

Flavour physics at CMS

Physics of the two Infinites
Tokyo 17-21.11.2025

Riccardo Manzoni on behalf of the CMS Collaboration

CP-violation

measurement of ϕ_s in

$$B_s \rightarrow J/\Psi \phi$$

$$A_{CP}$$
 in $D^0 \to K_s K_s$

. . .

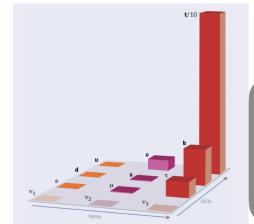
Exotic hadrons and spectroscopy

search for tetraquarks

measurement of tetraquark properties

baryon decays

Production and properties


differential cross sections

associated V + HF production

fragmentation fractions

lifetimes

. . .

Flavour Physics at CMS

(excluding top, see Kai-Feng's talk)

Lepton flavour (non-) universality

 $R(K), R(J/\Psi), \dots$

Lepton flavour violation

$$\tau \rightarrow 3\mu$$
, ...

Rare decays

penguin/box FCNC $b \rightarrow s\ell\ell$

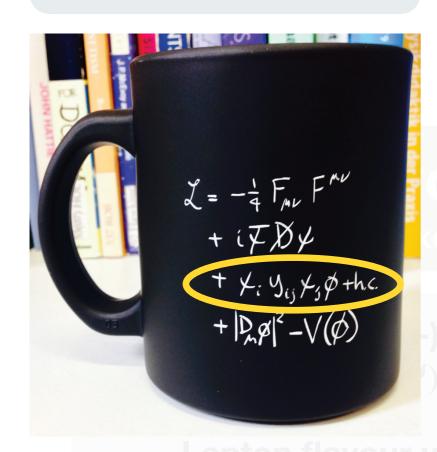
measurement of "golden" $B_s \to \mu\mu$

search for very rare $D^0 \to \mu\mu$

angular analyses $B^0 \to K^{*0}\mu\mu$, $B_s \to \phi\mu\mu$

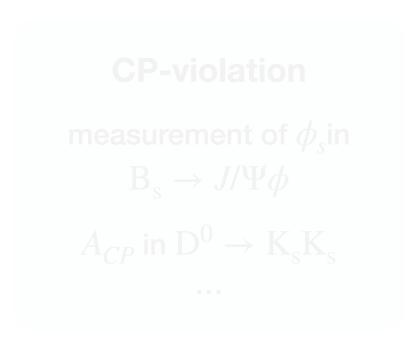
$$d\mathcal{B}(H_b \to H_s \mu \mu)/dq^2$$

all <u>public results here</u> limited selection in this talk


CP-violation

measurement of ϕ_s in

$$B_s \rightarrow J/\Psi \phi$$


$$A_{CP}$$
 in $D^0 \to K_s K_s$

. . .

- Sakharov's II condition for baryogengesis C and CP must be violated
 - crucial to explain matter-antimatter imbalance
- only source of CP violation in the SM from imaginary phase in Cabibbo-Kobayashi-Maskawa matrix
 - CKM arises from Higgs Yukawa interaction
 - unitary transformation between mass and interaction bases
 - measure angles of six unitary triangles
 - over constrained → stress test of SM consistency
- CKM induced CPV still way too small...
 - New Physics can significantly modify it

$$V_{\text{CKM}} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Exotic hadrons and spectroscopy

search for tetraquarks

measurement of tetraquark properties

baryon decays

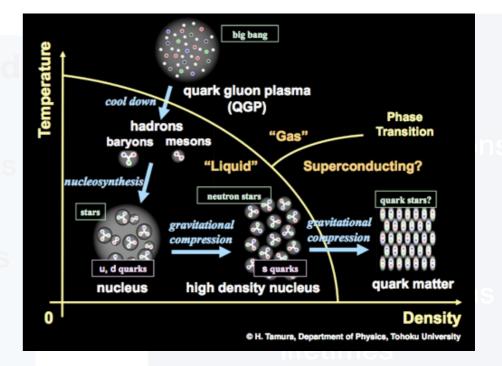
...

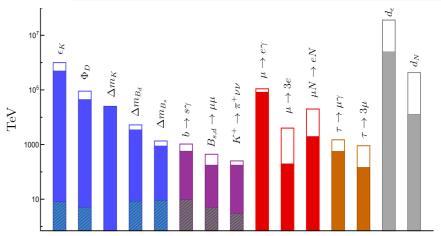
Production and properties

differential cross sections

associated V + HF production

fragmentation fractions


lifetimes


the study of exotic hadrons and QCD production processes represent experimental analogues of the strong-force mediated processes that led to hadron formation in the early Universe

- hot quark-gluon (collision) → hadronisation / cooling
- QCD non perturbative at hadron/nuclei energy → hard from first principles → experiments crucial

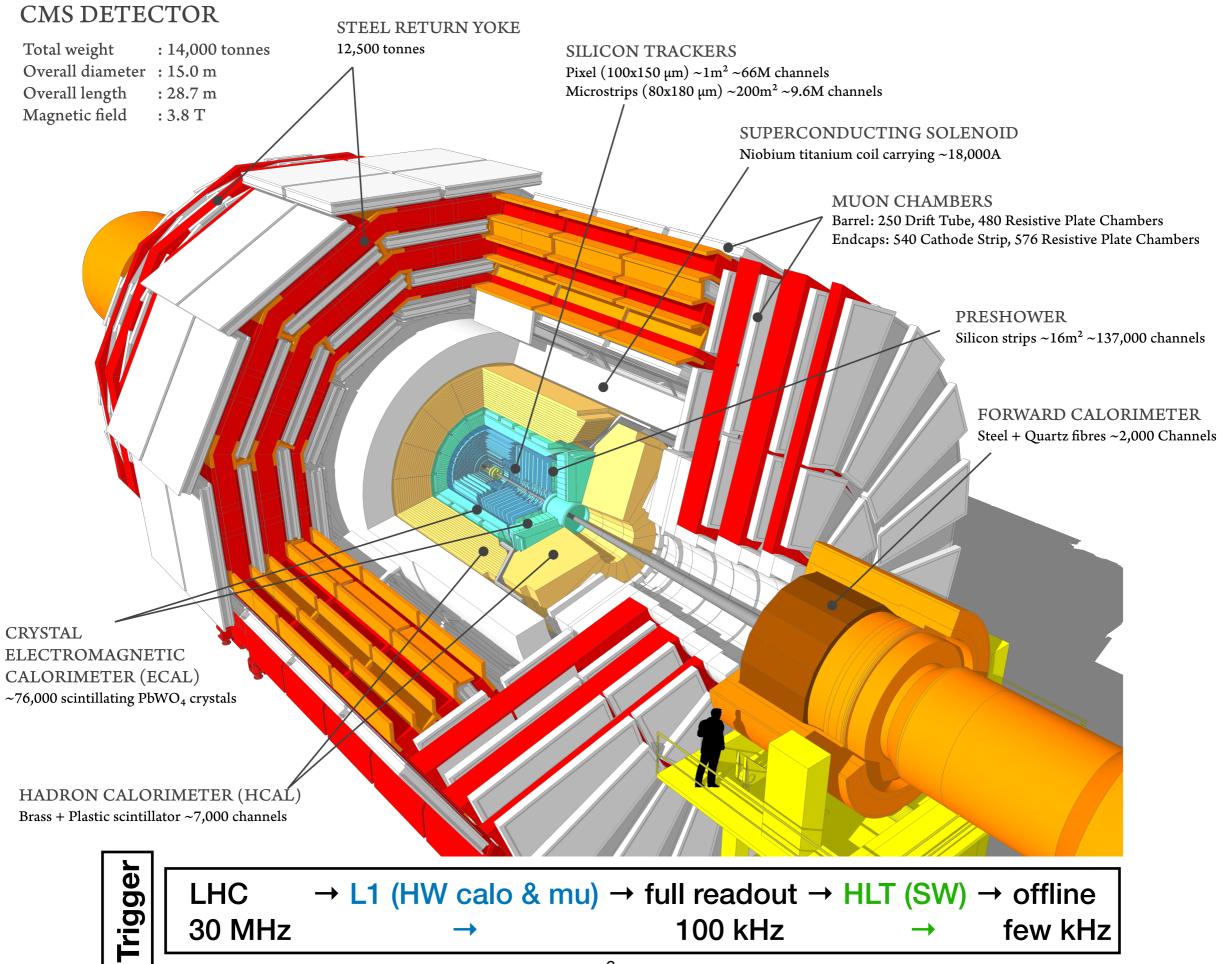
Sakharov's III condition for baryogengesis: first order phase transition

