

SMART Project

Management & Status

Outline

GANIL & Timestamping Solutions Objectives & Guidelines

System architecture

- PBS (Product Breakdown Structure)
- SMART_EP
- SMART_AMC
- SMARTree
- SMART_MCH

Project management

- Manpower
- Roadmap
- Milestones

Project status

- KANBAN Board
- News from Normandy
- Risk Assessment

Conclusion

GANIL & Timestamping Solutions

Today, the GANIL Acquisition group manages **multiple timestamping systems**, ensuring synchronization across diverse DAQ setups.

Timestamp Sources

- CENTRUM (Clock Event Number Transmitter Receiver Universal Module) used with VME and VXI DAQ modules
- **MUTANT** (Multiplicity, Trigger And Time) dedicated to **GET** (Generic Electronics for TPCs)
- **GTS** (Global Trigger and Synchronization)

Gateways & Interfaces

- TGV (Trigger Générique VME) now replaced by VTC (VME Trigger CENTRUM)
- **BEAST** (Back-End Adapter for Synchronization by Timestamping) current standard interface
- AGAVA (AGATA VME Adapter) legacy, replaced by BEAST in all DAQ setups

"48-bit timestamp @ 10 ns & 32-bit event number: The universal backbone ensuring time correlation across all systems"

Objectives & Guidelines

Objectives:

The SMART project represents an **upgrade** of the GTS tree with an up to date hardware to guarantee **reliable continuity.**

User requirements:

The SMART Project will ensure GTS essentials services:

- Synchronous 100 MHz clock
- 48-bit timestamp @ 10 ns resolution for event tagging
- Trigger decision to manage and reduce data throughput

Technicals constraints:

The SMART system, at the endpoint level must be:

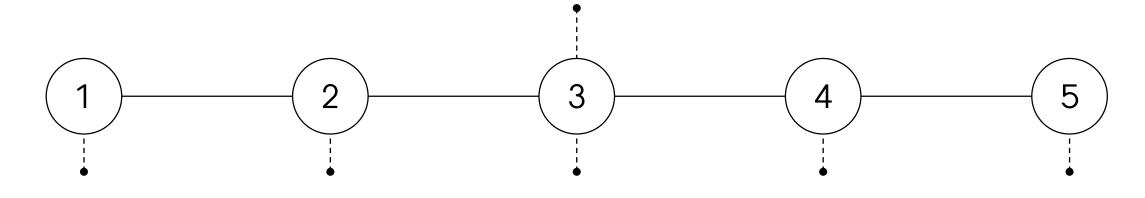
- Hardware-compatible with existing GTS implementations.
- Firmware-implementable as a drop-in replacement for the GTS LEAF IP

S_{fp} connectivity and

Microtca for

Advanced

Remote


Trigger

Speconnectivity and Microtca for Advanced Remote Trigger

SMART_EP

Integration of SMART ENDPOINTs in DAQ electronic

SMART_AMC

μTCA AMC modules to address up to 240 ENDPOINTs

SMARTree

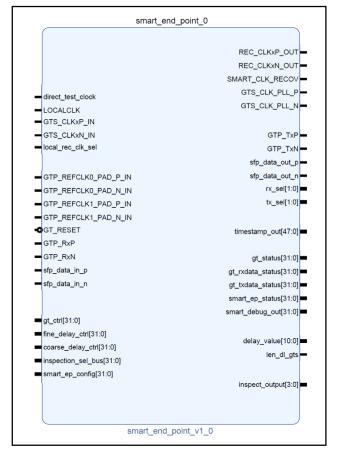
Application software to manage SMART system

SMART_MCH

μTCA MCH modules to address up to 480 ENDPOINTs and host trigger logic

SMART_TRIGGER

SMART trigger logic firmware



System architecture – SMART_EP

SMART_EP concept

- A backward compatibility with GTS hardware
- A single VHDL IP to manage timestamp & clock distribution

RX DATA 2x2 crosspoin MGT TX TX PORT **MGT** MGT RX switch SFP or LOOPBACK TX STOP BACKPLANE **End Point** (optional) 2x2 crosspoint firmware RX PORT RX START **END POINT** 100 MHz **FPGA** REC. CLK OK **DELAY LINE** 100 MHz PLL → CLOCK_OUTX VDS OUT BUFFER → CLOCK_OUTy LVDS IN BUFFER - CLOCK CAPABLE EXTRA COMPONANTS

