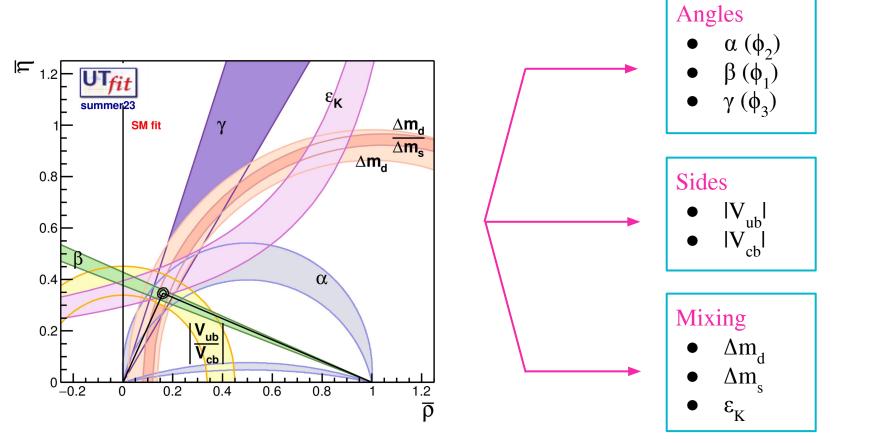
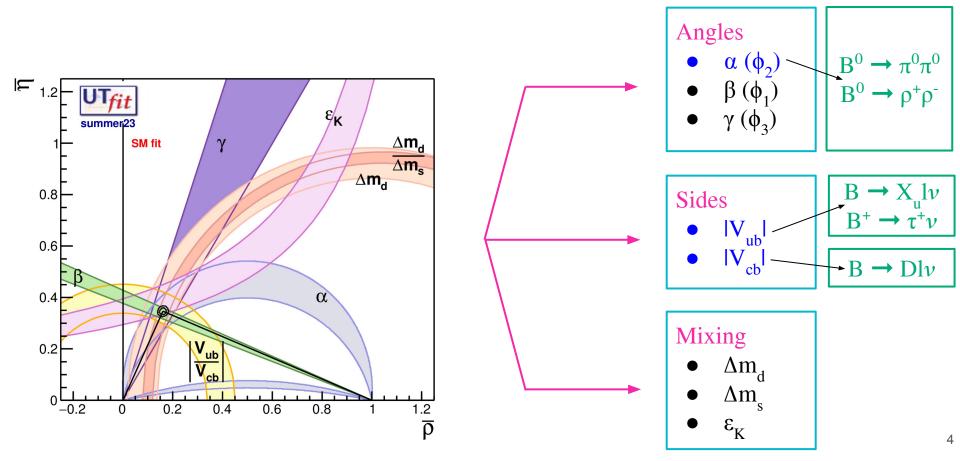


Measurements of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix at Belle and Belle II

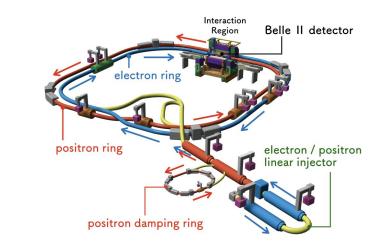

Rishabh Mehta¹
On behalf of the Belle and Belle II collaborations

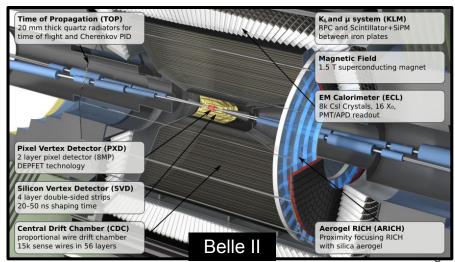
Tata Institute of Fundamental Research, Mumbai - 400005


The CKM Matrix

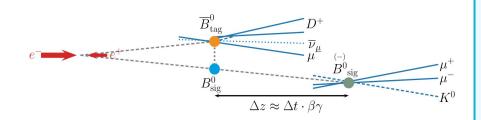
The CKM Matrix

The CKM Matrix


SuperKEKB and Belle II


SuperKEKB: upgrade of asymmetric e⁺e⁻ collider KEKB with electron (positron) beam energy at 7.0 (4.0) GeV.

- → World's record for the highest instantaneous luminosity (5.1×10³⁴ cm⁻²s⁻¹)!
- \rightarrow Total $\Upsilon(4S)$ data: ~485 fb⁻¹


Belle II: upgrade of Belle detector at the IP of SuperKEKB.