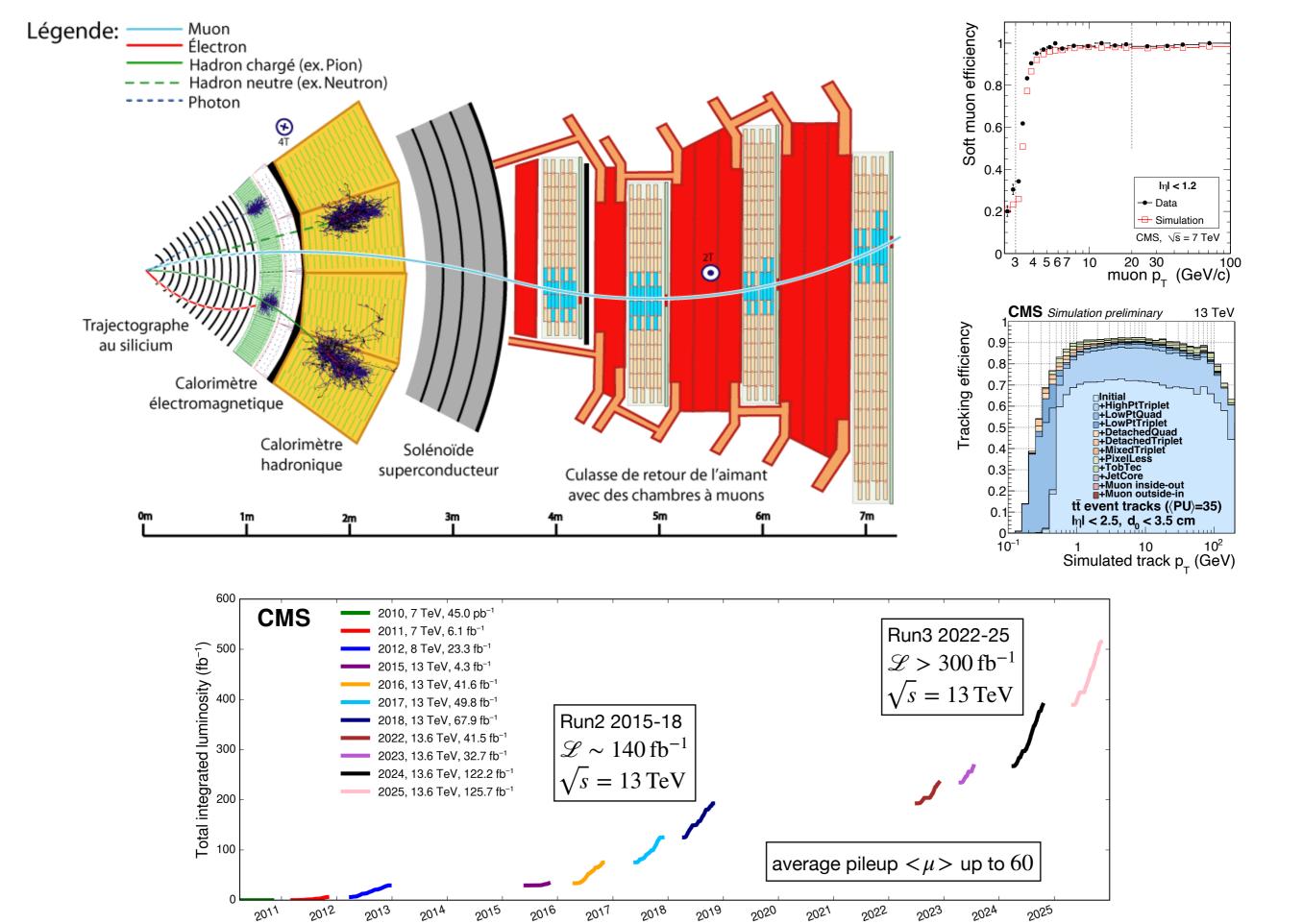
- Higgs potential symmetry breaking during cooling would realise for light Higgs $m_{\rm H} < 70\,{\rm GeV}$
- clearly not fulfilled $m_{\rm H} = 125\,{\rm GeV}$ (see Marumi, Yves' talks), "cross-over"
- Beyond the SM particles can modify Higgs potential appropriately and satisfy Sakharov's III condition
- dark matter candidates?
- precision measurements in Flavour sector
 → indirect search for New Physics
 - Effective Field Theory: new interactions
 ⇔ "contact operators"

Lepton flavour (non-) universality

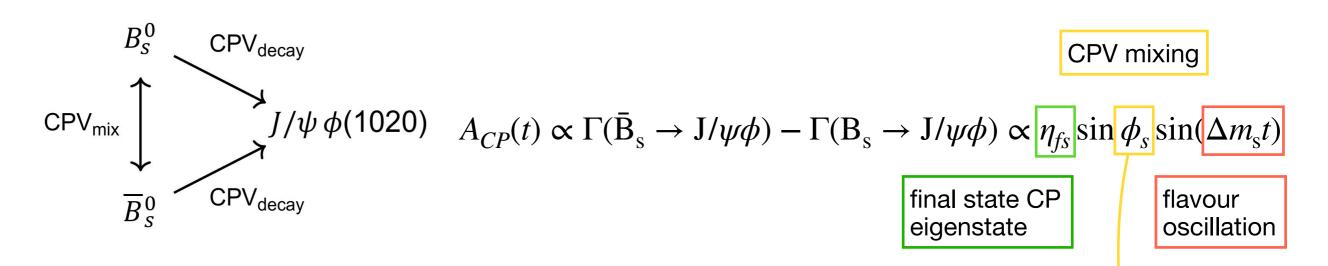
$$R(K) = \mathcal{B}(B^{+} \to K\mu\mu)/\mathcal{B}(B^{+} \to Kee),$$

$$R(J/\Psi) = \mathcal{B}(B_{c} \to J/\Psi\tau\nu)/\mathcal{B}(B_{c} \to J/\Psi\mu\nu),$$