Fig. 1: ENDPOINT hardware block diagram

SMART_EP implementations

- GANIL BEAST Gateway module (For VXI/VME systems)
- GANIL NUMEXO2 digitizer (REA, VAMOS, EXOGAM)
- LPC FASTER_V2 system (With MASTER A10 gateway)
- AGATA PACE module

System architecture – SMART_AMC

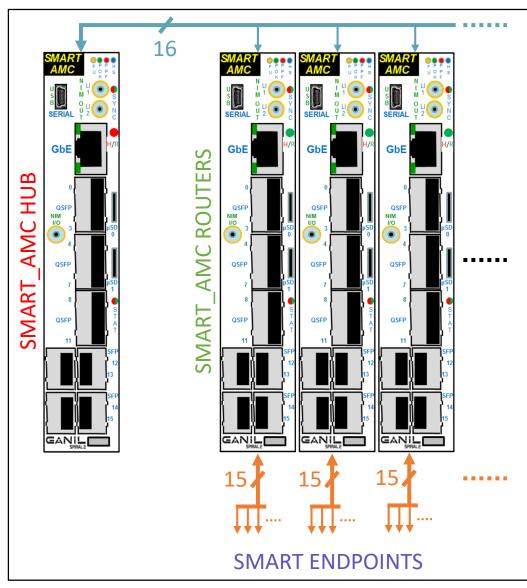


Fig. 3: A tree example with SMART_AMC elements

SMART_AMC concept

- Up to 240 digitizers or boards synchronized by 17 AMC's (1 HUB & 16 ROUTERS) housed in 2 µTCA shelves.
- 3 SMART_AMC modules (1 HUB + 2 ROUTER) can synchronize up to 30 endpoints. Equivalent to 14 GTS mezzanines hosted in 5 GTS NIM carriers

Fig. 4: SMART_AMC complete module

System architecture – SMARTree

SMARTree: the alignment and configuration software

- Autonomous system
- Executed on SMART_AMC_HUB
- Setup via ssh on nodes
- Based on shell scripts
- POC validated with BEAST

```
#!/bln/bash

#desc.: [SMART] smart discover and alignment suite

#usage: $0
#usage: $0 smart_tree.txt

version="v0.1.0"

#static port map between hub and routers

cfg=smart_tree.txt

cfg=$0

#check running on hub

if [ ! -e "/__SMART_AMC_HUB__" ]

then

echo "error: this script should be running on SMART hub !"

exit

fi

#clean

sudo ./clean.sh full
```

Fig. 5 : SMARTree bash script example

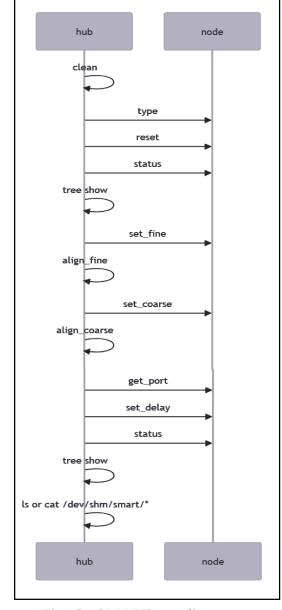


Fig. 6 : SMARTree alignment sequence

System architecture – SMART_MCH

SMART_MCH concept

- Up to 480 End Points synchronized by 32 SMART_AMC ROUTER and 1 SMART_MCH housed in 3 μTCA shelves
- Hosts the SMART_TRIGGER firmware