- → New (since Belle): vertexing detectors (PXD, SVD), tracking and PID systems (CDC, TOP, ARICH)
- Upgraded (since Belle): Calorimeter (ECL electronics), K₁ and μ system (KLM).

Physics at Belle (II)

Inclusive / missing energy analyses:

- → Full Event Interpretation (FEI^[1]):

 Reconstruct B_{tag} in hadronic, semi-leptonic modes or inclusively.
- → Reconstruct B_{sig} into decay of interest using kinematic constraints imposed by the initial conditions.

(Time-Dependent) CP Violation analyses:

- \rightarrow Determine the B_{tag} flavor ($GFlaT^{[2]}$)
- Reconstruct B_{tag} and B_{sig} vertices to infer the decay time difference (Δt) between these two mesons.
- ⇒ CP violation parameters encoded in Δt asymmetry between two tag flavors (B⁰ vs $\overline{B^0}$):

$$egin{aligned} \mathcal{A}_{ ext{CP}} &= rac{\Gamma(ar{B}^0 o f_{CP})(\Delta t) - \Gamma(B^0 o f_{CP})(\Delta t)}{\Gamma(ar{B}^0 o f_{CP}(\Delta t)) + \Gamma(B^0 o f_{CP})(\Delta t)} \ &= (S_{CP}\sin(\Delta m_d \Delta t) - C_{CP}\cos(\Delta m_d \Delta t)) \end{aligned}$$

mixing-induced CPV

direct CPV

Comput Softw Big Sci 3, 6 (2019)

Phys. Rev. D 110, 012001 (18% improvement)

$\alpha \ (\phi_2) \ \text{measurement: } B^0 \rightarrow \pi^0 \pi^{0} \pi$

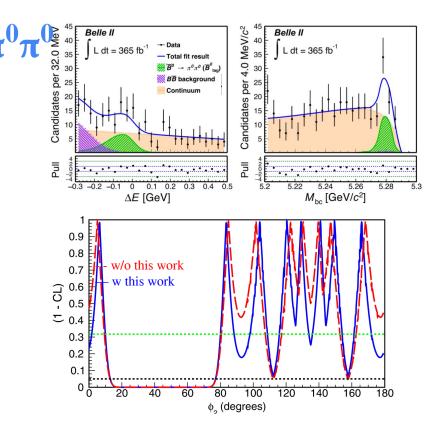
PRD 111, L071102 (2025)

 α least well known CKM angle $(84.1^{+3.7}_{-3.0})^{\circ}$

Measurement from $B \to \pi\pi$ isospin analysis (unc. dominated by $B^0 \to \pi^0\pi^0 \mathcal{B}$ and A_{CP})

TDCPV very difficult due to lack of π^0 vertices.

(New technique: <u>PRD 112, 032011 (2025)</u>)


Analysis Methodology

Reconstruct π^0 from diphoton final state.

MVAs to suppress photon and qq bkgs.

Tag side flavor determined using GFlaT.

Fits to $M_{bc}, \Delta E, C', w$ on both B_{tag} flavors to measure ${\cal B}$ and $A_{_{\rm CD}}.$

$$egin{aligned} \mathcal{B}(B^0
ightarrow \pi^0 \pi^0) &= (1.26 \pm 0.20 \pm 0.11) imes 10^{-6} \ \mathcal{A}_{ ext{CP}}(B^0
ightarrow \pi^0 \pi^0) &= 0.03 \pm 0.30 \pm 0.05 \end{aligned}$$

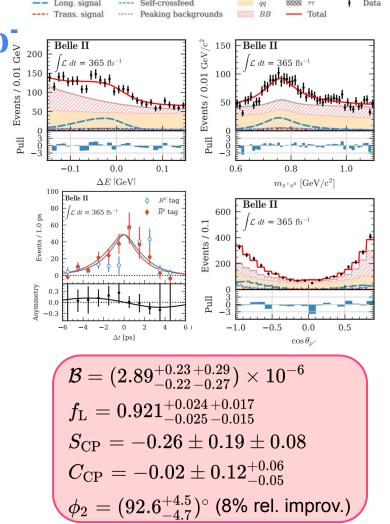
$\alpha (\phi_2)$ measurement: $B^0 \rightarrow \phi$

PRD 111, 092001 (2025)

Measurement from $B \rightarrow \rho \rho$ isospin analysis.