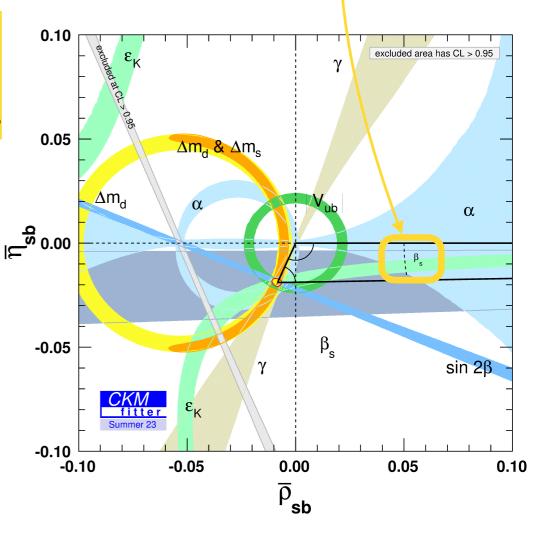

Lepton flavour violation


$$\tau \rightarrow 3\mu$$
, ...

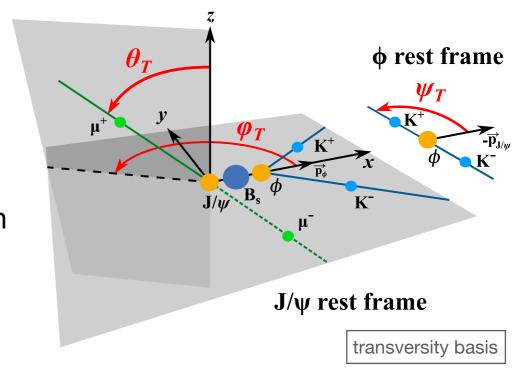
Rare decays

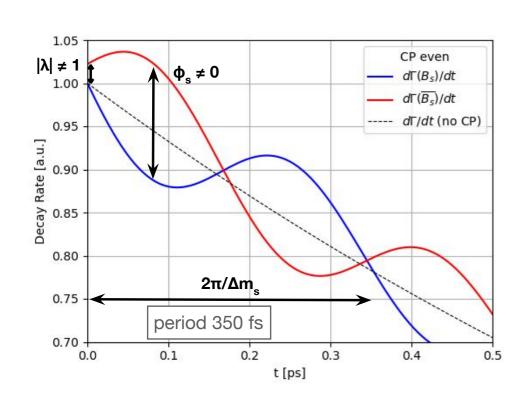

penguin/box FCNC $b \to s\ell\ell$ measurement of "golden" $B_s \to \mu\mu$ search for very rare $D^0 \to \mu\mu$ angular analyses $B^0 \to K^{*0}\mu\mu$, $B_s \to \phi\mu\mu$ $d\mathcal{B}(H_b \to H_s\mu\mu)/dq^2$

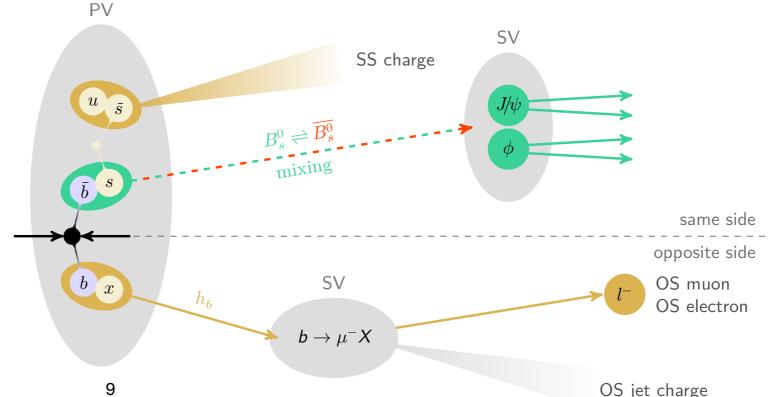
5



7 Date

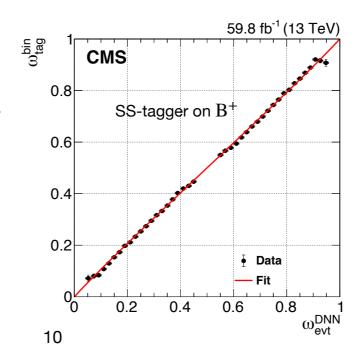


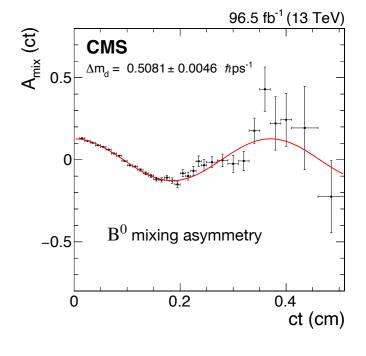

- measure mixing-induced CPV phase $\phi_s \approx -2\beta_s = -2\arg(-V_{\rm ts}V_{\rm tb}^*/V_{\rm cs}V_{\rm cb}^*)$ in the the B_s^0 system and several other parameters
- accurate theoretical predictions CKMfitter, UTfit $\phi_s = -37 \pm 1 \, \mathrm{mrad}$
 - sensitive to deviations induced by new physics
- CMS uses 2017 + 2018 dataset, 13 TeV, 96.5 fb⁻¹
 - J/Ψ+μ & J/Ψ+φ(KK) triggers



time-and flavour-dependent angular analysis, 7D UML fit $m, ct, \sigma_{ct}, \omega_{tag}, \cos\theta_{\rm T}, \cos\psi_{\rm T}, \varphi_{\rm T}$

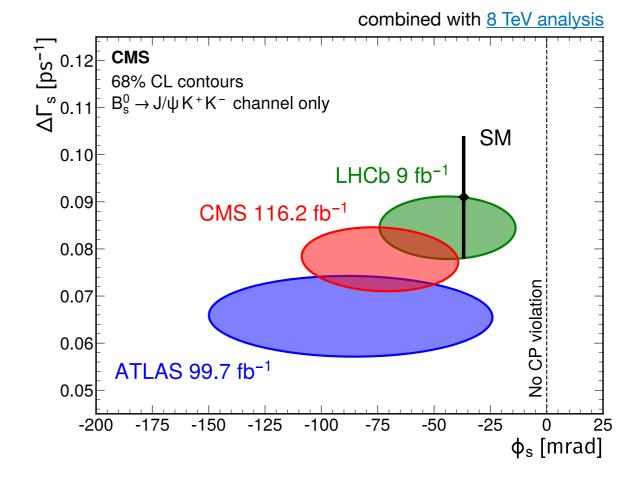
- angular analysis: to separate CP eigenstates angular efficiencies
- flavour tagging: to infer B_s^0/\bar{B}_s^0 flavour at production tagging decision and mistag probability
- time analysis: to model flavour oscillations time efficiency and resolution