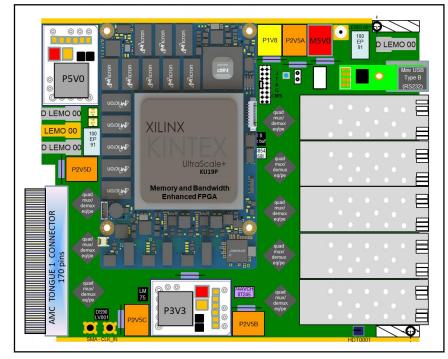


Fig. 7: SMART_MCH hardware block diagram

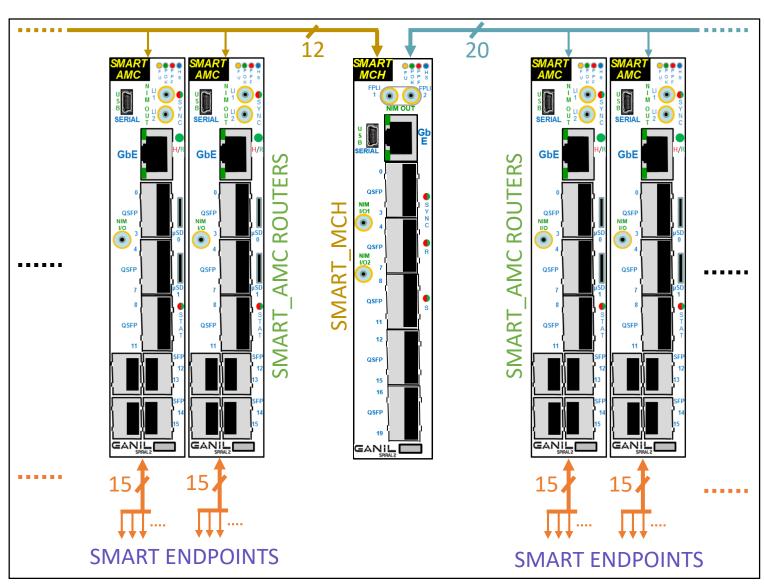