Smaller b \rightarrow d loop contribution, smaller $\Delta \phi_2$.

 ρ :3 helicity states, need f_1 for ϕ_2 extraction.


Analysis Methodology

Reconstruct $\rho^{+/-}$ from $\pi^{+/-}\pi^0$ final states.

BDT for photon bkg supp., NN for qq supp.

Angular analysis for f_L , \mathcal{B} ; fit to ΔE , $m_{\pi\pi}$, $\cos\theta_{\rho}$ and \mathcal{T}_c (transformed NN output).

TDCPV analysis for C_{CP} , S_{CP} ; fit to Δt in both B_{tag} flavors with component fractions from previous fit.

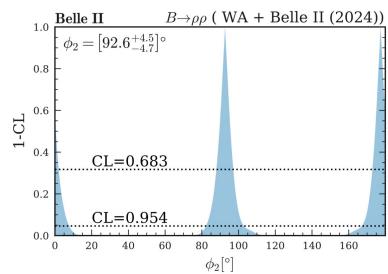
α (ϕ_2) measurement: $B^0 \rightarrow \rho^+ \rho^-$

PRD 111, 092001 (2025)

Measurement from $B \rightarrow \rho \rho$ isospin analysis.

Smaller b \rightarrow d loop contribution, smaller $\Delta \phi_2$.

 ρ :3 helicity states, need f_1 for ϕ_2 extraction.


Analysis Methodology

Reconstruct $\rho^{+/-}$ from $\pi^{+/-}\pi^0$ final states.

BDT for photon bkg supp., NN for qq supp.

Angular analysis for f_L , \mathcal{B} ; fit to ΔE , $m_{\pi\pi}$, $\cos\theta_{\rho}$ and \mathcal{T}_c (transformed NN output).

TDCPV analysis for C_{CP} , S_{CP} ; fit to Δt in both B_{tag} flavors with component fractions from previous fit.

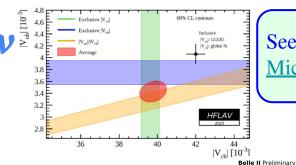
$$\mathcal{B} = (2.89^{+0.23}_{-0.22}{}^{+0.29}_{-0.27}) imes 10^{-6} \ f_{
m L} = 0.921^{+0.024}_{-0.025}{}^{+0.017}_{-0.015} \ S_{
m CP} = -0.26 \pm 0.19 \pm 0.08 \ C_{
m CP} = -0.02 \pm 0.12^{+0.06}_{-0.05} \ \phi_2 = (92.6^{+4.5}_{-4.7})^\circ ext{ (8\% rel. improv.)}$$

$|V_{ub}|$ measurement: $B \rightarrow X_{u} l \nu$

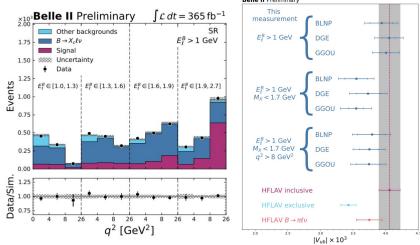
Paper in preparation

Tension between inclusive vs exclusive measurements.

Inclusive measurements theoretically clean, experimentally challenging.


Analysis Methodology

FEI approach: B_{tag} decay into hadronic modes; B_{sig} reconstructed using a lepton and rest is the X_u system.


NNs to suppress qq and B \rightarrow $X_c lv$ bkgs.

Template fits to q^2/E_1 in three overlapping phase space regions to measure $\Delta \mathcal{B}$.

 $|V_{ub}|$ extracted from $\Delta \mathcal{B}$ using GGOU model.

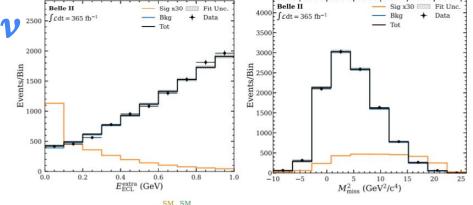
See also:
Michele's talk

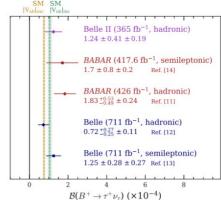
$$egin{aligned} \Delta\mathcal{B} &= (1.54 \pm 0.07 \pm 0.12) imes 10^{-3} \ |V_{
m ub}| &= (4.01 \pm 0.11 \pm 0.16^{+0.07}_{-0.08}) imes 10^{-3} \end{aligned}$$