Flavour tagging

- 4 separate DNN-based taggers: 3 opposite side
 (e, μ, jet), 1 same side (first at exp w/o PID)
 - decision ξ_{tag} : B_s^0 , \bar{B}_s^0 or untagged
 - designed to be flavour invariant
- (mis-)tagging efficiency (ω_{tag}) ε_{tag} determine effective statistics
 - tagging power $P_{tag} = \varepsilon_{tag} (1 \omega_{tag})^2 = 5.59 \,\%$
 - 491k signal events → 28k effective

		$(1-\omega_{tag})^2$	2
Category	$arepsilon_{tag} \ [\%]$	$\mathcal{D}^2_{ ext{eff}}$	$P_{tag}\ [\%]$
Only OS muon	6.07 ± 0.05	0.212	1.29 ± 0.07
Only OS electron	2.72 ± 0.02	0.079	0.214 ± 0.004
Only OS jet	5.16 ± 0.03	0.045	0.235 ± 0.003
Only SS	33.12 ± 0.07	0.080	2.64 ± 0.01
SS + OS muon	0.62 ± 0.01	0.202	0.125 ± 0.003
SS + OS electron	2.77 ± 0.02	0.150	0.416 ± 0.005
SS + OS jet	5.40 ± 0.03	0.124	0.671 ± 0.006
Total	55.9 ± 0.1	0.100	5.59 ± 0.02


- calibration: on self tagging $B^+ \to J/\psi K^+$
- validation: measure B⁰ meson oscillations, 4 different CPV analyses, one per tagger, ...

Results

Parameter	Value	Uncertainty
$\phi_{\rm s}$ [mrad]	-74	± 23
$\Delta\Gamma_{ m s}$ [$ m ps^{-1}$]	0.0780	± 0.0045
$\Gamma_{\rm s}$ [ps ⁻¹]	0.6633	$\pm \ 0.0029$
$\Delta m_{\rm s}^- [\hbar {\rm ps}^{-1}]$	17.759	± 0.038
$ \lambda $	1.011	± 0.019
$ A_0 ^2$	0.5273	$\pm~0.0044$
$ A_{\perp} ^2$	0.2417	± 0.0036
$ A_{\rm S} ^2$	0.0072	± 0.0032
δ_{\parallel} [rad]	3.152	± 0.077
$\delta_{\perp}^{"}$ [rad]	2.940	± 0.098
$\delta_{\mathrm{S}\perp}$ [rad]	0.45	± 0.14

3.2 σ evidence of CP violation in $B^0_s \to J/\psi \phi$ decays

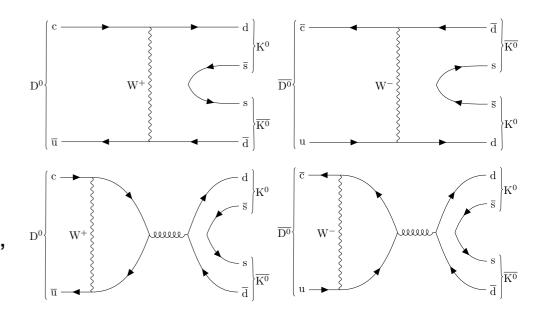
results in agreement with SM and other experiments

still statistically limited, competitive with other measurements

Search for *CP* violation in $D^0 \to K^0_S K^0_S$ decays

CPV in up-quark sector not as well studied as in down-quark

- only observation <u>LHCb</u> $A_{CP}(\mathrm{D}^0\to\mathrm{KK})-A_{CP}(\mathrm{D}^0\to\pi\pi)=(-15.4\pm2.9)\times10^{-4}$
- direct CPV in decay $D^0 \to K^0_S K^0_S$ predicted of O(%), experimentally accessible and larger than other channels
- previous results:


Belle
$$A_{CP}(D^0 \to K_S^0 K_S^0) = (-0.02 \pm 1.53 \pm 0.02 \pm 0.17) \%$$

LHCb $A_{CP}(D^0 \to K_S^0 K_S^0) = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2) \%$

first CPV measurement in charm sector at CMS

2018 data, 41.6 fb-1 **BParking dataset** Phys. Rept. 1115 (2025) 678, contains O(1010) semileptonic B decays, most of type $B \to D\mu\nu$

use sign of soft pion from $D^* \to D\pi_{_{\! S}}^\pm$ to (self-)tag flavour time integrated

$$A_{CP} = \frac{\Gamma(D^0 \to K_S^0 K_S^0) - \Gamma(\bar{D}^0 \to K_S^0 K_S^0)}{\Gamma(D^0 \to K_S^0 K_S^0) + \Gamma(\bar{D}^0 \to K_S^0 K_S^0)}$$

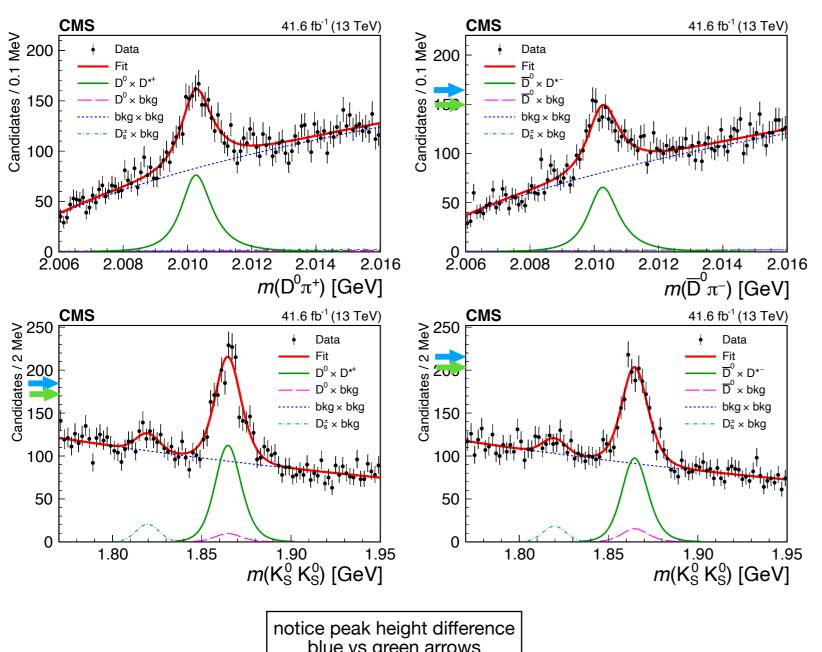
Search for *CP* violation in $D^0 \to K^0_S K^0_S$ decays

