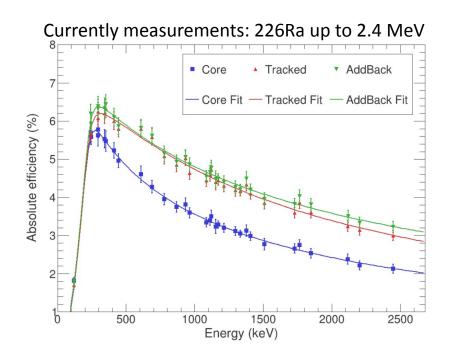


Status of the high-energy performance measurement and simulation


M. Balogh, R. M. Pérez-Vidal for the AGATA collaboration

INFN-LNL, IFIC-CSIC-UV

25th AGATA Week | 19th September 2025

How do the AGATA performances evolve at high energies?

- Preparation of experimental proposals
- Analyses of γ-ray spectroscopic data
- Validation of GEANT4 simulations
- Optimization of the tracking algorithms

Analysis mode	Efficiency	P/T
Core	3.05(9) %	16.8(6) %
Tracked	4.16(12) %	32.9(9) %
Addback	4.21(13) %	28.6(8) %

@ 1.3 MeV

R. Pérez-Vidal et al., INFN-LNL Annual reports, vol. 56, 2022. (34 detectors)

Performance up to 5MeV

1st PHASE:

⁵⁶Co y-ray source measurement:

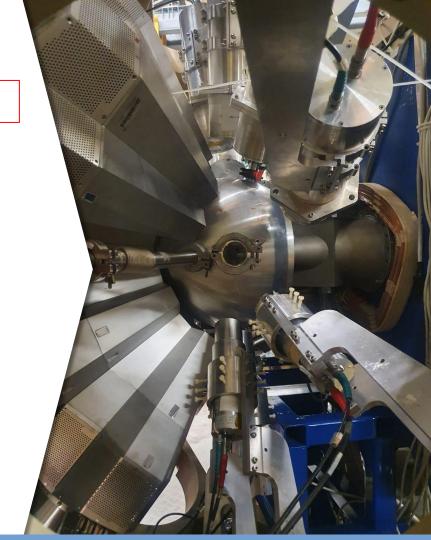
- Efficiencies up to 3.4 MeV
- Cancelled for now

2nd PHASE:

⁶⁶Zn(p,n) reaction:

- Efficiencies up to 5MeV
- E=13MeV (σ≈ 680 mb)
- Target: Au (0.1mg/cm²)+⁶⁶Zn (1.5mg/cm²)+Au (1.5mg/cm²)
- o I_{beam}≈ **2-10 pnA**
- o AGATA @ back-most + paraffin wall

26th-31st July 2024


M. Balogh, Md. S. R. Laskar, S. Bottoni, R.M. Pérez-Vidal, S. Pigliapoco and the AGATA performance team collaboration

Performance up to 5MeV

26th-31st July 2024

- AGATA position: Nominal (23.5 cm) and Close-up (18 cm)
- Closed chamber, Without absorbers
- 2.5μs
- ~110kBq Ga source

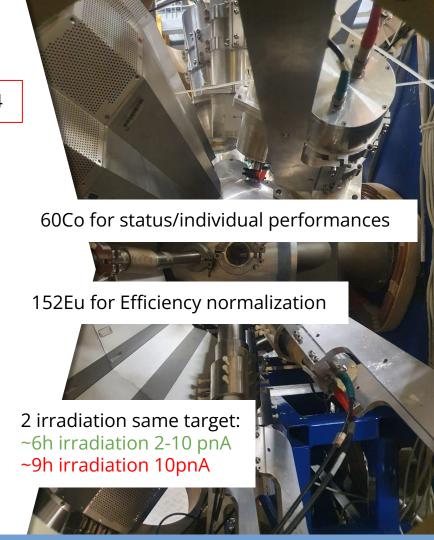
Source	Position	Duration	Rate
60Co	Nominal	2.5h	1.5kHz
	Nominal Traces	1h; 1.5h	1.5KHZ
	Close-up	2h	2kHz
152Eu	Nominal	4h ; 2h	21/⊔-
	Nominal Traces	2h; 1.5h	
	Close-up	3h; 2h	3kHz
133Ba	Nominal	2.3h	2kHz
	Close-up 1.6h		2.7kHz
2260-	Nominal 4h		1.6kHz
226Ra	Close-up 2h		2KHz
Target	Nominal 5.7h		1.8kHz
	Nominal Traces 2h		1.2kHz
	Close-up	6h	0.7kHz
	Close-up Traces	2h	0.45kHz & 1.5kHz
60Co	Far Traces	6h ; 6h	1kHz-0.8Hz