$|V_{ub}|$ measurement: $B \rightarrow \tau \nu$

PRD 112, 072002 (2025)

Theoretically clean (no hadronic FFs), but smaller \mathcal{B} ; sensitive to BSM.


$$igg| \mathcal{B}(B^+ o au^+
u_ au) = rac{G_F^2 m_B m_ au^2}{8\pi} igg[1 - rac{m_ au^2}{m_B^2} igg]^2 f_B^2 |V_{ub}|^2 au_B.$$


Analysis Methodology

FEI approach: B_{tag} decay into hadronic modes; B_{sig} τ reconstructed into $(e/\mu/\pi/\rho)$ candidate and rest is missing energy.

BDTs to suppress qq bkgs, bkg photons.

Fits to M_{miss}^2 and E_{ECL}^{extra} to extract \mathcal{B} .

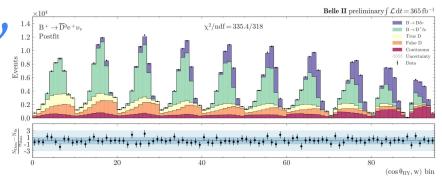
$$egin{align} \mathcal{B}(B^+ o au^+
u_ au) &= [1.24 \pm 0.41 \pm 0.19] imes 10^{-4} \ |V_{ub}|_{B^+ o au^+
u_ au} &= \left[4.41^{+0.74}_{-0.89}
ight] imes 10^{-3} \ \end{split}$$

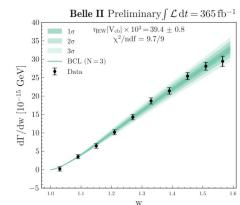
$|V_{cb}|$ measurement: $B \rightarrow Dl\nu$

arXiv:2506.15256 (Accepted by PRD)

Differential decay rate $d\Gamma/dw$ ($w = v_B.v_D$) can be used to extract $|V_{cb}|$ using the following form:

$$rac{d\Gamma(B o D\ell
u_\ell)}{dw} = rac{G_F^2 m_D^3}{48\pi^3} (m_B+m_D)^2 (w^2-1)^{3/2} \ \eta_{
m EW}^2 (1+\delta_C^{+,0})\, \mathcal{G}^2(w) \left|V_{cb}
ight|^2$$

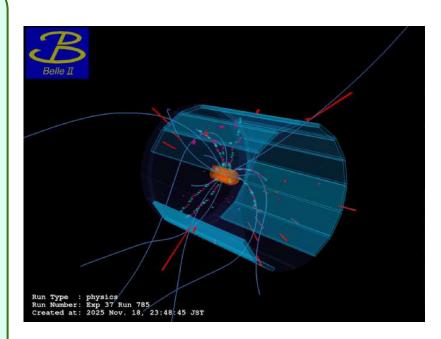

Analysis Methodology


 $D^{0/+}$ reconstructed into $K^-\pi^+/K^-\pi^+\pi^+$ systems.

w calculated as weighted average over potential p_B directions inside a cone around Y = Dl system:

$$\cos heta_{BY} = rac{2E_{
m beam}E_Y - m_B^2 - m_Y^2}{2|ec{p}_B||ec{p}_V|}$$

Fits to $\cos\theta_{\rm BY}$ in bins of w to extract $\Delta\Gamma/\Delta w$.



$$egin{aligned} \mathcal{B}(B^0 o D^- \ell^+
u_\ell) &= (2.06 \pm 0.05 ext{ (stat)} \pm 0.10 ext{ (syst)})\% \ \mathcal{B}(B^+ o ar{D}^0 \ell^+
u_\ell) &= (2.31 \pm 0.04 ext{ (stat)} \pm 0.09 ext{ (syst)})\% \ |V_{
m cb}| &= (39.2 \pm 0.4 ext{ (stat.)} \pm 0.6 ext{ (sys.)} \pm 0.5 ext{ (th.)}) imes 10^{-3} \end{aligned}$$

--/12

Conclusions

- ★ CKM measurements are an important input to SM framework and tests for BSM physics.
- ★ Belle and Belle II datasets have unique potential for high precision measurements of these quantities.
- ★ We present five recent results from Belle II which have significant contribution towards improving precisions for ϕ_2 , $|V_{ub}|$ and $|V_{cb}|$
- ★ Several other analyses in progress, we restart data taking for 2025.

https://evdisp.belle2.org/