Extraction of A_{CP}

 A_{CP} can be broken down into different components: difference of raw yields, D^0/\bar{D}^0 production, detector

$$A_{CP} = A_{CP}^{\text{raw}} - A_{CP}^{\text{pro}} - A_{CP}^{\text{det}}$$

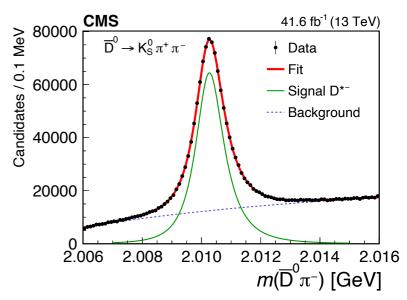
leverage topologically similar, high stats, and non-CPV (CDF) $D^0 \to K^0_S \pi \pi$ channel to cancel A^{pro}_{CP} and A^{det}_{CP}

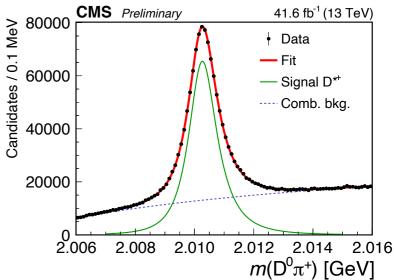

$$\Delta A_{CP} \equiv A_{CP}(\mathbf{K}_{\mathbf{S}}^{0}\mathbf{K}_{\mathbf{S}}^{0}) - A_{CP}(\mathbf{K}_{\mathbf{S}}^{0}\pi^{+}\pi^{-}) = A_{CP}^{\mathrm{raw}}(\mathbf{K}_{\mathbf{S}}^{0}\mathbf{K}_{\mathbf{S}}^{0}) - A_{CP}^{\mathrm{raw}}(\mathbf{K}_{\mathbf{S}}^{0}\pi^{+}\pi^{-})$$

$$A_{CP} = A_{CP}^{\text{raw}}(\mathbf{K}_{S}^{0}\mathbf{K}_{S}^{0}) - A_{CP}^{\text{raw}}(\mathbf{K}_{S}^{0}\pi\pi) - A_{CP}(\mathbf{K}_{S}^{0}\pi\pi)$$

Search for *CP* violation in $D^0 \to K^0_\varsigma K^0_\varsigma$ decays

$A_{CP}^{\text{raw}}(K_S^0 K_S^0) = (7.1 \pm 3) \%$


Pion charge	N	χ^2 (x axis)	χ^2 (y axis)
π^+	1095 ± 46	77	90
π^-	951 ± 44	93	62



blue vs green arrows

$A_{CP}^{\text{raw}}(K_S^0\pi\pi) = (0.78 \pm 0.10) \%$

Charge of pion	N	χ^2 with 100 bins	
π^+	944800 ± 3500	78	
π^-	930150 ± 3400	93	

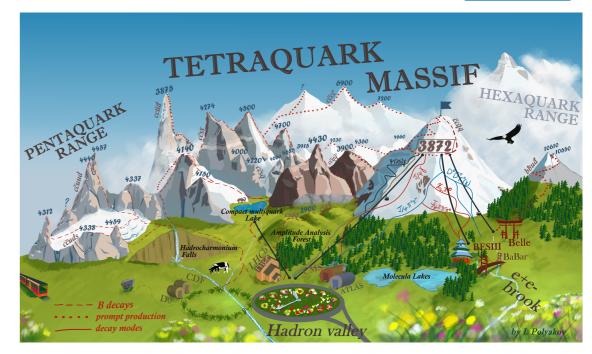
Search for CP violation in $D^0 \to K^0_S K^0_S$ decays Results

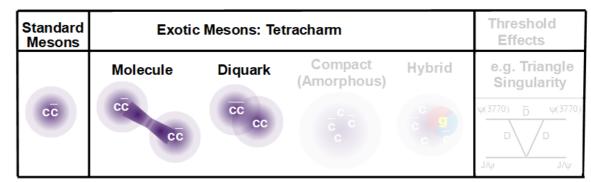
$$A_{CP}(K_S^0K_S^0) = 6.2 \pm 3.0 \text{ (stat)} \pm 0.2 \text{ (syst)} \pm 0.8 (A_{CP}(K_S^0\pi^+\pi^-)) \%$$

first search for CPV in charm sector at CMS

compatible with no CPV at 2σ , with <u>LHCb</u> at 2.7σ , with <u>Belle</u> at 1.8σ

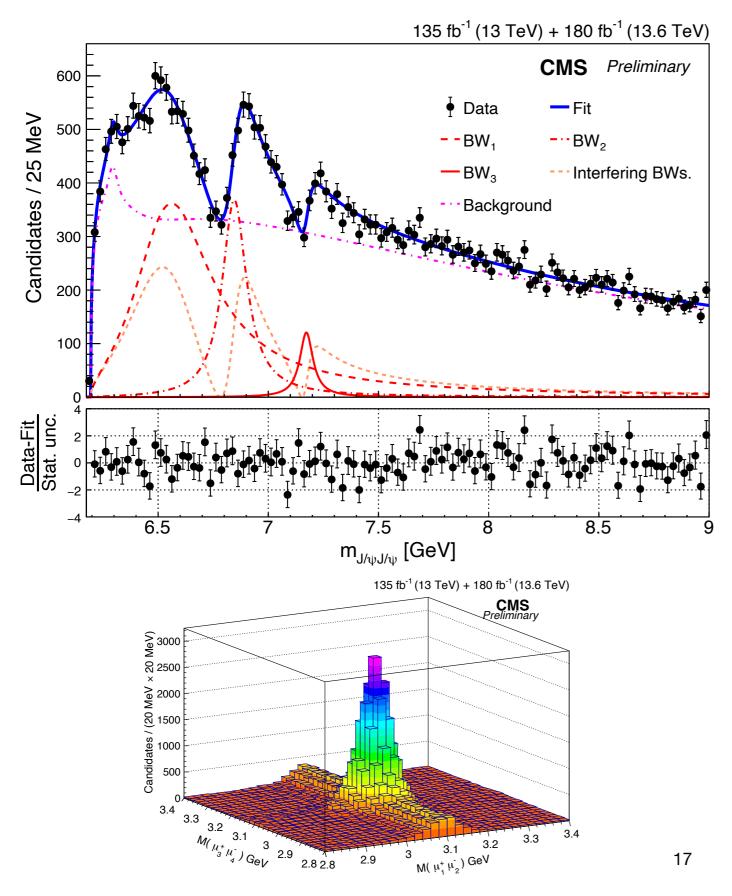
statistically limited, systematics primarily from variations on fit models