Performance up to 5MeV

26th-31st July 2024

- AGATA position: Nominal (23.5 cm) and Close-up (18 cm)
- Closed chamber, Without absorbers
- 2.5μs
- ~110kBq Ga source

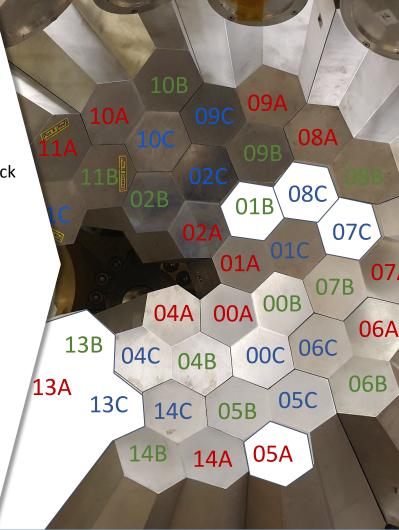
Source	Position Duration		Rate		
	Nominal	2.5h	1 51/117		
60Co	Nominal Traces	1h; 1.5h	1.5kHz		
	Close-up	2h	2kHz		
152Eu	Nominal	4h ; 2h	2kU=		
	Nominal Traces	2h ; 1.5h	2kHz		
	Close-up	3h; 2h	3kHz		
133Ba	Nominal	2.3h	2kHz		
	Close-up	1.6h	2.7kHz		
226Ra	Nominal	4h	1.6kHz		
220Kd	Close-up	2h	2KHz		
	Nominal	5.7h	1.8kHz		
Target	Nominal Traces	2h	1.2kHz		
	Close-up	6h	0.7kHz		
	Close-up Traces	2h	0.45kHz & 1.5kHz		
60Co	Far Traces	6h ; 6h 1kHz-0.8Hz			



Performance up to 5MeV

26th-31st July 2024

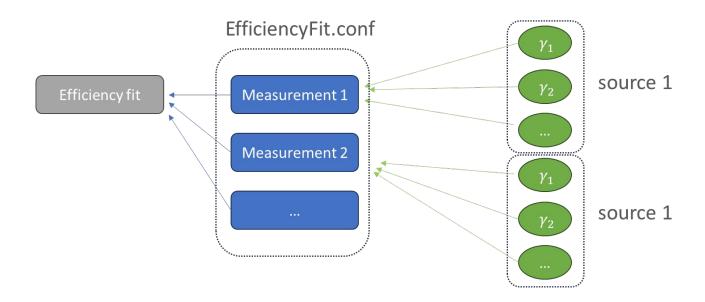
- AGATA position: Nominal (23.5 cm) and Close-up (18 cm)
- Closed chamber, Without absorbers
- 2.5μs
- ~110kBq Ga source


Trokbe da source					
Source	Position Duration Rate		Rate		
60Co	Nominal	2.5h	1.5kHz		
	Nominal Traces	1h; 1.5h	1.5ΚΠΖ		
	Close-up	2h	2kHz		
152Eu	Nominal	4h; 2h	21/17		
	Nominal Traces	2h ; 1.5h	2kHz		
	Close-up	3h; 2h	3kHz		
133Ba	Nominal	2.3h	2kHz		
	Close-up	1.6h	2.7kHz		
226Ra	Nominal	4h	1.6kHz		
	Close-up	2h	2KHz		
Target	Nominal	5.7h	1.8kHz		
	Nominal Traces	2h	1.2kHz		
	Close-up	6h	0.7kHz		
	Close-up Traces	2h	0.45kHz & 1.5kHz		
60Co	Far Traces	6h ; 6h	5h 1kHz-0.8Hz		

