Recherche du Boson de Higgs produit en association avec un boson Z au TeVatron dans l'état final eebb avec l'expérience DØ

Betty Calpas

Directeur de thèse: Elemér Nagy

Présentation de thèse 3^{ème} année 30/11/2009

Plan

Aspect théorique du Higgs

- Motivation de la recherche du Higgs
- Phénoménologie du Higgs au TeVatron
 - * Principaux modes de production
 - * Les bruits de fond pour le canal $ZH \rightarrow eebb$

Dispositif expérimentale

- Le TeVatron
- Le détecteur DØ

Analyse

- Recherche du Higgs dans le canal de production $HZ \rightarrow eebb$

Aspect théorique du Higgs

- Motivation de la recherche du Higgs
- Phénoménologie du Higgs au TeVatron
 - * Principaux modes de production
 - * Le canal ZH \rightarrow eebb
 - * Les bruits de fond pour le $ZH \rightarrow eebb$

Motivation de la recherche du Higgs

Le Modèle standard à été testé avec succès à l'exception du boson de Higgs (H) qui n'a pas encore été découvert. Il pourrait expliquer l'origine de la masse des particules.

La limite du LEP et les prédictions théoriques favorisent un H de masse 114 < M_< 186 GeV à 95% C.L.

Le TeVatron a de grand atouts pour rechercher le H de masse M_{u} < 200 GeV, (163 < M_{u} < 166 GeV exclue à 95%).

de Physiqu des Partici

CPPA

Fermions

c

charm

S

strange

 V_{μ}

muon

U

b

bottom

 V_{τ}

tau

T

Higgs

11

up

d

down

 V_{e}

electron

e

electror

*Yet to be confirmed

Quarks

Posons

Ζ

Z bosor

W

W bosor

g gluon

Phénoménologie du Higgs au TeVatron

Centre de Physique des Particule de Marseille

CPPM

Les bruits de fond pour le canal $HZ \rightarrow eebb$

q q g **7**⁰ ~~~~~ ~^^^^ Les bruits de fond du modèle a q a min m, q standard (SM): b q a Z+jet, WW, WZ, ZZ, tt C d. W⁺ W g g ~~~~~~ b b v W W Les bruits de fond QCD: a q P, ď Jet(s) ou electron(s) q. mal(s) identifié(s) ~~~~~~ e 70 w a b a a

Importance du trajectographe:

détection des traces et des vertex pour l'identification des électrons et des jets de quark b.

Importance du calorimètre: identification des électrons (tâche de service 1).

```
Importance de la région inter-cryostat(ICR):
augmente l'acceptance des électrons de 15%
(tâche de service 2).
```

Tâches de services effectués sur les parties utiles à l'identification du signal.

Dispositif expérimentale

- Le Tevatron

- Le détecteur DØ

Le TeVatron

Le TeVatron

Le détecteur DØ

Analyse

Recherche du Higgs dans le canal HZ \rightarrow eebb

* Pré-sélection données et bruits de fond SM: électrons \mathbf{Z} * B-tagging: étiquetage et sélection des jets de quarks b * Pré-sélection du QCD "faux" électrons Normalisation * Distributions de contrôle M_{eeicr}, M_{ii} * Séparation du signal et du bruit de fond: Boosted Decision Tree (BDT) * Limite Méthode semi-fréquentiste

2 topologies de sélection des e issus de la désintégration du Z:

- 1 e appartient au CC et l'autre au CC ou EC.
- 1 e appartient à l'ICR et l'autre au CC ou EC.

```
Sélection e_{em}:

1.1<|\eta| ou 1.5<|\eta|<2.5

p_{T} > 15 GeV

iso < 0.1

emfr > 0.95

avoir une trace (CC)

HMx<sub>cc</sub> < 35

HMx<sub>Ec</sub> < 20
```

```
Sélection e_{icr}:

1.1<|\eta|<1.5

E_{T} > 20 \text{ GeV}

p_{T}^{trace} > 20 \text{ GeV}

NN<sub>\tau</sub> > 0.7
```



```
Candidat au Z:

60 < M_{ee} < 150 \text{ GeV}

|PV_{z}| < 60 \text{ cm}
```