paves the way for future and more accurate measurements

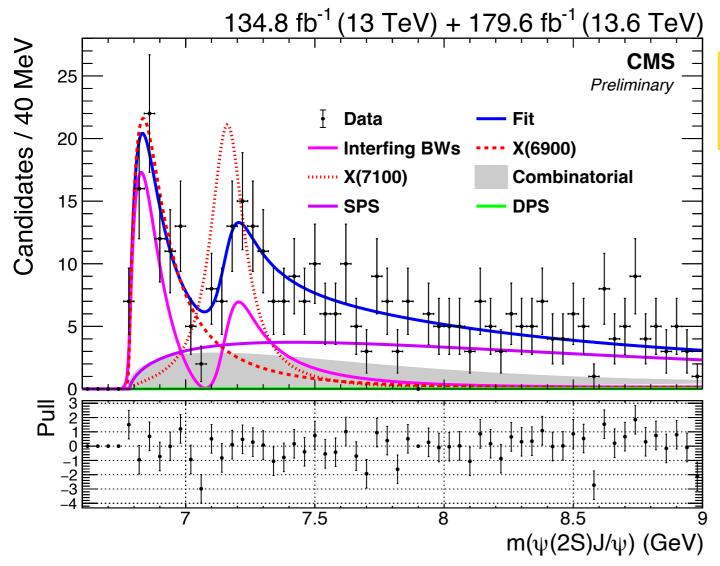

Source	Uncertainty, %
$m(\mathrm{D}\pi^\pm)$ signal model	0.10
$m(\mathrm{D}\pi^\pm)$ background model	0.02
$m(K_S^0K_S^0)$ signal model	0.04
$m(K_S^0K_S^0)$ background model	0.02
$m(K_S^0K_S^0)$ fit range	0.04
Reweighting	0.09
ΔA_{CP} in MC	0.13
Total	0.20

Tetraquarks - motivations

credit 2410.06923


- Gell-Mann and Zweig's (1964) quark model allowed for "exotic" tetra and pentaquarks
 - first confirmed in 2003 discovery of $X(3872) \rightarrow J/\Psi \pi\pi$ PRL 91 (2003)
 - tens more at the LHC (survey by P. Koppenburg)
- tightly-bound states of diquark+diantiquark or loosely-bound meson molecules (or other)?
 - insight into QCD potential, confinement, strong force

- all-heavy tetra quarks particularly interesting
 - excited hadron in (u, d, s) sector have large widths, overlaps, hard to handle
 - c and b quark resonances more tractable and, in particular, $J/\Psi \to \mu\mu$ (and possibly $\Upsilon \to \mu\mu$) are clean experimental signature in CMS

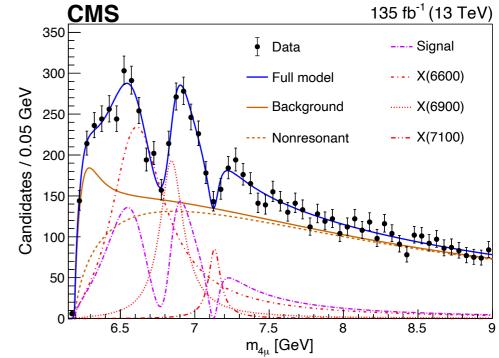

Family of all-charm tetraquarks in $X o J/\Psi J/\Psi o 4\mu$

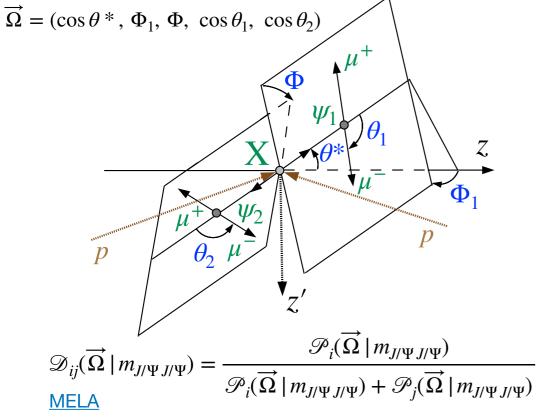
Observation of structures at X(6600), X(6900), and X(7100)

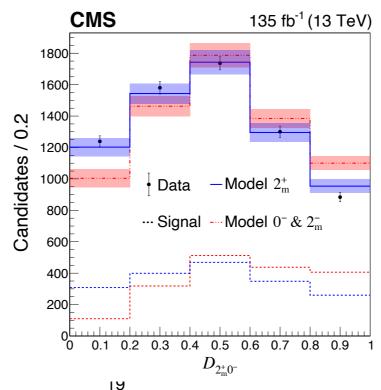
- each confirmed at $\gg 5\sigma$ level
 - *X*(6900) observed initially by LHCb and later by ATLAS too other structures seen with lower significances
- interference between three structures established by CMS at $> 5\sigma$ preferred by other experiments too
 - implies same J^{PC} quantum numbers, family of states with different radial excitation
 - $m_{X_i}^2$ follow Regge trajectory for radial excitation
- backgrounds include DPS, NRSPS, feed downs, and "empirical" threshold enhancement
- update of Run2 analysis, to include 2022-2024 data, more than double statistics

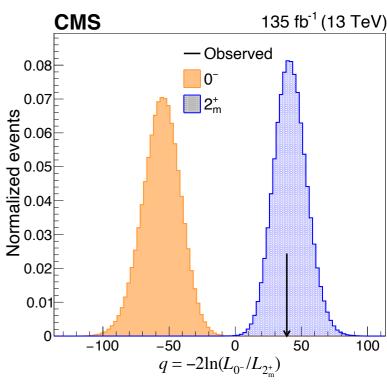
Family of all-charm tetraquarks in $X \to J/\Psi \, \Psi(2{\rm S}) \to 4 \mu$

Fit	Sample	Interf.		X(6600)	X(6900)	<i>X</i> (7100)
f_{i23}	$J/\psi\psi(2S)$	BW ₂ , BW ₃	<i>m</i> :	<u>—</u>	$6876^{+46+110}_{-29-110}$	7169^{+26+74}_{-52-70}
			Γ :		$253^{+290+120}_{-100-120}$	$154^{+110+140}_{-82-160}$
f_{JJ} [1]	$J/\psi J/\psi$	BW_1 , BW_2 , BW_3	m:	6638^{+43+16}_{-38-31}	6847^{+44+48}_{-28-20}	7134^{+48+41}_{-25-15}
			Γ :	$440^{+230+110}_{-200-240}$	191^{+66+25}_{-49-17}	97^{+40+29}_{-29-26}


Observation of X(6900) at $> 5\sigma$ evidence of X(7100) at 4σ

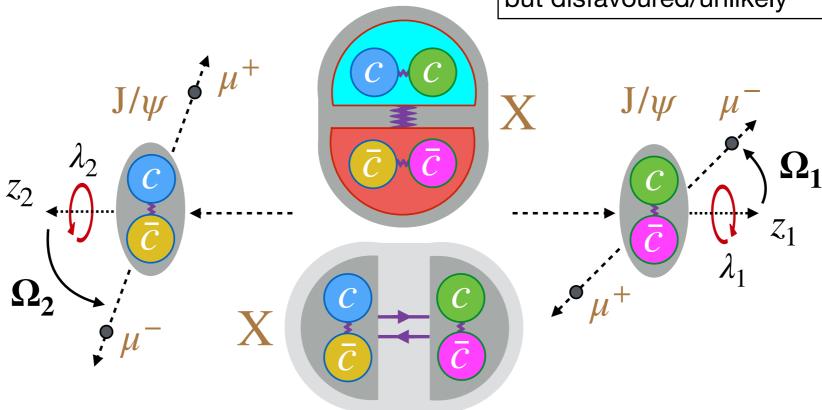

- near-threshold enhancement in this channel first observed by ATLAS
- interference assumed analogous to $J/\Psi J/\Psi \to 4\mu$
- effect of below-threshold X(6600) as systematic
- masses and widths of X(6900) and X(7100) agree well with those measured in $J/\Psi J/\Psi \to 4\mu$


