Price and performance reviews
- Collaboration between designers

- Schwarzschild-Couder design
- Field of view
- Angular resolution
- Prototype

LARGE-SIZE TELESCOPE

- Dish diameter 23 m
- Sensitivity down to 20 GeV
- Light weight for GRBs
- Fibre carbon structure
- Light camera
- Active camera damping system

SMALL-SIZE TELESCOPES

 Different ideas at various stages

DRIVE AND SAFETY SYSTEM

- Motors
- Feedbacks
- Gears
- End switches
- Emergency system

MIRROR DEVELOPMENT

- Hexagonal I.2 m w/ reflectance > 80% (300-600 nm)
- Technologies investigated looking at cost reduction
 - all aluminum mirrors
 - cold slumped glass mirrors
 - carbon/glass fiber composite mirrors
- Coating (SiO₂ w/ and w/o carbon admixtures, Al₂O₃), single- and multi-layer
- Mirror testing group
- Active mirror control designs tested

CAMERA

- Improvements of classical PMTs
 - super-bialkali and ultra-bialkali cathode

- Alternative light sensors
 HPDs, SiPMs
 - performance, costs, ...

PHOTOTUBES

Electron Tubes Enterprises

Hamamatsu

 accelerated aging tests

after-pulsing

- I.5 inch for all telescopes ?!
- build test-cluster

FAST READ-OUT ELECTRONICS

CIA

- Different techniques
 - memory depth
 - speed
 - effective range
 - bandwidth
- → Prediction of performance parameters and costs

Example

FADC system based on domino ring sampler

FRONT-END ELECTRONICS

DRAGON

 Iow noise, fast amplifier input w/ 1.9 GHz BW (downgraded), DRS4 sampling chip (11.5 bit dynamic range), differential ADC, 5 Gsamples/s, 450 MHz

NECTAR

 two gain amplifier input, SAM (analog memory w/ 17 bit dynamic range), low power ADC, 300 MB/s serializer

Fully digital camera

 Io/hi gain FADCs, FPGA ring buffer → dead-time free operation

ELECTRONICS

High voltage system for camera PMTs

special on control, safety, power

- Camera trigger
 - different analog solutions (comparators, clipper) with sectorization/ clustering
 - FPGA based digital camera trigger in a three-stage trigger structure
- Array trigger and clock distribution

ARRAY OPERATION CENTER

CTA consortium

- In European process
- collaboration building
- work packages cover all topics
- CTA funding for design, R&D and prototype phase
- First decisions first prototypes
- Pushing for start of construction in 2013