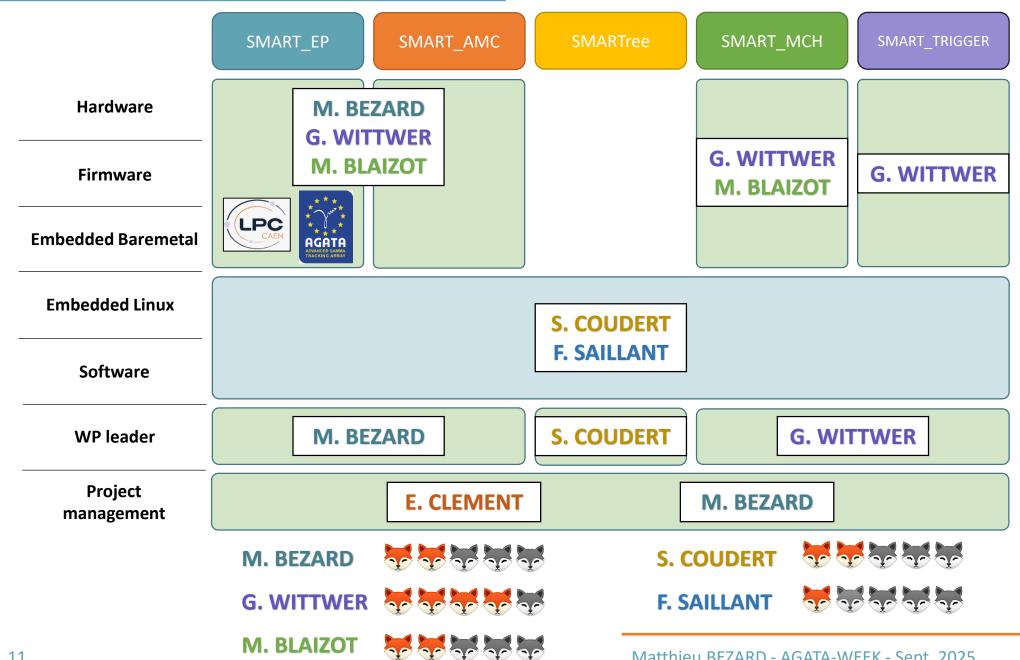
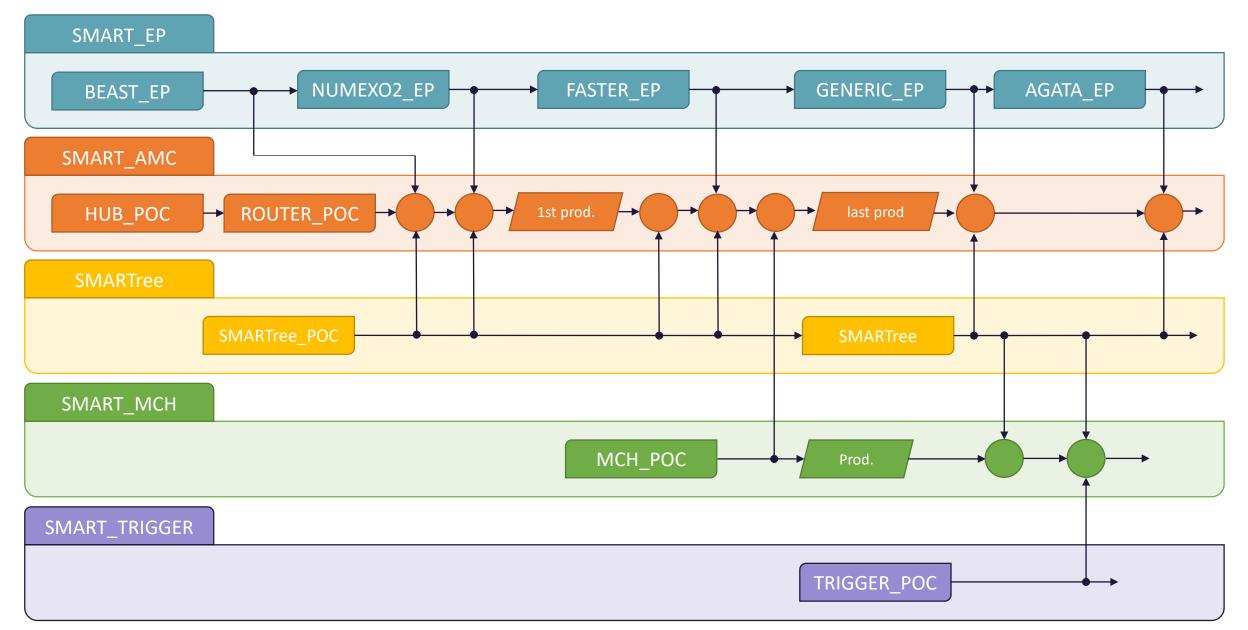
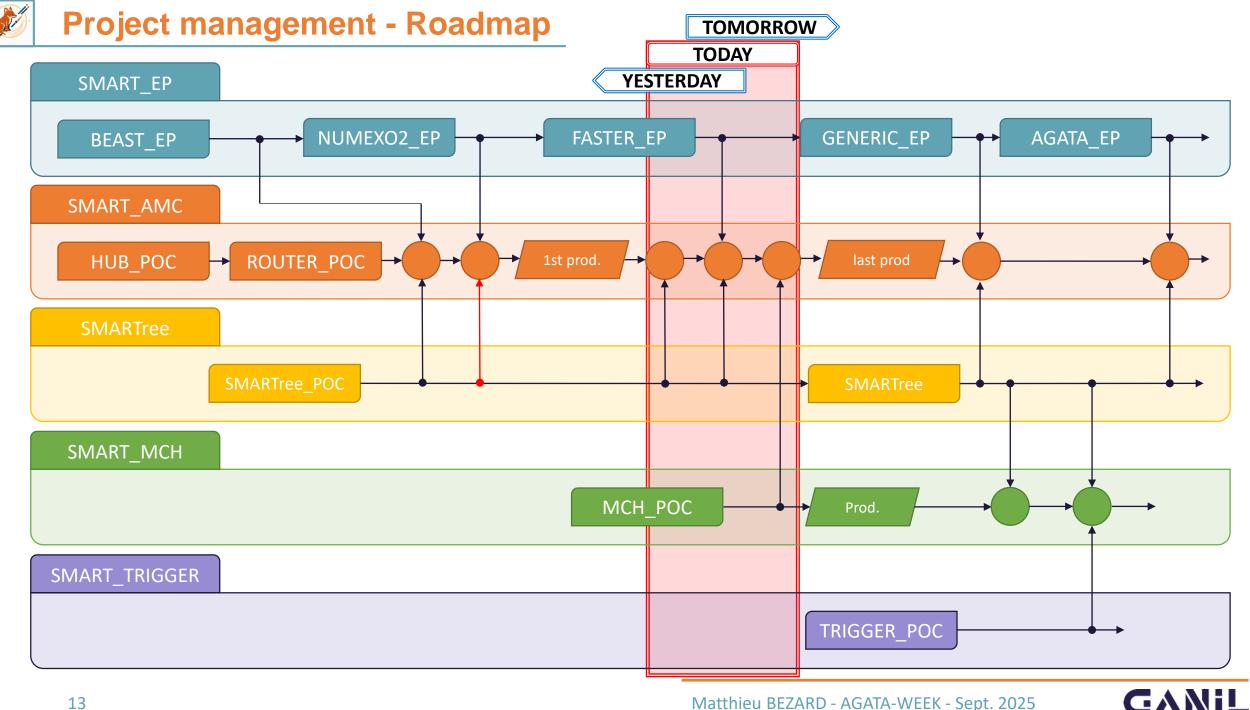