Determination of J^{PC} of all-charm tetra quarks


measure J and P of the family of three full-charm tetraquarks observed by CMS (C=+ from $J/\Psi J/\Psi$ final state)

- based on Run2 version of the analysis presented before, $\mathcal{L}=135\,\mathrm{fb^{-1}}$ PRL 132 (2024) 111901
- build a likelihood ratio discriminant \mathcal{D}_{ij} between two spin-parity hypothesis, using angular variables in the helicity basis
- 2D fit mass and $\mathcal{D}_{ij} \rightarrow$ pairwise hypothesis testing for all considered models

focus on the two more popular tetraquark models to determine


which J^{PC} hypothesis to test

"compact" tetraquark

tightly-bound state, color exchange diquark + diantiquark

(cc) and $(\bar{c}\bar{c})$ have S=1 ground state L=0 most likely L=0 (nS), $S=0,2 \implies J^P=0^+,2^+$

from P and D wave $J^P = 0^-, 1^-, 2^-, 1^+, 3^+ \dots$ possible but disfavoured/unlikely

"molecule" model

loosely-bound state similar to pion exchange in nucleus, but much weaker ($m_\pi \ll m_{c\bar{c}}$)

 $(c\bar{c})$ not restricted to S=1 more J^P states allowed including $J^P=1^+$, but reasonable to expect low L preferred

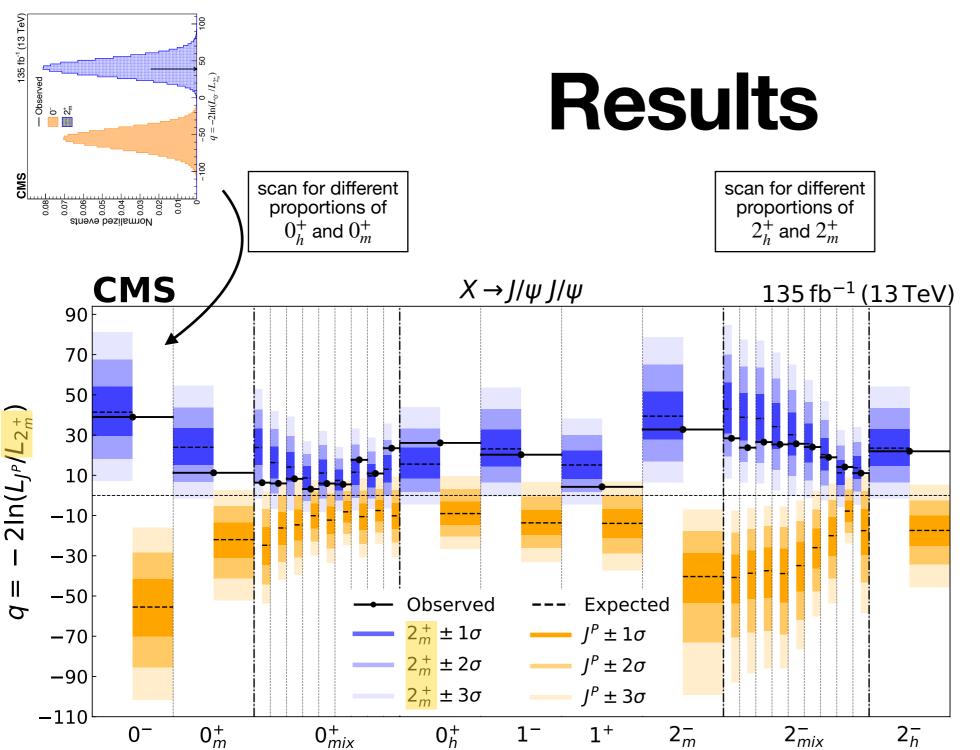
C = + from decay C is conserved in QCD

amplitudes are computed analytically \rightarrow can determine angular distribution from any J^P

symmetry constraints reduce d.o.f.

S_T	L_T	J_T	J^{PC}
0	0	0	0++
1	0	1	1+-
2	0	2	2++
0	1	1	1
1	1	2	2-+
1	1	1	1-+
1	1	0	0^{-+}
2	1	3	3
2	1	2	2
2	1	1	1

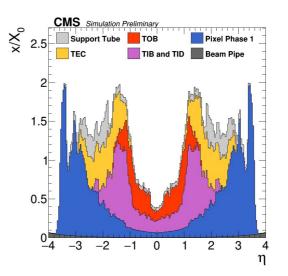
arXiv:1706.07553v3

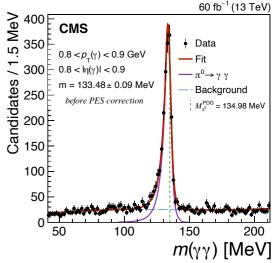

μ J/ψ	X	J/ψ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	helicity amplitude $\begin{array}{c} A_{++} \\ A_{} \\ A_{00} \\ A_{+0} \\ A_{0+} \\ A_{0-} \\ A_{0-} \\ A_{-+} \\ A_{-+} \\ \end{array}$	$ \begin{array}{c} \hat{z}_{2} \\ \lambda_{2} \\ \lambda_{2} \\ \downarrow \\ 0 \\ 0 \\ \downarrow \\ 0 \\ 0 \\ \downarrow \\ 0 \\ 0 \\ \downarrow \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
		spin-projections

$$A_{\lambda_1 \lambda_2} = (-1)^J A_{\lambda_2 \lambda_1}$$

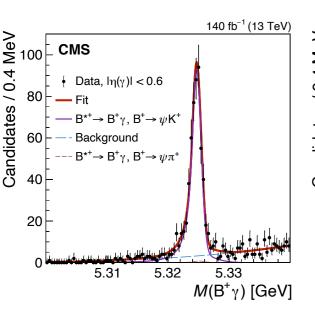
$$A_{\lambda_1 \lambda_2} = P(-1)^J A_{-\lambda_2 - \lambda_1}$$