- Le QCD est pré-sélectionné à partir des données:

 $QCD_{emicr} : NN_{\tau} < 0.7$

 QCD_{diem} : HMx_{CC} > 35 et HMx_{EC} > 20

- Le QCD est normalisé aux données et aux bruits de fond SM afin d'avoir le meilleur accord.
- Le facteur de normalisation est déterminé en minimisant la différence entre les donnée réelle et l'ensemble des bruits de fond, avec la M___.

Distributions de contrôle

eeicr Run IIb(1-2), 3.1 fb⁻¹

Le BDT utilise les informations données par la cinématique des évènements, pour séparer le signal et le bruit de fond, pour chaque masse du Higgs.

Variable de sortie du BDT $M_{_{\rm h}}$ =115 GeV

de Physiq des Partic

CPPA

Limite

Déterminer la limite supérieure de la section efficace de production du Higgs, pour une masse donnée.

La méthode "semi-fréquentiste" tient compte de la variable de sortie du BDT (pour les données, bruits de fond et signal), pour chaque masse du Higgs.

Limite attendue/observée pour la section efficace de production du Higgs SM pour chaque canaux.

Limite sur la section efficace de production du ZH (ee, eeicr, mumu, mutrk).

	Run II b $\mu\mu$		Run IIb ee		Full Run II μ +track		Run IIb $e+ICR$		Full Run II combination	
M_H (GeV)	Exp/SM	Obs/SM	Exp/SM	Obs/SM	Exp/SM	Obs/SM	Exp/SM	Obs/SM	Exp/SM	Obs/SM
100	9.29	7.7	11.4	18.5	38.6	43.4	42.3	38.0	6.0	4.3
105	11.1	9.0	12.6	19.2	43.2	45.3	45.6	53.8	6.4	6.6
110	12.8	10.9	14.6	17.0	46.7	69.7	50.2	56.3	7.3	6.5
115	14.7	13.3	15.3	18.7	50.4	78.0	57.0	68.2	8.0	9.1
120	17.7	14.2	19.2	23.9	63.4	75.2	68.8	87.7	9.9	11.4
125	20.7	19.5	20.9	27.0	74.1	86.7	85.5	91.2	11.2	13.5
130	26.2	25.6	27.4	42.4	90.4	120	102	130	14.5	20.3
135	34.2	44.1	34.9	43.6	126	142	146	159	18.7	27.5
140	47.9	62.0	50.3	73.2	167	188	198	232	26.2	40.8
145	64.9	91.5	69.2	85.5	250	252	269	243	37.5	52.7
150	104	129.3	114	123	428	331	457	380	58.3	67.6

Conclusion:

- la limite pour le RunII avec 4.1 fb⁻¹ est de 9.1 fois celle des prédictions du MS pour un Higgs de masse 115 GeV.
- ces résultats préliminaires ont été présenté à Moriond 2009.

Perspective:

- Ajout du RunIIa pour l'ICR.
- Amélioration des techniques (B-tagging, BDT ...).
- Publication.
- Nomination pour la présentation de ces résultats publiés à l'APS 2010 (Réunion Annuelle de la Société de Physique Américaine).
- Soutenance souhaité au printemps 2010.

Transparents de réserve

- Timing du calorimètre
- Certification des e dans les CC et EC du calorimètre, dans le régime de haute luminosité (p20)
- Certification des e dans l'ICR

Timing du calorimètre

Subdivision du calorimètre

Timing du calorimètre

Objectif:

- Vérifier le timing optimal de la mesure en énergie déposée dans le calorimètre.
- Calculer des corrections éventuelles.

Méthode: Le Triple Timing

- Le signal est mesuré 3 fois (normal-early-late) avec 132 ns entre chaque mesure.
- Si le timing ne correspond pas au max. du signal, on doit corriger l'amplitude de ce dernier.