Status July

12 ATC - 32 AGATA crystals

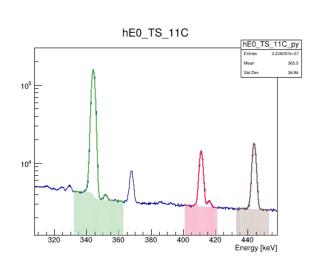
- <u>00C and 05B: losing validations very often</u>
- **04B**: segments A4, A5, A6 disappearing together and coming back over time (preamp issue) + noise (not very often)
- **05C:** gain and baseline of the core jump together over time, this change affects the gain of the core and of the segments
- **07B**: bad resolution due to the continuous oscillation of the energy in the HG core (LG ok)
- 09B, 11A: core with strange noise in the trace (same as in C002 and C014 ATC 6 but with less amplitude)
- 00B: displays a cross in the PSA hit pattern
- **02C:** seg. B4 (9) preamp issue
- **11A:** seg. F1 (30) channel digi issue

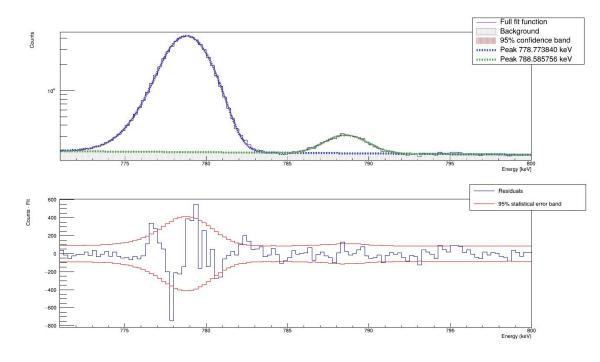

AGATA-efficiency code

• code to streamline efficiency evaluation

https://baltig.infn.it/gamma/agata-efficiency

AGATA-efficiency code

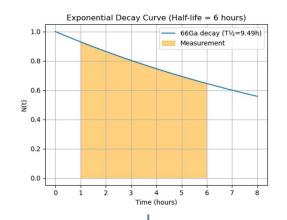

Configuration-driven



Source data taken from IAEA: https://www-pub.iaea.org/mtcd/publications/pdf/publ287_vol2_web.pdf

AGATA-efficiency code

• automated energy fitting with peak model supporting *tails* and *steps*



AGATA-efficiency code

- efficiency calculation
 - treatment for short-living sources
 - inactive + dead time correction

$$\varepsilon = \frac{C_{observed}}{N_{decays} I_{\gamma}}$$

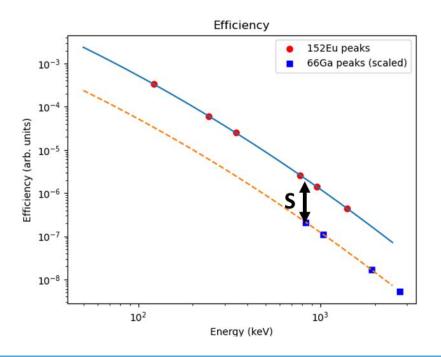
$$N_{decays} = \frac{A_{source}}{\lambda} \left(e^{-\lambda (T_{start} - t_{ref})} - e^{-\lambda (T_{end} - t_{ref})} \right) D$$