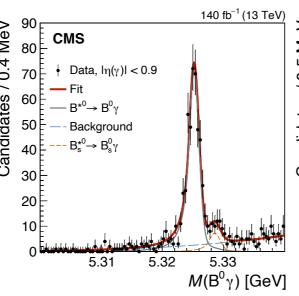
$\overline{I^{PC}}$	N 1 - 1 - 1 - TP	C (-:1 (: 1: (1	- fully determined
<u></u>	Models J_i^*	Contributing amplitudes	
0-+	0-	$A_{++} = -A_{}$	remaining d.o.f.
0++	0_m^+ and 0_h^+	$A_{++} = A_{}$ and A_{00}	assume model h and m
1-+	1- "	$A_{+0} = -A_{0+} = A_{-0} = -A_{0-}$	scan for different proportions
1++	1+	$A_{+0} = -A_{0+} = -A_{-0} = A_{0-}$	
2^{-+}	2_m^- and 2_h^-	$A_{++} = -A_{}$ and $A_{+0} = A_{0+} = -$	$-A_{-0} = -A_{0-1}$
2++	2_{m}^{+}	$A_{++} = A_{}, A_{00}, A_{+0} = A_{0+} = A_{}$	$A_{-0} = A_{0-}$, and $A_{+-} = A_{-+}$

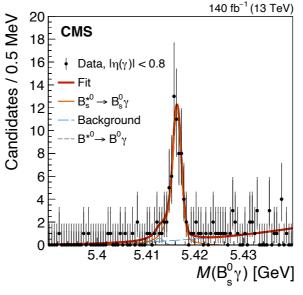

		Observ	rod.
		<i>p</i> -value	Z-score
$0^{-} \text{ vs } 2_{m}^{+}$	0-	2.7×10^{-13}	7.2
0 V3 2 m	2_{m}^{+}	0.42	0.2
$0_m^+ \text{ vs } 2_m^+$	0_m^+	4.3×10^{-5}	3.9
om (3 - m	2_{m}^{+}	0.072	1.5
0+ 202+	0_{mix}^+	1.4×10^{-2}	2.2
$0^+_{\text{mix}} \text{ vs } 2^+_m$	2_m^+	0.17	1.0
0+ 2+	0_h^+	3.1×10^{-9}	5.8
$0_h^+ \text{ vs } 2_m^+$	2_{m}^{n}	0.90	-1.3
$1^{-} \text{ vs } 2_{m}^{+}$	1-	8.0×10^{-8}	5.2
1 VS 2 _m	2_m^+	0.38	0.3
$1^+ \text{ vs } 2_m^+$	1+	4.7×10^{-3}	2.6
1 V3 Z _m	2_m^+	0.052	1.6
2_{m}^{-} vs 2_{m}^{+}	2_m^-	4.1×10^{-12}	6.8
z_m $\sqrt{s} z_m$	2_{m}^{+}	0.28	0.6
2	$2^{-}_{\rm mix}$	6.5×10^{-4}	3.2
$2_{\text{mix}}^- \text{ vs } 2_m^+$	2_m^{+}	0.31	0.5
2- m 2+	2_{h}^{m}	2.2×10^{-8}	5.5
$2_h^- \text{ vs } 2_m^+$	$2_{m}^{''}$	0.43	0.2

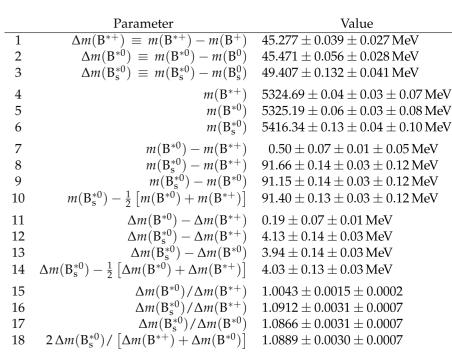

 $J^P=2^+$ strongly favoured 2_m^+ minimal model favoured P=+ established $J^P=0^+$ excluded at >95% CL $J^P=1^+$ excluded at 99% CL

P=1 excludes L=1 in either tetraquark models molecule model $\to L=2$ unlikely, S=0,1 diquark model $\to S=1$ more naturally favours J=2


Exclusive reco of excited B^{*} and mass measurement


- first full reconstruction of the vector mesons \boldsymbol{B}^{*+} , \boldsymbol{B}^{*0} , \boldsymbol{B}_s^*
 - using $\gamma^* \to e^+ e^-$ conversion in material
 - lower acceptance, but cleaner signature than low energy photons
 - energy calibration with $\pi^0 \to \gamma \gamma$ in rapidity/momentum bins





• precise measurements of $m(B^*) - m(B) 45 - 49 \text{ MeV}$

Summary

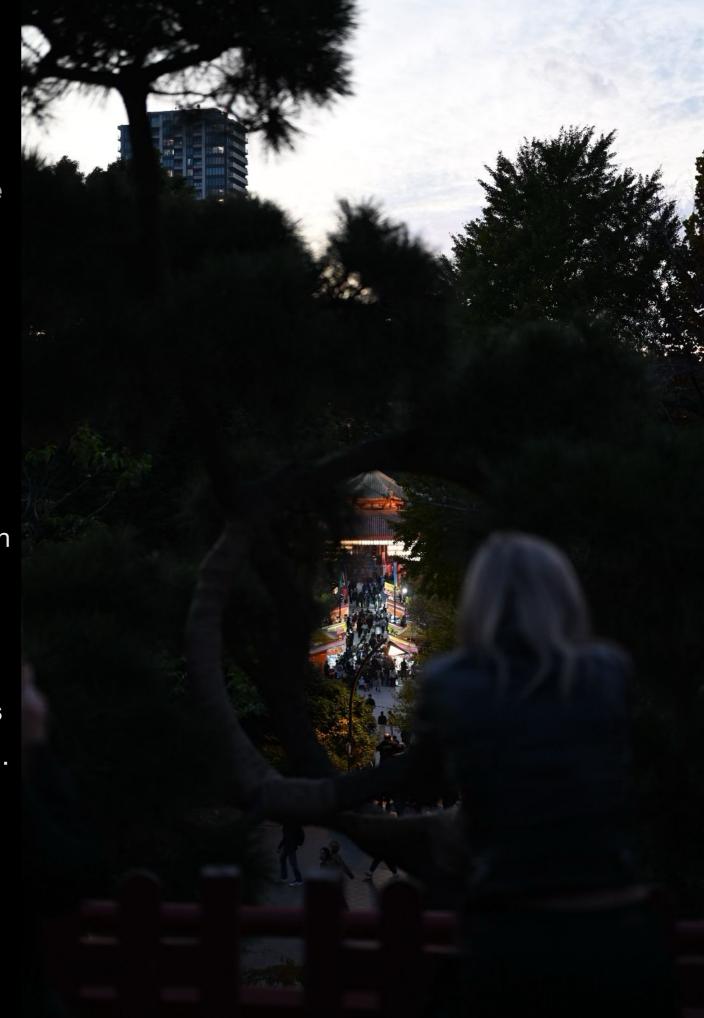
Flavour physics is deeply connected to the evolution of early universe and the matter-antimatter asymmetry

CMS carries out an expansive flavour physics programme

study of QCD in production, exotic hadrons, ...

CP violation

indirect searches for new physics through precision measurements of rare decays


lepton flavour (universality) violation

using a variety of analysis techniques and tools

angular analysis, multidim fits, machine learning, ...

limited selection of recent results in this talk see here for the full picture

happy to discuss over coffee / tea

