Improved modeling of (electric) fields in AGATA type detectors

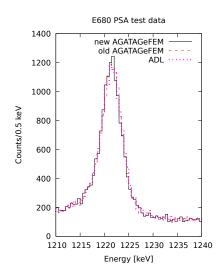
Joa Ljungvall

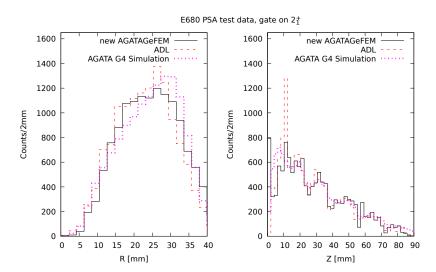
September 17, 2025

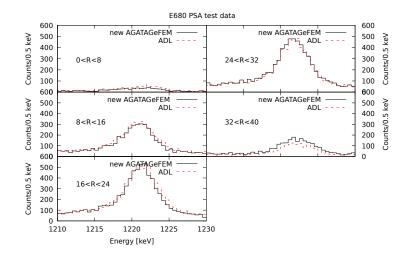
Present status of Signal Basis for AGATA

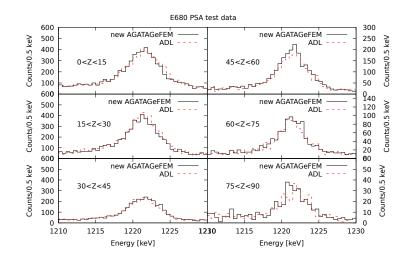
The market for a signal basis

- Basis used for AGATA "in production" calculated by ADL.
- Basis made using the MGS code tried long time ago.
- Has JAZZ basis ever been used on experimental data?
- AGATAGeFEM basis recently tested.

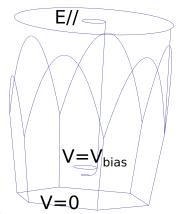

Short summary of how they perform

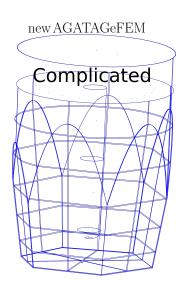

- You could say they perform well (i.e. FWHM < 5 mm)
- One can also state not so well (clustering)
- χ^2 fitting does not work \to basis signal (or something else) generates signals that are not good models of the experimental signals

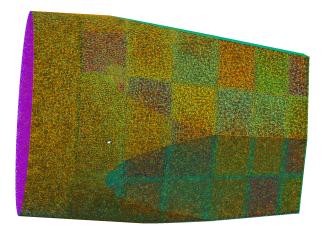

Why do we not like this situation?


It is commonly believed that with a HiFi basis...

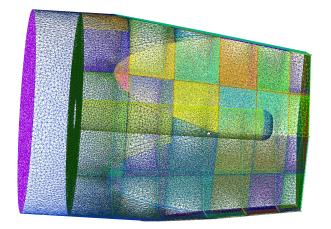
- ... we will be able to disentangle multiple hits in one segment.
- ... we will be able to extract meaningful errors on a event-by-event basis for the positions given by PSA.
- ... and that with this extra information we will be able to...
 - ullet ... improve on peak-to-total because γ -ray tracking works better with the correct number of interactions
 - ... include the actual errors on positions (e.g. angles/energies) when doing γ -ray tracking and be able to use a real χ^2 for discrimination of good and bad tracks.



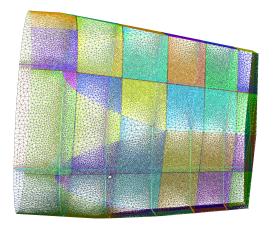



Boundary conditions for the electric field

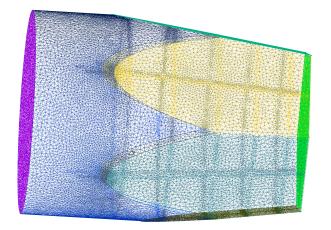
Old AGATAGeFEM and ADL etc.



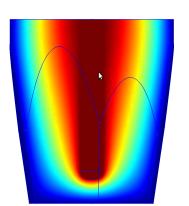
So let us look in detail

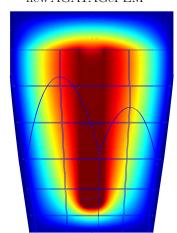

All defined surfaces

Core forced to V_{bias}


Segments forced to 0 V (note 0.5 mm gaps)

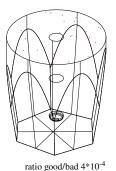
Back of crystal left without constraints (more on this later)

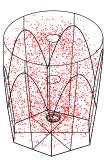

All of capsule set to 0 V


Do the Electric potentials differ?

Cut through yz plane in A001

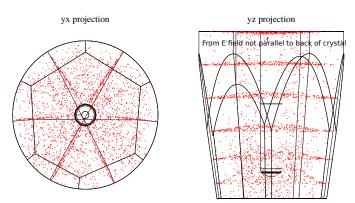
Old AGATAGeFEM

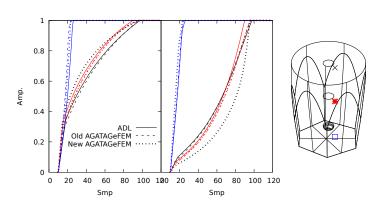

new AGATAGeFEM


Random pulses, what do they give?

Positions from "bad" pulseshapes are marked

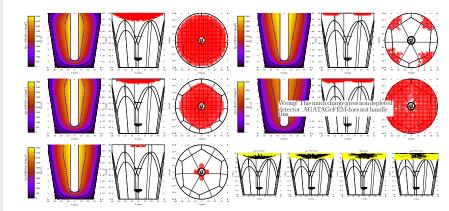
Old AGATAGeFEM


New AGATAGeFEM


ratio good/bad 4*10-2

Random pulses, what do they give?

Mainly from charge carriers not being collected due too segmentation lines, i.e. physical!



Comparing pulses with ADL, old and new AGATAGeFEM for A001

Charge at back of crystal

$$Q_{\rm S} = -1.0*10^{8}, -5*10^{7}, 0.0*10^{0}, 2.5*10^{7}, 3.0*10^{7}~{\rm e/mm^{2}}$$

Summary, Conclusions, and Outlook

- The aluminum Capsule and segmentation have been added to AGATAGeFEM.
- Test suggests some modest improvements for PSA.
- Real change of pulse shapes at the back of detector.
- A 4% loss in efficiency noted because of charges ending up "inter strip".
- More detailed analysis of PSA res.
- Repeat AGATAG4+AGATAGeFEM+agapro to verify efficiencies.
- Use basis from AGATAGeFEM at INFN Legnaro (they are available).

To try AGATAGeFEM

Docker

Thanks to J. Dudouet there is a Docker image https://agata.pages.in2p3.fr/handbook/simulated_basis/agatagefem/

Starting from the code

https://gitlab.in2p3.fr/joa-ljungvall/agatagefem