AGATA-efficiency code

- efficiency functions
 - Exponential

$$\varepsilon(E) = e^{(-\lambda E)}$$

Radware


$$arepsilon(E)=e^{\left[(A+Bx+Cx^2)^{-G}+(D+Ey+Fy^2)^{-G}
ight]^{-1/G}}$$

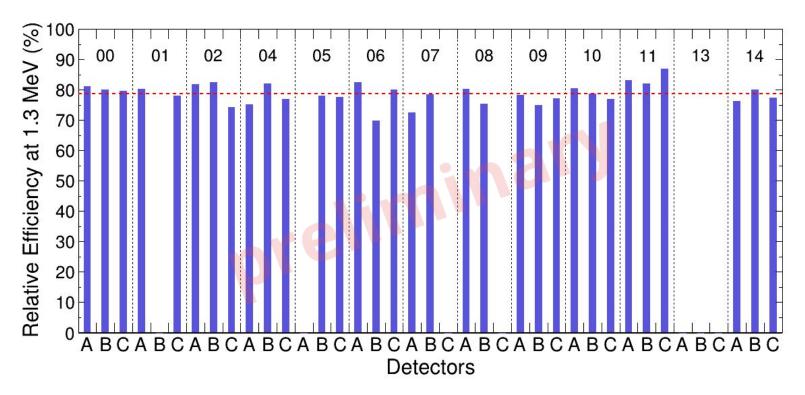
Polynomial-logarithmic

$$\ln(arepsilon(E)) = \sum_{i=0}^n p_i \cdot \ln^i(E)$$

AGATA-efficiency code

automated normalization for sources with unknown activity

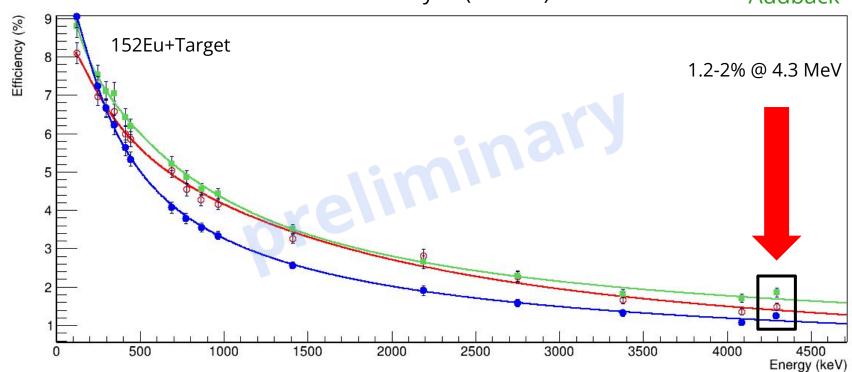
AGATA-efficiency code


- covariance-aware chi2 minimization
- sources of covariance
 - source activity
 - source half-life
 - (normalization parameter for uncalibrated sources)

Data treatment

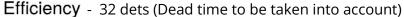
- energy drift corrections
- non-linear detectors

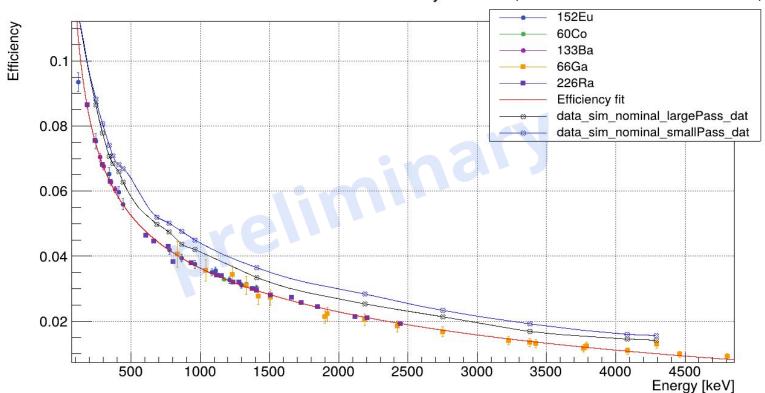
AGATA crystals - online efficiencies


Relative efficiency to the reference value of a 3'x3' Nal at 25 cm= 0.0012

AGATA array @ Nominal

Core Tracked Addback

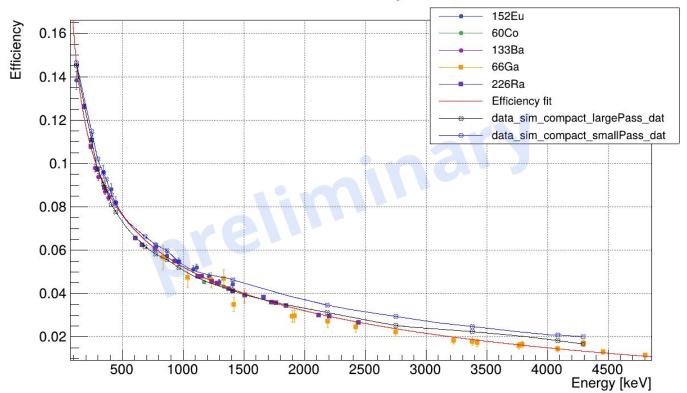

Online Analysis (30 dets)



AGATA array @ Nominal, core

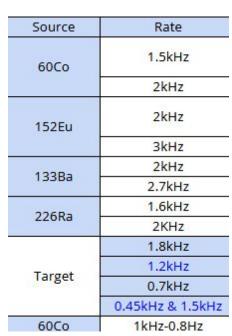
PostPSA corrections included:

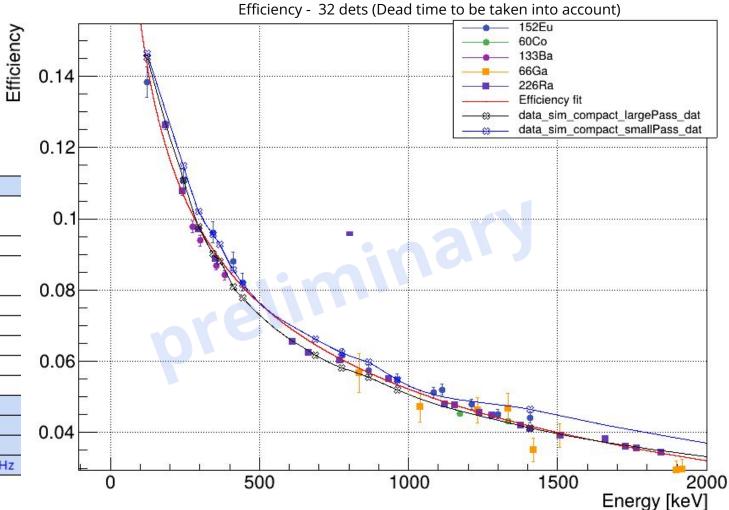
- Neutron Damage correction
- Energy drift corrections
- Recalibration
- Force segments to core

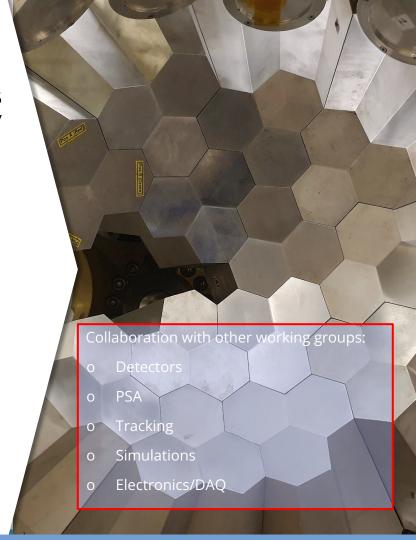


AGATA array @ Close Up, core

PostPSA corrections included:


- Neutron Damage correction
- Energy drift corrections
- Recalibration
- Force segments to core


Efficiency - 32 dets (Dead time to be taken into account)

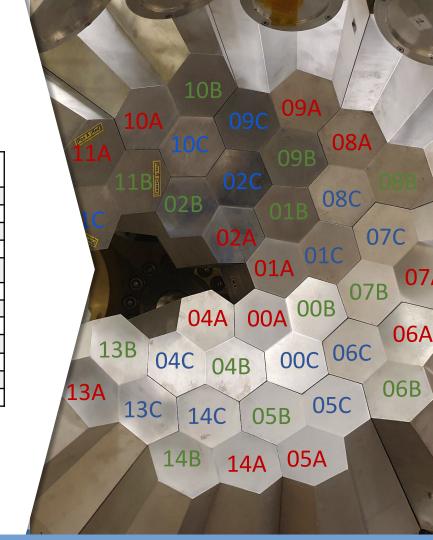

AGATA array @ Close Up core

Summary

- Experiments looking for gamma rays in the region between 2-5
 MeV where the performances in terms of calibration, efficiency and tracking are not well known.
- Measurement to investigate those performances up to 5
 MeV realized at the end of July 2024
- o First steps:
 - Validation PostPSA
 - Core analysis
 - Validation of GEANT4 simulations
- o Next steps:
 - Dead time evaluation
 - Optimization of the tracking algorithms
 - Addback analysis
- o Future perspectives: towards high multiplicity events

Status of the high-energy performance measurement and simulation

M. Balogh, R. M. Pérez-Vidal for the AGATA collaboration


INFN-LNL, IFIC-CSIC-UV

25th AGATA Week | 19th September 2025

AGATA Crystal lookup table

Position ATC	ATC	Crystal			Installation date
Position	osition AIC	Α	В	С	installation date
00	18	017	018	018	15/01/2024
01	13	003	016	015	03/04/2024
02	17	016	017	013	01/02/2022
04	7	007	014	003	04/04/2024
05	09	001	001	006	01/05/2022
06	19	018	012	019	13/02/2024
07	2	019	019	020	18/09/2023
08	3	002	007	007	01/03/2022
09	14	014	010	016	19/10/2023
10	15	013	015	011	01/03/2022
11	1	010	011	009	01/04/2022
14	20	009	020	005	01/01/2023