Fig. 8: A tree example with SMART MCH & SMART AMC elements


Project management - Manpower



Project management - Roadmap

Project management - Milestones

SMART_AMC deployment strategy

- Milestone 1: Q3/2025: An experimental setup with NUMEXO2_REA
 - Validation of the **SMARTree** software and **SMART_ENDPOINT** on NUMEXO2
- Milestone 2: Q3/2025: An experimental setup with FASTER and NUMEXO2_REA
 - Validation of SMART_ENDPOINT in FASTER coupled with NUMEXO2 for TAS experiment
- Milestone 3: Q1/2026: Deploy SMART in VAMOS-EXOGAM setup
 - Validation of a setup with NUMEXO2 and BEAST/VTC as gateway towards MESYTEC VME modules
- Milestone 4: Q?/2026: Integration of SMART_ENDPOINT in AGATA PACE module
 - Validation of the last endpoint implementation for AGATA-GRIT-VAMOS

Project status – KANBAN Board

	BACKLOG	PLANNED	ONGOING	DONE	VALIDATED
EP	AGATA_EP FW	GENERIC_EP FW GENERIC_EP HW	 FASTER_EP FW 	 NUMEXO2_EP FW 	 BEAST_EP FW
AMC		Last AMC HW prod.	 Deployment@GANIL 	 1st AMC HW prod. 	AMC_ROUTER HW + FW AMC_HUB HW + FW Deployment@LPC for FASTER
SMARTree	GENERIC_EP int AGATA_EP int. SMART_MCH int SMART_TRIGGER int.	 	FASTER_EP int. Numexo2 int. SMART_AMC int.	 BEAST int. 	
MCH	MCH last prod.	 MCH / AMC int. 	 MCH 1st prod. 	 MCH HW + FW 	
TRIGGER	SMART_TRIGGER FW	 Needs & Specifications		 	

Project status – News from Normandy

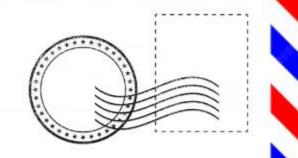

Fig. 9: SMART_AMC first production batch, ready on the shelf

Fig. 10: SMART testbench deploy on LPC lab

Fig. 11: SMART_MCH POC PCB

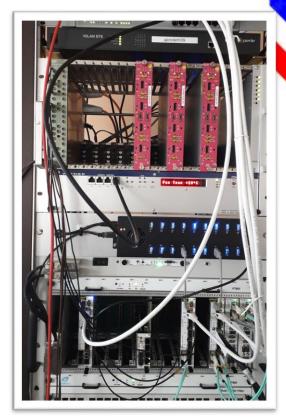


Fig. 12 : SMART NUMEXO2_EP testbench

Project status - Risk Assessment

Risk #1: Two retirements in the manpower board (Maria BLAIZOT & Gilles WITTWER)

Knowledge transfer, succession planning, involvement of new staff in GANIL

Risk #2: SMART_TRIGGER specifications not yet defined

Early definition workshop with stakeholders, freeze requirements before design

Risk #3: Workload & opportunity cost of the SMART_MCH work package for the software team

Careful resource allocation, re-schedule SMART_MCH delivery

Risk #4: Endpoint integration in LPC FASTER and AGATA PACE depending on collaboration

Involve (more) collaborations in SMART project, redundancy in GANIL team on critical points

From GANIL point of view

- SMART with **NUMEXO2** will be validated on **experimental setup for next month**
- FASTER_EP is on a good way to be tested with SMART before the end of 2025
- SMART_MCH HW and FW is done and will be validated before Gilles and Maria retire
- We have to maintain effort on software tasks to achieve our own goals

From AGATA point of view

- Plan the integration of SMART_ENDPOINT in AGATA PACE module
- Define the SMART_TRIGGER specifications, if needed
- Define the needs of SMART_AMC and SMART_MCH for last production batches
- Specify needs and use cases of SMART_MCH modules (480 endpoints)

GANIL

Thanks for your attention! Questions?