Calcul des facteurs de corrections

- Les facteurs de correction sont calculés avec l'ajustement du rapport des signaux N/L, N/E et avec la forme du signal simulé.

30/06/2008

Certification des électrons dans les EC et CC du calorimètre

But: Déterminer de nouvelles coupures pour l'identification des électrons à haute luminosité (p20), et les comparer avec celles établit pour une luminosité moyenne (p17).

Méthode d'analyse:

- Appliquer des coupures sur les différentes variables pour optimiser le rapport signal/bruit.
- Etudier l'effet de ces coupures sur l'efficacité du signal (e), et celle du bruit de fond (eg: jet mal reconstruit).
- Représenté les efficacités en fonction des différentes variables et paramètres.

Efficacité du signal et du bruit de fond en fonction du p

Critère de sélection des électrons: On applique des coupures peu sévère (Vloose) ou très sévère(Tight), sur des variables (isolation, fraction d'énergie déposée dans le calorimètre...), pour optimiser le rapport signal/bruit.

Calcule des efficacités des électrons dans l'ICR

Introduction:

- Documentations: Run IIa (J. Kraus and al. DØ note 5196) Run IIb (B., Calpas and al. DØ note 5939)
- Electron ID in ICR (1.1 < $|\eta_{det}|$ < 1.5) to increase acceptance for Z events about 15%.
- Partial EM Cal. coverage in ICR.
- Electron identified as a narrow (tau) jet. Type 1 tau: a tau with 1 track and no EM cluster (found at the center of ICR).
 - Type 2 tau: a tau with 1 track and an EM cluster (found at the edges of ICR).
 - Type 3 tau: a tau with 2 or more tracks (small 2%, 2nd track due to accidental pickup).

ICR electron Efficiencies

Loose Tau efficiency: Probability that an e that has produced a track pointing towards the ICR also produces a TMBTau object.

Centre de Physique des Particul

de Marseil

CPPN

ICR electron Efficiencies

---- Data --- MC

Neural Net selection efficiency: Prob. that an e that has produced both a track and a TMBTau object also passes the NN selection cut.

Centre de Physique des Particul de Marseille

CPPN

- L'analyse du timing du calorimètre à montré une bonne stabilité du détecteur.
- L'étude de l'identification des e pour p20 nous à permis de certifier des coupures adéquat pour la sélection des e à haute luminosité. Ces coupures ont été utilisées pour l'analyse des e dans l'icr pour le Run Ib.
- L'étude de l'efficacité des e dans l'ICR pour p17 nous à permis de calculer des facteurs de corrections. L'ICR permet d'augmenter l' acceptence du signal de près de 15%.

Le Modèle Standard (M. S.) s'appuie sur un principe de symétrie qui a comme conséquence que les particules ont une masse nulle, ce qui est en contradiction avec les observations expérimentales.

Cette contradiction peut être résolue par l'introduction du mécanisme de Higgs, capable de conférer une masse aux particules qui en étaient initialement dépourvues.

Postulé dans le M. S., ce mécanisme devrait avoir laissé des trace sous la forme d'au moins une particule encore à découvrir: le boson de Higgs.

On sait actuellement (grâce aux expériences du CERN) que sa masse est supérieur a 114 GeV et devrait être inférieur à 200 GeV, à un niveau de confiance de 95%.

Aujourd'hui le boson de Higgs à basse masse (inférieur à 160 GeV) est activement recherché à Fermilab (Chicago), grâce au TeVatron (collisionneur PP_{bar}).

Le canal HZ \rightarrow eebb

Le canal $HZ \rightarrow eebb$ (Higgs-Strahlung) est très important pour la recherche du Higgs avec M_.<135 GeV au TeVatron.

Atouts:

association d'un Z se désintègrant en e^+e^- . Signal claire et facile a identifier.

identification des jets et de quarks b avec la méthode du btagging.

de Physiqu des Partic

37